
A RPL through RDF:
Expressive Navigation in RDF Graphs

Harald Zauner1, Benedikt Linse1,2, Tim Furche1,3, and François Bry1

1 Institute for Informatics, University of Munich,
Oettingenstraße 67, 80538 München, Germany

2 Thomson Reuters, Landsberger Straße 191a, 80687 München, Germany
3 Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford, OX1 3QD, England
http://rpl.pms.ifi.lmu.de/

Abstract. RPL (pronounced “ripple”) is the most expressive path lan-
guage for navigating in RDF graphs proposed to date that can still be
evaluated with polynomial combined complexity. RPL is a lean language
well-suited for integration into RDF rule languages. This integration en-
ables a limited form of recursion for traversing RDF paths of unknown
length at almost no additional cost over conjunctive triple patterns.
We demonstrate the power, ease, and efficiency of RPL with two appli-
cations on top of the RPL Web interface. The demonstrator implements
RPL by transformation to extended nested regular expressions (NREs).
For these extended NREs we have implemented an evaluation algorithm
with polynomial data complexity. To the best of our knowledge, this
demo is the first implementation of NREs (or similarly expressive RDF
path languages) with this complexity.

1 Motivation
With the promise of exciting “new kinds of usage scenarios”, you finally got
your boss at company C to embrace linked data and connect your community
forum and contact database to other online communities and FOAF profiles of
your contacts. Your boss now wants to put that technology to use: “I want to

cooperate with X on topic Y ! Can you get me the name of any person that works

at X and that’s connected to us via people that are also interested in Y (so that

they have an interest in connecting us). Oh, and none of the intermediates should

be our competitor Z.”

Though the linked data movement and related initiatives like FOAF or SIOC
provide specifically for this kind of scenario, most current analysis and query
tools for RDF are not up to this task: SPARQL can only compute persons con-
nected via fixed length paths due to the lack of any form of recursion. Under an
(e.g., OWL-based) entailment regime that treats foaf:knows (the FOAF property
used to build social networks) as a transitive property, SPARQL can compute
all connected persons, but can not ensure that all intermediate persons share
the same interest. The recent extension of SPARQL with property paths (to
be incorporated into SPARQL 1.1) also fails at this task, as it only allows lo-
cal restrictions on the traversed edges, but not on the traversed nodes, and no
repetition (*) over paths with restrictions on nodes and edges.

http://rpl.pms.ifi.lmu.de/

Not only SPARQL fails at such analysis tasks on social networks or similarly
interlinked data: Among the many RDF query and rule languages surveyed in [5],
there is no language that can solve this analysis task and is not either impractical
for large datasets (as NP- or Turing-complete languages such as SPARQLeR and
TRIPLE) or only informally specified and now abandoned (as Versa). The more
recent nSPARQL [8], an extension of SPARQL with nested regular expressions,
can only solve parts of the above analysis task (but not the last sentence) and
is not implemented in any publicly available tool.

In this demonstration, we show how to solve this and similar analysis tasks
with a novel RDF path language, called RPL. The following RPL path expression
solves our analysis problem (f being the FOAF namespace):
PATH [PATH _ <f:member C]

(>f:knows [!PATH _ <f:member Z][PATH _ >f:interest _ >f:topic Y])*
>f:knows [PATH _ <f:member X]

It returns all pairs of nodes such that the first node is an f:member of C and
is connected to the second node via the specified path: It first traverses outgoing

(indicated by >) f:knows edges and nodes that (1) are not members (employees)
of Z and (2) have an f:interest edge that leads to some node that has Y as
f:topic. It traverses arbitrarily many such edge-node pairs (indicated by *). The
last node must also have an incoming (indicated by <) f:member edge from X.

Solving this analysis task in RPL is also efficient even on large RDF graphs:
The demonstrated RPL implementation is, to the best of our knowledge, the
first implementation of the bottom-up labeling algorithm for nested regular ex-
pressions from [8] on RDF data. It extends both nested regular expressions and
the labeling algorithm with several important analysis features such as negation
and regular expressions on literals and URIs. The extended labeling algorithm
has been shown in [3] to have polynomial combined and data complexity.

With the analysis task solved, your job is save, your boss is impressed, and
the Semantic Web vision is closer to reality.

2 A RPL through RDF Graphs

RPL is inspired by XPath, the dominant XML path language, in that it allows
nested predicates on paths. Predicates allow a RPL user to express, in addition
to local conditions on the path between two nodes, also non-local conditions
on branches starting at a node on the path. Like XPath, RPL does not allow
variables in path expressions and thus, all RPL queries are tree queries. RPL
adapts XPath style path navigation to RDF and goes beyond XPath by replacing
XPath’s fixed closure axis with closure operators ?, *, and + (as in [1] and [7]).
RPL is set apart by three properties:

(1) RPL is designed from start off to be easily integrated into RDF rule and
query languages such as XcerptRDF [4] by allowing RPL expressions to appear
in place of RDF predicates. Thus, a RPL expression e evaluates to a set of node
pairs such that, between each pair of nodes, there is a path that matches e.

Together with the omission of variables, this ensures polynomial time and
space data complexity (and polynomial combined) for RPL. This contrasts to
most RDF path languages that either (a) allow the extraction of entire paths
from RDF graphs (like SPARQLeR [6]) and have therefore exponential data
complexity, or (b) allow variables to bind with nodes on the path (like PSPARQL
[2]) again at the price of exponential combined complexity.

(2) RPL’s rich syntax scales with the needs and abilities of the user: Begin-
ners can describe paths only through the traversed edges (edge-flavored RPL) or
only through the traversed nodes (node-flavored RPL), advanced users can place
restrictions on both nodes and edges (path-flavored RPL). Together with RPL’s
predicates this is the main difference to the SPARQL property path extension
that only allows restrictions on the edges traversed by a path.

(3) Expressive label tests with regular expressions and predicates with nega-
tion push RPL to the limits of RDF path languages with polynomial data com-
plexity. E.g., the edge-flavored expression EDGES >/.*train.*/* traverses an
arbitrary path whose forward-directed edges contain the keyword “train”.

Predicates allow non-local restrictions and are arbitrary RPL expressions in
square brackets. They can have either positive or negative sign (denoted by !).

3 System Description

Syntax and Semantics of RPL: To give a solid foundation for the discussion
of the RPL implementation, we first briefly sketch its syntax:

�rpl-expr� ::= �flavor� �adorned�+
�flavor� ::= ‘EDGES’ | ‘NODES’ | ‘NODES<’ | ‘NODES>’ | ‘PATH’
�adorned� ::= (�directed� | ‘(’ �disjunctive� ‘)’) (‘?’ | ‘*’ | ‘+’)?
�directed� ::= (‘<’ | ‘>’)? (�labeltest� | �predicates�)
�disjunctive� ::= �adorned�+ (‘|’ �adorned�+)*
�predicates� ::= ‘[’ ‘!’? �rpl-expr� (‘][’ ‘!’? �rpl-expr�)* ‘]’
�labeltest� ::= ‘_’ | �LITERAL� | �IRI_REF� | �REGEXP�

| �PN_PREFIX�? ‘:’ (�PN_LOCAL� | �REGEXP�)?

�adorned� expressions form expression sequences and can be adorned by multi-
plicities, �directed� expressions correspond to XPath node tests. We borrow most
of the token classes from SPARQL (e.g. �PN_PREFIX� and �PN_LOCAL�),
but also allow regular expressions (enclosed in slashes) via �REGEXP�.

The semantics of RPL is specified by translation into ENREs, an extended
version of nSPARQL’s nested regular expressions (NREs) [8]. We have chosen
this semantics to closely reflect our implementation that also translates RPL
expressions into ENREs and gives the, to the best of our knowledge, first imple-
mentation of (E)NREs on RDF data.

Consider, e.g., the RPL expression PATH p (>t _)+ that returns pairs of p
together with any node reached from p over one or more intermediate nodes via
t edges. This expression is translated into the ENRE

self_node::p/(next::t/self_node)+

ENREs have been tailored to fit the peculiarities of RPL and extend NREs
from [8] by regular expressions for label tests, the negation of nested expressions
(indicated by !), and three new navigation axes: self_node and self_edge act
like self but only on nodes and edges, respectively; next_or_next−1 is used for
edges, where no direction is specified. Negation of nested expressions is realized
as complement relation (i.e. [[[!exp]]]G := [[[exp]]]G) and thus does not affect
the polynomial complexity bounds.

Implementation: In the course of the demonstration, we demonstrate both
RPL and how RPL queries are transformed into ENREs.

RPL is implemented in Java and uses Sesame 2.2.4 for accessing RDF data.
We use the event based RDFHandler interface for fast and space efficient parsing
of RDF triples into an in-memory graph representation (we choose this as it is
an open question whether the bottom-up labeling algorithm used for evaluating
ENREs and thus RPL can be implemented on a stream of RDF triples).

Through a number of normalization and verification steps, RPL queries are
transformed into an equivalent ENRE. This ENRE is evaluated by an extended
version of the bottom-up graph labeling algorithm from [8]. The algorithm recur-
sively labels every node and edge v of the RDF graph with all nested expressions
that v satisfies (i.e., there is a path beginning at v which satisfies the nested ex-
pression). The result is a product automaton P := G × A, where G is the RDF
graph seen as an NFA (each node and each edge of the RDF graph is both an
initial and final state, and the transitions are given by its triples), and A is
the NFA that is induced by the ENRE seen as regular expression (Thompson’s
construction). P is used in a second phase to compute all node pairs (a, b), such
that (a, ·) is an initial state from which a final state (b, ·) is reached in P.

4 Riding RPL (Demo Description)

We demonstrate RPL using a Web-based, interactive interface: it provides a set
of predefined application scenarios for a quick take-up of RPL. The application
scenarios include the queried RDF graph, a visualization of that data, as well as
a number of predefined queries that illustrate the strengths of RPL for analysing
the respective data. The interface also allows users to enter their own RDF data
(in any of the common RDF serializations Turtle, RDF/XML, N-Triples and
N3) and their own RPL queries.

Furthermore, RPL queries can be comfortably authored in two separate
Eclipse plugins: visRPL allows users to graphically compose RPL queries (see
Figure 1) for new users, and another textual editor offers syntax highlighting
and completion for more experienced users of RPL.

Application Scenario: Transportation Services. This application sce-
nario is based on the nSPARQL [8] transportation services example. Both the
data and the queries discussed here are available to the user as part of the Web-
based interface. Figure 2 gives an impression of the data used in this scenario
(we abbreviate rdfs:subPropertyOf by rdfs:sp). The left hand of the graph shows

Fig. 1. Visual Eclipse editor visRPL for RPL

a simple ontology for various connection types between cities, the right hand
shows connections between a few European cities.

Imagine you are in Paris and want to find out which cities can be directly

reached via any transportation service. You might start with a RPL query like
NODES> :Paris _ (or equivalent PATH :Paris >_ _), which will return all nodes
that :Paris has an outgoing edge to. Hence, the pair (:Paris, :France) will also be
part of the result set (due to the :country edge between them). To ensure that only
transport edges are followed, we might be tempted to enumerate all types (train,
bus, ferry) of transport edges in our data. Not only is such a solution clumsy,
it also forces us to change our query whenever new types of transport edges are
introduced. Thus, we use instead the RPL predicate that is shown in Figure 1.
The query PATH :Paris >[PATH (_ >rdfs:subPropertyOf)* :transport] _ speci-
fies that we only follow edges from :Paris that are labeled as :transport or any of
its sub-properties.

Once we submit this query, an AJAX request is sent to the RPL Web service
which evaluates the RPL query and returns (a) a simplified and normalized,
i.e. path-flavored RPL query, (b) an equivalent ENRE, and (c) the result of the
evaluation (or an error message). The Web interface displays this information
together with timing information in a dialog as shown in Figure 3.

It turns out that none of the directly reachable cities interests us today. Thus,
we decide that intermediate stops are acceptable and want to adapt our query
accordingly. We simply have to add a closure multiplicity (+) to get to any place
that is reachable by one or more transport edges from :Paris, see Figure 3.

Unfortunately, we get really sick when traveling with a ferry and thus would
like to exclude connections that use a ferry. Again, the modification is straight-

:TGV :NExpress :Seafrance

:train :bus :ferry

:transport

rdfs:sp rdfs:sp
:cityrdfs:range

rdfs:domain

rdfs:sp rdfs:sp rdfs:sp

rdfs:sp

:Paris

:Calais :Dijon

:Dover

:Hastings :London

:TGV
:TGV

:Seafrance

:NExpress :NExpress

:France

:country

Fig. 2. Transportation services RDF graph

Fig. 3. Result dialog: RPL query, ENRE, result
forward: we add another predicate (! indicates negation) that does not allow
:ferry edges (and their sub-properties) to be traversed. The adapted query is
PATH :Paris (>[PATH (_ >rdfs:subPropertyOf)* :transport][

!PATH (_ >rdfs:subPropertyOf)* :ferry] _)+

It evaluates to the set {(:Paris, :Calais), (:Paris, :Dijon)}. The cities :Dover, as
well as :London and :Hastings (which are only reachable over :Dover), are excluded
now as the only transport link from Calais to Dover is a kind of ferry.

Finally, RPL is also able to express a relevant part of the RDFS entailment
rules: the following query retrieves all nodes that “are” cities according to RDFS
(i.e. all nodes that have an rdf:type edge to :city in the RDFS closure of Fig. 2).
NODES ([PATH _ >rdf:type (_ >rdfs:sc)* :city]

| [EDGES >[PATH (_ >rdfs:sp)* _ >rdfs:domain (_ >rdfs:sc)* :city]]
| [EDGES <[PATH (_ >rdfs:sp)* _ >rdfs:range (_ >rdfs:sc)* :city]])

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007–2013) / ERC grant agreement no. 246858.

References
1. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query

language for semistructured data. Int. J. on Digital Libraries, 1(1), 1997.
2. F. Alkhateeba, J.-F. Baget, and J. Euzenat. Extending SPARQL with regular

expression patterns. J. of Web Semantics, 2009.
3. F. Bry, T. Furche, and B. Linse. The perfect match: RPL and RDF rule languages.

In RR, 2009.
4. F. Bry, T. Furche, B. Linse, A. Pohl, A. Weinzierl, and O. Yestekhina. Four lessons in

versatility or how query languages adapt to the web. In F. Bry and J. Maluszynski.
Semantic Techniques for the Web, The Rewerse Perspective, LNCS 5500, 2009.

5. T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. RDF querying: Lang.
constructs and eval. methods compared. In Reasoning Web, LNCS 4126. 2006.

6. K. Kochut and M. Janik. SPARQLeR: Extended SPARQL for semantic association
discovery. In ESWC, 2007.

7. M. Marx. Conditional XPath. ACM Trans. on Database Sys. (TODS), 30(4), 2005.
8. J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for

RDF. In ISWC, 2008.

	A RPL through RDF: Expressive Navigation in RDF Graphs
	Harald Zauner1, Benedikt Linse1,2, Tim Furche1,3, and François Bry1

