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Abstract—Various query languages for Web and Semantic Web
data, both for practical use and as an area of research in the
scientific community, have emerged in recent years. At the same
time, the broad adoption of the internet where keyword search is
used in many applications, e.g. search engines, has familiarized
casual users with using keyword queries to retrieve information
on the internet. Unlike this easy-to-use querying, traditional
query languages require knowledge of the language itself as well
as of the data to be queried. Keyword-based query languages
for XML and RDF bridge the gap between the two, aiming
at enabling simple querying of semi-structured data, which
is relevant e.g. in the context of the emerging Semantic Web.
This article presents an overview of traditional query languages
for XML and RDF, focused on emerging preeminent exemplars
in each field, and contrasts these languages with the field of
keyword querying for XML and RDF.

I. INTRODUCTION

Few technologies have been as disruptive to the way we
process and manage information than the rapid adaption
of the World Wide Web. Getting at information is less and
less a question of means, station, race, or location. Rather
we have to adapt to new challenges: how to find, among
the vast stores of knowledge available, the right information
for satisfying our information need.

As part of addressing this challenge, we have seen the
emergence of Web queries and query languages that pro-
vide us with technological interfaces for accessing informa-
tion on the Web. The aim is to alleviate some of the burden
incurred by the ever increasing volume of information
automatically or semi-automatically.

When we talk about Web queries, we subsume two
rather diverse areas of research and technology: Web search
as Google or Yahoo! provide and database-style queries
on Web (mostly XML or RDF) data as provided through
languages such as XQuery or SPARQL and incorporated in
one form or another in most modern database products.

Web search is about discovering information among the
vast amount available on the Web: a search engine sifts
through an index of, all or a substantial portion of, Web
data and filters out what seems most relevant to the query
intent, specified through a very simple query interface
(usually just a bag of words). In contrast to traditional
information retrieval, Web search exploits for finding and
ranking relevant documents not only the content of each
individual documents but also their relations expressed as
hypertext links. Yet this information must be exploitable

without sacrificing scalability to millions or (nowadays)
billions of documents. Thus, Web Search engines employ
PageRank [158] and similar approaches to harvest structural
(or link) ranking as well as non-local search terms (e.g.,
anchor text used to link to a document or tags used to
annotate that document) at indexing time only. This allows
the actual evaluation of a search request on each docu-
ment (and its associated results of the harvesting process)
independently and thus allows highly parallel (and thus
scalable) evaluation of Web searches.

The downside of Web search, even more than in the
case of traditional information retrieval, is that the results
to a search request are often rather vaguely related to
the search intent and, at best, a ranking can be provided.
There is, however, no certainty that each and every returned
document is actually related to the search request. Only
once they are gauged by a human we can be sure of that.
Summarizing, Web search allows us to filter down the huge
amount of Web data to what is likely related to our search
request. The price for the ability to operate on such a
diverse and rapidly changing collection of information is
that we can never be sure that the results are precisely
what is relevant to our search request.

Database-style Web queries (formulated in languages
such as XQuery or SPARQL) are, in many respects, the exact
dual of Web search: we peak inside of (a small set of)
documents to find precise data items such as the price of
a book, the capital of a country, etc. These data items can
then be processed automatically, e.g., to place an order for
a book as soon as its price is below a certain threshold. We
can also deduce or detect “new” knowledge rather than just
discover what knowledge is already there: e.g., the number
of books someone authored or that there are people who
have published in all top five computer science conferences
of the current year. Such queries can not be answered
by a Web search engine unless that knowledge is already
provided a priori. In contrast to the traditional databases,
database-style Web queries operate on Web data formats
such as XML and RDF, the presumptive foundation for
the Semantic Web. Both differ from, e.g., the relational
data model first and foremost by more flexible schemata
where repetition and recursion are common. This pushes
issues such as the influence of tree queries or tree data on
query evaluation or efficient reachability queries in trees
and graphs to the front, issues that have been treated only



cursorily for relational data.
The price we pay for the ability to precisely select

individual data items of a certain characteristic and to
automatically process them is twofold: First, compared to
Web search interfaces Web query languages such as XQuery
or SPARQL are significantly more complex. Writing correct
(let alone efficient) Web queries requires significant training
and is comparable to a programming task. Second, most
Web query languages such as XQuery or SPARQL scale not
better than traditional SQL database technology, and thus
are clearly unable to process significant subsets of all Web
data. Rather, it is unavoidable to preselect a fairly small
collection of documents on which to evaluate the queries.

To summarize, where Web search allows us to operate on
(nearly) all the Web, (database-style) Web queries operate
only on a small fraction of the Web’s data. Where Web
search is limited to filtering relevant documents (for human
consumption), Web queries allow the precise selection of
data items in Web documents as well as their processing, re-
organization, aggregation, or deduction of new data. Where
Web search can operate on all kinds of Web documents
at the same time, Web queries are usually restricted to
a more homogeneous collection of documents (e.g., only
XHTML documents, only DocBook documents). Where Web
search requires a human in the loop to ultimately judge the
relevance of a search result, Web queries allow automated
processing, aggregation, and deduction of data. Where Web
search can be used by untrained users, Web queries usually
require significant training to be employed effectively.

Unfortunately, these two areas of research and technology
have been mostly separate in the past. Fortunately, this is
starting to change in more than one way:

1) Web search engines are beginning to integrate also
“peaking” inside Web documents into search results, e.g.,
to provide the precise answer to “What is the price of
milk?” rather than just to point to a document containing
that information. For instance, Google integrates querying
of structured data about videos, images, and items from
Google Base into the search result listing. Yahoo1 provides
similar features, that can be managed by providers of
structured data (online bookstores, online movie databases
etc.).

2) There has been considerable research into adding
information retrieval functionality and primitives to XQuery
and similar XML query languages. This effort has culmi-
nated in a (candidate) recommendation [7] by the W3C
which proposes selection and ranking (or scoring) operators
for XQuery inspired by traditional information retrieval. For
an overview of relevant articles and proceedings, see recent
tutorials on XQuery and XML retrieval [6], [9].

3) The most significant effort towards combining some of
the virtues of Web search, viz. being accessible to untrained
users and able to cope with vastly heterogeneous data, with
those of database-style Web queries is here categorized un-

1http://developer.yahoo.com/searchmonkey/

der the label keyword-based Web query languages for XML
and RDF documents. Theses languages operate essentially
in the same setting as XQuery or SPARQL but with an inter-
face for untrained users instead of a complex programming
language. The interface is often (in label-keyword query
languages) enhanced to allow, e.g., not only a bag-of-word
query but some annotations to each word, most notably a
context (e.g., only within the author or title of an article).
Results are still excerpts of the queried documents, though
the precise extent is often determined automatically rather
than by the user. Thus, keyword-based query languages
trade some of the precision, that languages like XQuery
allow the user in formulation exactly what data to select
and how to process it, for an easier interface accessible also
to untrained or barely trained users. The yardstick for these
languages becomes an easily accessible interface (or query
language) that does not sacrifice the essential premise of
database-style Web queries, that selection and construction
are precise enough to fully automate data processing tasks.

In this survey we focus on the last mentioned keyword-
based Web query language as the most promising direction
for combining the ease of use of Web search engines with
the automation and deduction features of database-style
Web query languages such as XQuery and SPARQL.

To ground the discussion of keyword-based query lan-
guages, we first give a concise summary of what we perceive
as the main contributions of research and development on
Web query languages in the past decade (Section III). This
summary is focused specifically on what sets Web query
languages apart from their predecessors for traditional
(mostly relational) databases. It comes in two parts, one
on XML (Section III), one on RDF (Section IV). For XML,
we consider three contributions: reachability (as expressed,
e.g., in XPaths descendant axis) in trees, how the restriction
to tree queries and tree data enables highly efficient query
evaluation, and the effect of order as a first class concept
of the data model. For RDF we consider again three con-
tributions: reachability in graphs, dealing with RDF’s multi-
valued, optional properties, and how existential information
(or blank nodes) affects querying and construction.

In both discussions we also briefly introduce the pre-
eminent exemplars of XML, resp. RDF query languages:
XQuery and SPARQL. Where illuminating or necessary for
the context we also reference other query languages. How-
ever, for more extensive introductions into and an extensive
comparison of the mentioned query languages (and many
more) we refer to previous surveys of XML and RDF query
languages [14], [92].

The main part (Section VI) of this survey is dedicated
to keyword-query languages, the first such endeavor the
authors are aware of: We start with a brief overview of
the principles and motivation of keyword-based query lan-
guages as well as their relation to Web search. Then we
compare existing keyword-based query languages in three
groups: In the most basic case, keyword-based query lan-
guages are implemented as any other query language (Sec-



tion VI-C). However, since keyword-based query languages
can also be considered as more easily accessible interfaces
to full, traditional query languages, some are implemented
by translation into XQuery or SPARQL (Section VI-D). Fi-
nally, some approaches consider keyword queries not as an
alternative interface but as an enhancement or extension of
an existing query language such as XQuery (Section VI-E).

We conclude this survey with a (1) summary of how
keyword-based query languages for XML and RDF aim to
bring the ease of use of Web search together with the
automation and deduction capabilities of traditional Web
queries, (2) a discussion where the existing approaches
succeed in this aim and what, in our opinion, are the most
glaring open issues, and (3) where, beyond keyword-based
query languages, we see the need, the challenges, and the
opportunities for combining the ease of use of Web search
with the virtues of Web queries.

II. DATA ON THE SEMANTIC WEB: XML AND RDF

A. Extensible Markup Language (XML)

XML [34] is, by now, the foremost data representation
format for the Web and for semi-structured data in general.
It has been adopted in a stupendous number of applica-
tion domains, ranging from document markup (XHTML,
Docbook [188]) over video annotation (MPEG 7 [141]) and
music libraries (iTunes2) to preference files (Apple’s prop-
erty lists [11]), build scripts (Apache Ant3), and XSLT [122]
stylesheets. XML is also frequently adopted for serialization
of (semantically) richer data representation formats such as
RDF or TopicMaps.

XML is a generic markup language for describing the
structure of data. Unlike in HTML (HyperText Markup
Language), the predominant markup language on the web,
neither the tag set nor the semantics of XML are fixed. XML
can thus be used to derive markup languages by specifying
tags and structural relationships.

The following presentation of the information in XML
documents is oriented along the XML Infoset [68] which
describes the information content of an XML document.
The XQuery data model [85] is, for the most parts, closely
aligned with this view of XML documents.

Following the XPath and XQuery data model, we provide
a tree shaped view of XML data. This deviates from the
Infoset where valid ID/IDREF links are resolved and thus
the data model is graph, rather than tree shaped. This view
is adopted in some XML query languages such as Xcerpt
[47] and Lorel [3], but most query languages follow XPath
and XQuery and consider XML tree shaped.

1) XML in 500 Words: The core provision of XML is a syn-
tax for representing hierarchical data. Data items are called
elements in XML and enclosed in start and end tags, both
carrying the same tag names or labels. <author>...</author>
is an example of such an element. In the place of ‘. . . ’,

2http://www.apple.com/itunes/
3http://ant.apache.org/

we can write other elements or character data as children
of that element. The following listing shows a small XML
fragment that illustrates elements and element nesting:

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

<authors>
6 <author>

<first>John</first> <last>Doe</last> </author>
8 <author>

<first>Mary</first> <last>Smith</last> </author>
10 </authors>

</article>
12 <article journal="Web Journal">

<dc:title>...Web...</dc:title>
14 <year>2003</year>

<authors>
16 <author>

<first>Peter</first> <last>Jones</last> </author>
18 <author>

<first>Sue</first> <last>Robinson</last> </author>
20 </authors>

</article>
22 </bib>

In addition, we can observe attributes (name, value pairs
associated with start tags) that are essentially like elements
but may only contain character data, no other nested
attributes or elements. Also, by definition, element order is
significant, attribute order is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element
in lines 6–9, but

<article id="12" journal="Computer
Journal">...</article>

represents the same element information item as lines 2–15.
Figure 1 gives a graphical representation of the XML doc-

ument that is referenced in preceding illustrations. When
represented as a graph, an XML document without links is
a labeled tree where each node in the tree corresponds to
an element and its type. Edges connect nodes and their
children, that is, elements and the elements nested in
them, elements and their content and elements and their
attributes. Since the visual distinction between the parent-
child relationship can be made without edge labels and
since attributes are not addressed or receive no special
treatment in the research presented in this text, edges will
not be labeled in the following figures.

Elements, attributes, and character data are XML’s most
common information types. In addition, XML documents
may also contain comments, processing instructions (name-
value pair with specific semantics that can be placed any-
where an element can be placed), document level informa-
tion (such as the XML or the document type declarations),
entities, and notations, which are essentially just other kinds
of information containers.
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Fig. 1. Visual representation of sample XML document

On top of these information types, two additional fa-
cilities relevant to the information content of XML docu-
ments are introduced by subsequent specifications: Names-
paces [33] and Base URIs [140]. Namespaces allow the
partitioning of element labels used in a document into
different namespaces, identified by a URI. Thus, an ele-
ment is no longer labeled with a single label but with
a triple consisting of the local name, the namespace pre-
fix, and the namespace URI. E.g., for the dc:title el-
ement in line 3, the local name is title, the names-
pace prefix is dc, and the namespace URI (called “name”
in [68]) is http://purl.org/dc/elements/1.1/. The latter
can be derived by looking for a namespace declaration
for the prefix dc. Such a declaration is shown in line 1:
xmlns:dc="http://. . . It associates the prefix dc with the
given URI in the scope of the current element, i.e., for
that element and all elements contained within unless there
is another nested declaration for dc, in which case that
declaration takes precedence. Thus, we can associate with
each element a set of in-scope namespaces, i.e., of pairs
namespace prefix and URI, that are valid in the scope of
that element. Base URIs [140] are used to resolve relative
URIs in an XML document. They are associated with ele-
ments using xml:base="http://. . . and, as namespaces, are
inherited to contained elements unless a nested xml:base
declaration takes precedence.

The above features of XML are covered by most query
languages. Additionally some languages (most notably
XQuery) also provide access to type information associated
via DTD or XML Schema [82]. These features are mentioned
below where appropriate but not discussed in detail here.

B. Resource Description Framework (RDF)

As the second preeminent data format on the Semantic
Web, the Resource Description Format (RDF) [109], [125],
[139] is emerging. RDF is, though much less common than
XML, a widespread choice for interchanging (meta-) data
together with descriptions of the schema and, in contrast
to XML, a basic description of its semantics of that data.

Not to distract from the salient points of the discussion,
we omit typed literals (and named graphs) from the follow-
ing discussion.

1) RDF in 500 Words: RDF graphs contain simple state-
ments about resources (which, in other contexts, are be
called “entities”, “objects”, etc., i.e., elements of the domain
that may partake in relations). Statements are triples con-
sisting of subject, predicate, and object, all of which are
resources. If we want to refer to a specific resource, we use
(supposedly globally unique) URIs, if we want to refer to a
resource for which we know that it exists and maybe some
of its properties, we use blank nodes which play the role of
existential quantifiers in logic. However, blank nodes may
not occur in predicate position. Finally, for convenience, we
can directly use literal values as objects.

RDF may be serialized in many formats (for a recent
survey see [30]), such as RDF/XML [18], an XML dialect
for representing RDF, or Turtle [13] which is also used in
SPARQL. The following Turtle data represents roughly the
same data as the XML document discussed in the previous
section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
2 @prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard−rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .



@prefix ex: <http://example.org/libraries/#> .
6 ex:smith2005 a bib:Article ; dc:title "...Semantic

Web..." ;
dc:year "2005" ;

8 ex:isPartOf [ a bib:Journal ;
bib:number "11"; bib:name "Computer Journal" ] ;

10 bib:author [ a rdf:Bag ;
rdf:_1 [ a bib:Person ;

12 bib:last "Smith" ; bib:first "Mary" ] ;
rdf:_2 [ a bib:Person ;

14 bib:first "John" ; bib:last "Doe" ] ] .

Following the definition of namespace prefixes used in
the remainder of the Turtle document (omitting common
RDF namespaces), each line contains one or more state-
ments separated by colon or semi-colon. If separated by
semi-colon, the subject of the previous statement is carried
over. E.g., line 1 reads as ex:smith2005 is a (has rdf:type)
bib:Article and has dc:title “. . . Semantic Web. . . ”. Lines 3–4
show a blank node: the article is part of some entity which
we can not (or don’t care to) identify by a unique URI but
for which we give some properties: it is a bib:Journal, has
bib:number “11”, and bib:name “Computer Journal”.

Figure 2 shows a visual representation of the above RDF
data, where we distinguish literals (in square boxes) and
classes, i.e., resources that can be used for classifying other
resources, and thus can be the object of an rdf:type
statement (in square boxes with rounded edges) from all
other resources (in plain ellipses).

2) Semantics: What sets RDF apart from XML and jus-
tifies its role as the data format for the Semantic Web is
that RDF data comes with attached meaning, that allows
us to infer additional knowledge beyond what is stated
explicitly. Query languages are usually expected to behave
consistent w.r.t. some form of RDF entailment (e.g., simple,
full, or RDFS entailment), i.e., graphs equivalent under
the respective entailment yield the same answers. Simply
stated, rather than just consulting the actual RDF data
for answering a query, we might also need to consider
additional, inferred triples depending on the form of en-
tailment chosen. E.g., when querying for resources of type
bib:Publication we might also want to return bib:Articles if we
have the additional information that bib:Article is a sub-class
of bib:Publication. SPARQL, e.g., is designed to be agnostic of
the particular entailment used: it can be used to query RDF
data under any of the above mentioned entailment forms.

RDF Interpretations are used to provide meaning to
an RDF graph. URIs in subject or object position are
interpreted as arbitrary objects, such as people, trains or
web pages. An URI in predicate position is interpreted
as a set of pairs of objects such as train connections,
coauthor relationships or links between webpages. The set
of resources that RDF graphs make statements about is
called the domain of the RDF graph.

Finally blank nodes are used to express existential knowl-
edge or to group information in RDF graphs. Each blank
node is interpreted as a domain element but its interpre-

tation is not fixed: An interpretation is a model of an RDF
graph iff there is an interpretation for the blank nodes such
that for every triple, the interpretation of the subject and
object is an element of the interpretation of the predicate.
An RDF graph g is said to entail an RDF graph h if every
model of g is also a model of h.

As the definition of an interpretation resembles the defi-
nition used in logic, it is possible to view an RDF graph as a
formula. This formula has an atom for every triple. URIs and
literals are represented by constants, while blank nodes are
represented by existential variables. Formally, the notions
of RDF vocabulary, RDF graph, (simple) RDF interpretation,
and RDF entailment are defined in [109] and recalled briefly
in the following:

a) RDF Graph [109]: An RDF vocabulary V consists of
two disjoint sets called URIs U and literals L. The blank
nodes B is a set disjoint from U and L. An RDF graph is
a set of RDF triples where an RDF triple is an element of
(U∪B)×U× (U∪L∪B). If t = (s,p,o) is an RDF triple then
s is the subject, p is the predicate, and o is the object of t .

The set L of literals consists of three subsets, plain
literals, typed literals and literals with language tags. In this
work we consider only plain literals (and thus drop IL, the
interpretation function for typed literals, see Section 1.3 in
[109], in the following definitions).

b) RDF Interpretation [109]: An interpretation I of an
RDF vocabulary V = (U,L) is a tuple (IR,LV, IP, IEXT, IS)
where IR is a non-empty set of resources such that L ⊆
LV⊆ IR, IP is a set of properties and IEXT : IP→ 2IR×IR, and
IS : U→ IR∪ IP are mappings.

Note that as IR and IP are not necessarily disjoint a same
URI can be used both as a resource and a property. RDF
interpretations are used to assign a truth value to an RDF
graph.

RDF assigns a special meaning to a predefined vocabu-
lary, called RDFS vocabulary. For example it is required that
IEXT(IP(rdfs : subPropertyOf)) is transitive and reflexive.
The formulation of theses constraints on RDF interpretation
makes use of a notion of a class. We have omitted this
notion in the definition above for simplicity. The logical
core of RDFS has been identified in [150], denoted as ρd f .
An RDF interpretation I is a ρd f interpretation if I satisfied
the constraints specified in Definition 3 in [150].

c) Interpretation of an RDF Graph [109]: Let I be the
RDF (ρd f ) interpretation (IR,LV, IP, IEXT, IS) and A : B→ IR
a mapping. Then [I+A](e) = a if e is the literal a, [I+A](e) =
IS(e) if e is a URI, [I+A](e) = A(e) if e is a blank node,
and [I+A](e) = true if e= (s,p,o) is an RDF triple over V ,
I(p) ∈ IP and (I(s), I(o)) ∈ IEXT(I(p)). Finally I(g) = true if there
is a mapping A : B→ IR such that [I+A](t ) = true for all RDF
triples t ∈ g.

The semantics of RDF is completed by the notion of
entailment: An RDF graph g RDF-entails (ρd f -entails) an
RDF graph h if for all RDF (ρd f ) interpretations I, I(h) = true
if I(g) = true [109].
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Fig. 2. Visual representation of sample RDF graph

III. QUERIES AS PROGRAMS I:
XML QUERY LANGUAGES

As discussed in Section II-A, XML is set apart from
both from the relational and previous semi-structured data
models (as in [3]) by a focus on ordered tree data. Both
are direct consequences of XML’s heritage as a simplified
variant of SGML, primarily used for document markup.
Documents in formats such DocBook [188] or (X)HTML
exhibit an intrinsic hierarchical organisation of the data
and are strictly ordered, just like in printed form. It is
clearly not acceptable to reorder paragraphs even within the
same section, or sections within the same chapter. Though
previous (relational or semi-structured) data models allow
the modeling of tree data (and sometimes even ordered
tree data), XML is the first data format that limits itself to
tree data while placing a premium on the maintenance of
sibling and document order.

These novelties are reflected well in the contributions
of XML query languages over previous approaches and
will guide the following discussion. First, we illustrate how
XML’s focus on tree data pushes the issue of reachability
(or descendant and ancestor) queries to the center stage
(Section III-D) and how different XML query languages
address this issue. Second, we summarize the effect of order
as a first class citizen in XML on XML query languages in
Section III-F. Finally, we briefly recall how the limitation
to tree data and consequently tree queries has yielded a
number of novel evaluation strategies tailored to this set-
ting that significantly outperform traditional, less focused
approaches.

We start off the discussion of XML query languages with
a closer look at two of the more prominent exemplars:
XPath and XQuery. We also briefly glance at XML-QL, an
early alternative to XQuery that illustrates the strength
of patterns rather than paths for multi-variable queries.
These introductions are focused on the essentials of these
languages necessary for the remainder of this article. For a
more in-depth comparison of (more than two dozen) XML
query languages see [14].

d) XML trees as relational structures: Following [21],
we formalize an XML tree as a relational structure (for
defining the semantics of XPath and XQuery): An XML
tree is considered a relational structure T over the schema
((Labλ)λ∈Σ,Rchild,Rnest-sibling,r elRoot ). The nodes of this tree
are labeled using the symbols from σ which are queried
using L λ (note, that λ is a single label not a label
set). The parent-child relations are represented by Rchild.
The order between siblings is represented by Rnest-sibling.
The root node of the tree is identified by root. There
are some additional derived relations, viz. Rdescendant, the
transitive, Rdescendant-or-self the transitive reflexive closure of
Rchild, Rfollowing-sibling, the transitive closure of Rnext-sibling, Rself
relating each node to itself, and Rfollowing the composition
of R−1

descendant-or-self◦Rfollowing-sibling◦Rdescendant-or-self. Finally, we can
compare nodes based on their label using � which contains
all pairs of nodes with same label. XQuery also considers
two more forms of equality: one based on node identity,
=nodes which relates each node to itself, and deep equality
=deep which holds for two nodes if there exists an isomor-
phism between their respective sub-trees.

For example, the XML document (with id’s as subscripts)
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then the last step selects nodes of any kind that are among the descendants of the top

element “book” and have a “citation” child element. Previous examples are all abso-

lute XPath expressions (since they involve a leading “/”). The general meaning of an

expression is defined relatively to a context node in the tree. Starting from a particu-

lar context node in the tree, every other nodes can be reached. This is because XPath

defines powerful navigational capabilities, including a full set of axes, as captured on

figure 1. For more informal details on the complete XPath language, the reader can refer

to the specification [6].
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Fig. 1. Axes: partitions of document nodes from a particular context node.

Abstract syntax: a compositional fragment. For the remaining part of the paper, we

focus on a restricted but significant fragment of XPath, composed of all XPath axes.

The abstract syntax of the fragment is given on figure 2. In order to make the XPath

syntax fully compositional, two variants are included: the void path ⊥ and the explicit
root node ∧ (respectively proposed in [18] and [19]). An other extension concerning

qualifiers is the inclusion constraint p1 " p2 over set of nodes selected by p1 and p2.

First defined in [19], the authors believe that this feature brings useful expressive power

without increasing cost of formal treatment (however this will be verified along our on-

going work on path containment). Note that it turns the construct p1[p2] into a syntactic

sugar for p1[not (p2 " ⊥)]. Although the XPath fragment we consider already covers
a significant range of real world use cases, our intent is to extend it to cover the XPath

standard as much as possible.

Fig. 3. XPath axis (from [94])

<a>1 <b/>2 <c>3<c/>4</c> </a>

is represented as T = (Laba = {1},Labb = {2},Labc = {3,4},Rchild =
{(1,2), (1,3), (3,4)},Rnest-sibling = {(2,3)}, root= {1}) over the label
alphabet {a,b,c}. All other relations can be derived from
this definition.

In the following, we also allow unions of such structures,
i.e., XML “forests”.

A. XPath

Unary selection of XML elements is, by now, almost
always done using XPath or some variant of XPath (such
as XPointer). XPath provides an elegant and compact way
of describing “paths” in an XML document viewed as an
ordered tree. Paths are made up of “steps” each specifying
a direction, called axis, in which to navigate through the
document, e.g., child, following, or ancestor, cf. Figure 3 for
the full set of axes. Together with the axis, a step contains
a restriction on the type or label of the data items to
be selected, called node test. Node tests may be labels
of element or attribute nodes, node kind wildcards such
as * (any node with some label), element(), node(), text(), or
comment(). Any step may be adorned by one or more quali-
fiers each expressing additional restrictions on the selected
nodes and denoted with square brackets. Compared to
other query languages such as XQuery, SQL, or SPARQL,
the most distinctive feature of XPath is the lack of explicit
variables. This makes it impossible to express n-ary queries
and limits XPath, for the most part, to two-variable logic,
see [29], [144] for details.

e) XPath examples: For instance, the XPath expression
/descendant::article/child::author consists of two steps,
the first selecting article elements that are descendants of
the root (“of the root” is indicated by the leading slash), the
second selecting author children of such article elements.
More interesting queries can be expressed by exploiting

XPath’s qualifiers, e.g., the following XPath expression that
selects all authors that are also PC members of a conference
(more precisely that have node children with the same
label):

/child::conference/descendant::article/child::author[. =
2 /child::conference/child::member]

In addition to the strict axis plus node test notation,
XPath uses also an abbreviated syntax where child axis may
be omitted, descendant is (roughly) abbreviated by //, the
current node is referenced by . etc. In the following, we
only use the full syntax. We also limit ourselves to the core
feature of XPath as discussed here and thus present a view
of XPath similar to Navigational XPath of [99] and [21]. Due
to [155], we also limit ourselves to forward axes such as child
and following, rewriting expressions with reverse axes such
as parent, ancestor, or preceding where necessary.

f ) Syntax of navigational XPath: The syntax of naviga-
tional XPath is defined as follows (again following [99] and
[21]):

〈path〉 ::= 〈step〉 | 〈step〉 ‘/’ 〈path〉 | 〈path〉 ‘∪’〈path〉
| ‘/’ 〈path〉

〈step〉 ::= 〈axis〉 ‘::’ 〈node-test〉
| 〈step〉‘[’〈qualifier〉‘]’

〈axis〉 ::= ‘child’ | ‘descendant’
| ‘descendant-or-self’ | ‘next-sibling’
| ‘following-sibling’ | ‘following’

〈node-test〉 ::= 〈label〉 | ‘node()’
〈qualifier〉 ::= 〈path〉 | 〈path〉 ‘∧’〈path〉 | 〈path〉 ‘∨’〈path〉

| ‘¬’〈path〉
| ‘lab()’ ‘=’ ‘λ’
| 〈path〉 ‘=’ 〈path〉

g) Semantics of navigational XPath: The semantics of
a navigational XPath expression over a relational structure
T representing an XML tree (as defined above) is defined
in Table I by means of J KNodes (n) where n is a node, called
context node. J KNodes (n) associates each XPath expression
and context node with a set of nodes that constitutes the
semantics of that expression if evaluated with the given
context node. It uses J KBool (n) for the semantics of qualifiers
under a context node n.

Most parts of the semantics are fairly straightforward:
Axes are mapped to their respective relational representa-
tions (line 1), paths correspond conjunctions (line 4) where
the current (or context) variable changes with each step.
Qualifiers (treated by J KBool) have an inherent existential
semantics: as line 6 shows they are true if the contained
expression evaluates to a non-empty node-set, i.e., if there
is at least one node for which that expression matches.

For more details on the semantics as well as differences
to full XPath see [21].

XPath has also been deeply investigated in research.
Formal semantics for (more or less complete) fragments
for XPath have been proposed in [96], [155], [187]. Sur-



JaxisKNodes (n) = {(n′ : Raxis(n,n′)}

JλKNodes (n) = {(n′ : Labλ(n′)}

Jnode()KNodes (n) = Nodes(T )

Jaxis::nt[qual]KNodes (n)= {n′ : n′ ∈ JaxisKNodes ∧n′ ∈ JntKNodes∧
JqualKBool (n′)}

Jstep/pathKNodes (n) = {n′′ : n′ ∈ JstepKNodes (n)∧
n′′ ∈ JpathKNodes (n′)}

Jpath1 ∪path2 KNodes (n) = Jpath1 KNodes (n)∪Jpath2 KNodes (n)

JpathKBool (n) = JpathKNodes (n),;
Jpath1 ∧path2 KBool (n) = Jpath1 KBool (n)∧Jpath2 KBool (n)

Jpath1 ∨path2 KBool (n) = Jpath1 KBool (n)∨Jpath2 KBool (n)

J¬pathKBool (n) = ¬JpathKBool (n)

Jlab()=λKBool (n) = Labλ(n)

Jpath1 = path2 KBool (n) = ∃n′,n′′ : n′ ∈ Jpath1 KNodes (n)∧
n′′ ∈ Jpath2 KNodes (n)∧� (n′,n′′)

TABLE I
SEMANTICS FOR NAVIGATIONAL XPATH (FOLLOWING [21])

prisingly, most popular implementations of XPath embed-
ded within XSLT processors exhibit exponential behavior,
even for fairly small data and large queries. However, the
combined complexity of XPath query evaluation has been
shown to be P-complete [97], [98]. Various sub-languages
of XPath (e.g., forward XPath [155], Core or Navigational
XPath [97], [19]) and extensions (e.g., CXPath [142]) have
been investigated, mostly with regard to expressiveness
and complexity for query evaluation. Also, satisfiability of
positive XPath expressions is known to be in NP and, even
for expressions without boolean operators, NP-hard [110].
Containment of XPath queries (with or without additional
constraints, e.g., by means of a document schema) has
been investigated as well, cf., e.g., [77], [148], [179], [195].
For a recent summary of fundamental results on XPath
complexity, containment, etc. see [21]. Several methods
providing efficient implementations of XPath relying on
standard relational database systems have been published,
cf., e.g., [101], [104], [156].

Recently, the W3C has, as part of its activity on specifying
the XML query language XQuery, developing a revision of
XPath: XPath 2.0 [26]. See [121] for an introduction. The
most striking additions in XPath 2.0 are: (1) a facility for
defining variables (using for expressions), (2) sequences
instead of sets as answers, (3) the move from the value
typed XPath 1.0 to extensive support for XML schema types
in a strongly typed language, (4) a considerably expanded
library of functions and operators [138], and (5) a complete
formal semantics [79].

B. XQuery

Though not nearly as common as XPath, XQuery has
nevertheless achieved the status of predominant XML query
language, at least as far as database products and research

are concerned (in total, XSLT [61] is probably still more
widely supported and used). XQuery is essentially an ex-
tension of XPath (though some of its axis are only optional
in XQuery), but most of XPath becomes syntactic sugar
in XQuery. This is particularly true for XPath qualifiers
which can be reduced to where or if clauses in XQuery.
Indeed, the XQuery standard is accompanied [79] by a
normalization of XQuery to a core dialect of the language.

h) XQuery Principles: At its core, XQuery is an exten-
sion of XPath 2.0 adding features needed to capture all the
use cases in [49], i.e., to become a “full query language” and
not only a language for (mostly tree-shaped) node selection.
The most notable of these features are:

1) Sequences. Where in XPath 1.0 the results of path
expressions are node sets, XQuery and XPath 2.0 use
sequences. Sequences can be constructed or result
from the evaluation of an XQuery expression. In con-
trast to XPath 1.0, sequences cannot only be composed
of nodes but also from atomic values, e.g., (1, 2, 3)
is a proper XQuery sequence.

2) Strong typing. Like XPath 2.0, XQuery is a strongly
typed language. In particular, most of the (simple and
complex) data types of XML Schema are supported.
The details of the type system are described in [79].
Furthermore, many XQuery implementations provide
(although it is an optional feature) static type checking.

3) Construction, Grouping, and Ordering. Where XPath is
limited to selecting parts of the input data, XQuery
provides ample support for constructing new data.
Constructors for all node types as well as the simple
data types from XML Schema are provided. New ele-
ments can be created either by so-called direct element
constructors (that look just like XML elements) or by
what is referred to as computed element constructors,
e.g. allowing the name of a newly constructed element
to be the result of a part of the query. For examples on
these constructors, see the implementations for Query
1 and 3 below.

4) Variables. Like XPath 2.0, XQuery has variables defined
in so-called FLWOR expressions. A FLWOR expression
usually consists in one or more for, an optional
where clause, an optional order by, and a return
clause. The for clause iterates over the items in the
sequence returned by the path expression in its in part:
for $book in //book iterates over all books selected
by the path expression //book. The where clause spec-
ifies conditions on the selected data items, the order
by clause allows the items to be processed in a certain
order, and the return clause specifies the result of the
entire FLWOR expression (often using constructors as
shown above). Additionally, FLWOR expressions may
contain, after the for clauses, let clauses that also
bind variables but without iterating over the individual
data items in the sequence bound to the variable.
FLWOR expressions resemble very much XSLT’s ex-
plicit iteration, selection, and assignment constructs



described above.
5) User-defined functions. XQuery allows the user to de-

fine new functions specified in XQuery (cf. implemen-
tation of Query 3 below). Functions may be recursive.

6) Universal and existential quantification. Both XPath 2.0
and XQuery 1.0 provide some and all for expressing
existentially or universally quantified conditions (see
implementation of Query 9 below).

7) Schema validation. XQuery implementations may (op-
tionally) provide support for schema validation, both
of input and of constructed data, using the validate
expression.

8) Full host language. XQuery completes XPath with ca-
pabilities to set up the context of path expressions, e.g.,
declaring namespace prefixes and default namespace,
importing function libraries and modules (optional),
and (again optionally) providing flexible means for
serialization that are in fact shared with XSLT 2.0 (cf.
[123]).

9) Unordered sequences. As a means for assisting
query optimization, XQuery provides the unordered
keyword, indicating that the order of elements
in sequences that are constructed or returned as
result of XQuery expressions is not relevant. E.g.,
unordered{for $book in //book return $book/name}
indicates that the nodes selected by //book may be
processed in any order in the for clause and the order
of the resulting name nodes also can be arbitrary
(implementation dependent). Note that inside
unordered query parts, the result of any expressions
querying the order of elements in sequences such as
fn:position, fn:last is non-deterministic.

In at least one respect, XQuery is more restrictive than
XPath: not all of XPath’s axes are mandatory, ancestor,
ancestor-or-self, following,
following-sibling, preceding, and preceding-sibling do
not have to be supported by an XQuery implementation.
This is, however, no restriction to XQuery’s expressiveness,
as expressions using reverse axes (such as ancestor) can be
rewritten, cf. [155], and the “horizontal axes”, e.g., following
and following-sibling, can be replaced by FLWOR expres-
sions using the « and » operators that compare two nodes
with respect to their position in a sequence.

Comprehensive but easy to follow introductions to
XQuery are given in, e.g., [38], [120].

i) Composition-Free XQuery in 1000 Words: In the
following, we focus on a fragment of XQuery, called non-
compositional XQuery [20], [126], that has a well-defined,
fairly easy to understand semantics and illustrates all issues
salient for this article. It is slightly academic as we restrict
the syntax far more than necessary to minimize the con-
structs to consider for the formal semantics of composition-
free XQuery. However, many of the restrictions to the syntax
can be dropped (e.g., we could integrate full navigational
XPath as discussed in Section III-A) without affecting ex-
pressiveness and complexity, see also [20]. The only real

restriction of composition-free XQuery in comparison to
full XQuery is that it disallows any querying of constructed
nodes, i.e., the domain of all relations is limited to the input
nodes. This limitation clearly does not hold for full XQuery
(even if we do not consider user-defined functions) and
its effect on expressiveness and complexity is discussed in
detail in [126].

(Composition-free) XQuery is built around controlled
iterations over nodes of the input tree, expressed using for
expressions. Controlled iteration is important for XQuery
as it founded on sequences of nodes rather than sets of
nodes (as XPath 1.0). In this respect it is more similar
to languages such as DAPLEX [180] or OQL [48] than to
XPath 1.0. (For) loops use XPath expressions for navigation
and XML-look-a-likes for element construction all of which
can be, essentially, freely nested. The following query gives
an example of XQuery expressions. It creates a articlelist
containing one author element for each author in the input
XML tree (bound here and in the following to the canonical
input variable $inp). For each such author, the nested for
loop creates a list of all its articles. The latter expression can
be more elegantly expressed in full XQuery using XPath
qualifiers or where clauses but here it is shown in the
“normalized” syntax of composition-free XQuery after [126].

<paperlist>
2 for $a in $inp/descendant::author return

<author> for $p in $inp/descendant::article return
4 if some $x in $p/descendant::author satisfies

deep-equal($x, $a)
then $p

6 </author>
</paperlist>

We choose to use deep-equal, XQuery’s structural equality
that tests whether the sub-trees at $x and $a are isomorphic,
as authors can be represented using last and first name
elements in our context and both have to be equal for it to
be the same author.

A full definition of the syntax of composition-free XQuery
is given in Table II. It deviates only marginally from [126]
and [20]. In addition to the specification in Table II, the
usual semantic restrictions apply, e.g., the label of the start
and end tags must be the same, variables must be defined
(using for) before use, etc. As stated, there is one exception
from the latter, viz. the canonical input variable $inp which
is always bound to the input XML tree.

In Table II, we use a general equality. XQuery provides
in fact three kinds of equality, viz. node, atomic (or value),
and deep equality. For all forms of equality the productions
of Table II apply.

Again, compared to full XQuery the principle omission
is the ability to query constructed nodes or values. In the
syntax, this leads most prominently to the restriction of
expressions following in in a for, i.e., expressions that
provide bindings for variables, to XPath steps with vari-
ables. This way variables are always bound only to nodes



〈query〉 ::= 〈query〉 〈query〉 | 〈element〉 | 〈variable〉
| 〈step〉 | 〈iteration〉 | 〈conditional〉

〈element〉 ::= ‘<’ 〈label〉 ‘>’ 〈query〉 ‘<’ 〈/label〉 ‘>’
| ‘<’ ‘lab(’ 〈variable〉 ’)>’ 〈query〉

‘</’ ‘lab(’ 〈variable〉 ‘)>’
〈step〉 ::= 〈variable〉 ‘/’ 〈axis〉 ‘::’ 〈node-test〉
〈iteration〉 ::= ‘for’ 〈variable〉 ‘in’ 〈step〉 ‘return’ 〈query〉
〈conditional〉 ::= ‘if’ 〈condition〉 ‘then’ 〈query〉
〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’ ‘<’ 〈label〉 ‘/>’

| ‘true’
| ‘some’ 〈variable〉 ‘in’ 〈step〉 ‘satisfies’ 〈condition〉
| 〈condition〉 ‘and’ 〈condition〉
| 〈condition〉 ‘or’ 〈condition〉
| ‘not’ 〈condition〉

〈axis〉 ::= ‘child’ | ‘descendant’ | ‘descendant-or-self’
| ‘next-sibling’ | ‘following-sibling’ | ‘following’

〈node-test〉 ::= 〈label〉 | ‘node()’
〈variable〉 ::= ‘$’〈identifier〉

TABLE II
SYNTAX OF COMPOSITION-FREE XQUERY

from the input tree (anything reachable from $inp using
XPath expressions). Another important omission is the
absence of let clauses, which provide set-valued variables
to XQuery. Conditional expressions are normalized to if
clauses, where XQuery offers XPath qualifiers, where clauses,
and if clauses.

Though order-by clauses are omitted, the result of an
XQuery expression is always an ordered tree and the order
of node construction must be precisely preserved (as given
by the iteration of the for clauses which iterated over their
respective node sequences mostly in document order).

j) Semantics: The semantics of a composition-free
XQuery expression is then defined, following [20], using J K
over a given such forest and a list of nodes from that forest
~e = [e1, . . . ,en] that represent bindings for variables x1, . . . , xn .
For that, we assume that all variables are first renamed to
xi such that i is the number of variables in whose scope
xi is declared and assuming that $inp is scoped over the
entire query. E.g., the query

1 for $x in $inp/child::a return
for $y in $x/child::b return $x

3 for $z in $inp/child::c return
for $v in $inp/child::d return $v

becomes

for $2 in $1/child::a return
2 for $3 in $2/child::b return $2
for $2 in $1/child::c return

4 for $3 in $1/child::d return $3

In the following, we assume that queries are in the latter
form.

Table III specifies the semantics of composition-free
XQuery on an XML forest F and a binding vector ~e =
[e1, . . . ,en] which is initially of length 1 containing bind-
ings for $inp, i.e., usually one (or more, if querying XML
collections) root node(s).

The semantics uses three auxiliary notions. 1) ] is the
union on pairs of XML forests and binding vectors such
that (F1,~e1) ] (F2,~e2) = (F1 ∪ F2,~e1 ◦~e2) where ◦ is list (or
vector) concatenation and the union of XML forests is
defined component by component. 2) C is the intersection
on pairs of XML forests and binding vectors such that
(F1,~e1) C (F2,~e2) = (F1, [ei ∈ ~e1 : ei ∈ ~e2]). Note, that we
only preserve F1 (and thus C is not associative). However,
for the purpose of the semantics the choice of the XML
forest is arbitrary as C is only used for the semantics of
conditions for which only the existence or non existence
(and not their actual value) of bindings is relevant for the
semantics of the full query. 3) construct(l , (F, [w1, . . . , wn]))
denotes construction of a new tree where l is a label, F
is an XML forest and [w1, . . . , wn] is a vector of nodes in F .
It returns a pair (F ∪T ′, [root(T ′)]) where T ′ is a tree over a
new set of nodes whose root root(T ′) is labeled with l and
with the i -th subtree of root(T ′) isomorphic to the sub-tree
rooted at wi in F . Furthermore construct is assumed to return
a tree with a distinct set of nodes each time it is called. This
corresponds to invention of new complex values or trees.

Using these definitions, the semantics is fairly straight-
forward. In [20], Benedikt and Koch point out that most of
the condition expressions (cases 10, 12–16) can be reduced
to other XQuery expressions and thus do not need to be
addressed in the semantics. We choose to give their defini-
tions directly as the resulting expressions are no longer in
composition-free XQuery.

The crucial parts of the semantics are cases 2 and 3,
that illustrate element construction, case 7 that illustrates
iteration, and case 8, the semantics of conditionals. The
other cases are very similar to XPath and mostly just
return appropriate binding vectors but leave F unchanged.
Element construction (case 2 and 3) is achieved using the
aforementioned construct function and returns a forest con-
taining the newly constructed tree and bindings pointing to
that tree’s root node. Iteration using for has almost exactly
the same semantics as the path separator / in XPath: the
return expression is evaluated in the context of the in part,
just like the subordinate path is evaluated in the context of
the superordinate one. Indeed, the XQuery normalization
transforms path expressions consisting of multiple steps to
for loops as in composition-free XQuery. The difference is,
of course, that the semantics of the return may be nodes
from a newly constructed tree. It is crucial that this is the
case only for the semantics of the return expression, not
for that of the in expression which never modifies the given
XML forest. In full XQuery, this does not hold, the in is
followed by an arbitrary expression. Finally, conditionals are
(again reminiscent of qualifiers in XPath) translated using a
non-empty test on the bindings returned by the condition.

Note that the relations of the input forest are never
changed. We may add new forests, but those do not have
any relations to the input forest.

It is worth noting, that the semantics is uniform for
boolean-valued conditions and for node-valued expressions



J()K (F,~e) = (F, [])

J<l>q</l>K (F,~e) = construct(l ,JqK (F,~e))

J<lab($xi )>q</lab($xi >K (F, [e1, . . . ,en ])
= construct(lab(ei ),JqK (F, [e1, . . . ,en ]))

J$xi K (F, [e1, . . . ,en ]) = (F, [ei ])

J$xi /axis::l K (F, [e1, . . . ,en ]) = (F, [d : Raxis(ei ,d)∧ Labl (d)]

Jq1 q2 K (F,~e) = Jquery1 K (F,~e)]Jquery1 K (F,~e)

Jfor $xi in s return qK (F,~e) =
⊎
l∈~l

JqK (F,~e · l ) where (F,~l ) = JsK (F,~e)

Jif cond then qK (F,~e) =

{
JqueryK (F,~e) if π2(JcondK (F,~e)), []

(F, []) otherwise

J$xi /axis::node()K (F, [e1, . . . ,en ]) = (F, [d : Raxis(ei ,d)])

Jsome $xi in s satisfies cK (F,~e) = Jfor $xi in s return cK (F,~e)

q
$xi =$x j

y
(F, [e1, . . . ,en ]) =

{
(F, [ei ]) if ei = e j

(F, []) otherwise

J$xi =<l/>K (F, [e1, . . . ,en ]) =


(F, [ei ]) if = atomic equal and Labl (ei )

(F, [ei ]) if = deep equal, Labl (ei ),
and Ød : Rchild(ei ,d)

(F, []) otherwise

Jc1 or c2 K (F,~e) = Jc1 K (F,~e)]Jc2 K (F,~e)

Jc1 and c2 K (F,~e) = Jc1 K (F,~e)CJc2 K (F,~e)

Jnot c K (F,~e) =

{
(F, [root(F )]) if (F ′, []) = JcK (F,~E)

(F, []) otherwise

JtrueK (F,~e) = (F, [root(F )])

TABLE III
SEMANTICS FOR COMPOSITION-FREE XQUERY (FOLLOWING [20])

(in contrast to the XPath case in Section III-A). This follows
[20] and allows a more compact definition of the semantics,
at the cost of slightly surprising definitions for boolean
operations and true in the latter part of the semantics.
In the translation, we separate boolean-valued conditions
from other expressions by a separate translation function
as in the XPath case.

k) XQuery in industry and research: From the very
start, XQuery’s development has been followed by indus-
try and research with equal interest (for reports on the
challenges and decisions during this process see, e.g., [80],
[83]). Even before the development has finished, initial
practical introductions to XQuery have been published, e.g.,
[38], [120]. Industry interest is also visible in the simul-
taneous development of standardized XQuery APIs, e.g.,
for Java [81], and numerous implementations, both open
source (e.g., Galax [86]) and commercial (BEA [87], IPSI-
XQ [84]). Aside from these main-memory implementations,
one can also find streamed implementations of XQuery
(e.g., [17], [127]) where the data flows by as the query is
evaluated. First results on implementing XQuery on top of
standard relational databases (e.g., [73], [105]) indicate that
this approach leads to very efficient query evaluation if a
suitable relational encoding of the XML data is used. For
more implementations, see the XQuery project page at the
W3C and the proceedings of the first XIME-P workshop on

“XQuery Implementation, Experience and Perspectives”4.

It is intuitively clear that XQuery is Turing complete since
it provides recursive functions and conditional expressions.
A formal proof of the Turing-completeness of XQuery is
given in [124]. Efficient processing and (algebraic) optimiza-
tion of XQuery, although acknowledged as crucial topics,
have not yet been sufficiently investigated. First results are
presented, e.g., in [54], [57], [76], [145], [184], [199], [200].
Moreover, techniques for efficient XPath evaluation, as dis-
cussed above, can be a foundation for XQuery optimization.

Beyond querying XML data, it has also been suggested
to use XQuery for data mining [189], for web service im-
plementation [157], for querying heterogeneous relational
databases [194], for access control and policy descriptions
[151], for synopsis generation [65], and as the foundation of
a visual XML query language (XQBE) [12], of a XML query
language with full-text capabilities [7], [8], and of an update
[39], [51], [168] and reactive [32] language for XML.

Recently, the W3C has proposed a revision [52] to XQuery
1.0, called XQuery 1.1, which among minor changes adds
explicit grouping (using a new group-by clause) and itera-
tion windows (or blockwise iteration, using a new window
clause with several flavors). However, work on this revision
is still in its infant stages.

4http://www-rocq.inria.fr/gemo/Gemo/Projects/XIME-P/



C. XML-QL

To provide an alternative view on XML querying, we
briefly glance at XML-QL [74], [75], a pattern- and rule-
based query language for XML developed specifically to
address the W3C’s call for an XML query language (that
resulted in the development of XQuery). It uses query
patterns (called element patterns in [74]) in a WHERE clause.
Such patterns can be augmented by variables for selecting
data. The result of a query is specified as a construction
patterns in the CONSTRUCT clause. An XML-QL query always
consists of a single WHERE-CONSTRUCT rule, which may be
divided into several (nested) subqueries.

The following listing shows an XML-QL query that selects
all article elements in the bibliography and returns them
together with a list of the last names of their authors in a
result element.

WHERE
2 <bib>

<article>
4 </article> ELEMENT_AS $b

</bib>
6 CONSTRUCT

<results>
8 <result>

$b
10 WHERE <authors>

<author>
12 <last>$n</last>

</author>
14 </authors>

CONSTRUCT <author>$n</author>
16 </result>

</results>

Variables are preceded in XML-QL by $. Note how the
grouping of authors with their books is expressed using
a nested query. In line 4, the variable $b is restricted to
data matching the pattern in lines 3 and 4. Such “pattern
restrictions” are indicated in XML-QL using the ELEMENT_AS
keyword.

One of the main characteristics of XML-QL is that it
uses query patterns containing multiple variables that may
select several data items at a time instead of path selections
that may only select one data item at a time. Furthermore,
variables are similar to the variables of logic programming,
i.e. “joins” can be evaluated over variable name equality.
Since XML-QL does not allow one to use more than one
separate rule, it is often necessary to employ subqueries to
perform complex queries.

With the publishing of XQuery, XML-QL has not been
further investigated. In particular, there are no results on
complexity or expressiveness of XML-QL. Roughly speaking,
the expressiveness is similar to that of non-compositional
XQuery as discussed above.

D. Reachability in Trees

With XPath and XQuery as exemplars, we can broaden
our attention to investigate how different query languages

express reachability (or descendant and ancestor) queries
in trees.

As XPath most XML query languages provide some form
of path expression or axis for expressing different forms
of reachability in a graph, most notably direct reachabil-
ity or child axis vs. descendant axis. Path expressions have
been introduced already for relational database, e.g., in
GEM [197], an extension of QUEL, and for object-oriented
databases, e.g., in OQL [48]). However, here path expres-
sions require fully specified paths, i.e., paths with explic-
itly named nodes following only parent-child connections.
OQL expresses paths with the “extended dot notation”
introduced in GEM [197]: “SELECT b.translator.name FROM
Books b” selects the name, or component, of the translator
of books (note that there must be at most one translator
per book for this expression to be legal).

Generalized (or regular) path expressions [59], [89], extend
this notion with operators similar to regular expressions,
e.g., the Kleene closure (and thus indirect reachability) op-
erator on (sub-)paths but maintaining that each component
is a node label. As a consequence and in contrast to the
extended dot notation, generalized path expressions do not
require explicit naming of all nodes along a path. Lorel [3]
is an early exemplar of a semi-structured query language,
yet based on a (graph-shaped) data model. Lorel’s syntax
resembles that of SQL and OQL, extending OQL’s extended
dot notation to generalized path expressions. To illustrate
this aspect of Lorel, assume that one is only interested in
books having “Julius Caesar” either as author or translator.
Assume also that the literal giving the name of the author
is either wrapped inside a name child of the author element,
or directly included in the author element. Selecting only
such books can be expressed in Lorel by a where clause filter
on all books B: where B.(author|translator).name? = "Julius

Caesar".
Seeing that these efforts precede XPath significantly, it

might seem surprising that XPath choose not to offer
general path expressions but only the weaker axes. To
recall, XPath allows navigation in all directions (vertical with
descendant and ancestor, horizontal with following and preceding
and their respective -siblings variants), while generalized path
expressions only allow vertical navigation. However, it only
provides closure axes (i.e., a path with any number of arbi-
trarily labeled nodes), but no closure of actual expressions.
Thus it is, e.g., not possible to express that two elements
are connected by only nodes with a certain label.

The first difference is clearly motivated by the particular
emphasize placed on order in XML. However, the choice to
provide only closure axes is less obvious. Without closure
of arbitrary path expressions, XPath cannot express regular
path expressions such as a.(b.c)*.d (meaning “select d’s
that are reached via one a and then arbitrary many repeti-
tions of one b followed by one c”) and a.b*.c. Moreover it
turns out that such a feature (called sometimes conditional
axes) is exactly what is missing from XPath to become a
first-order complete language on ordered trees [142], [143].



time space

Structural Joins, relational join O (q ·n · logn) O (q ·n2)

—————, structure-aware join O (q ·n) O (q ·n2)

Twig or Stack Joins O (q ·n) O (q ·n +n ·d)

PDA-based (here: SPEX) O (q ·n ·d) O (q ·n)

Interval-based (here: CIQCAG) O (q ·n) O (q ·n)

TABLE IV
APPROACHES FOR XML TREE QUERY EVALUATION. n : NUMBER OF NODES IN

THE DATA, d : DEPTH OF DATA; q : SIZE OF QUERY. WE ASSUME CONSTANT

MEMBERSHIP TEST FOR ALL STRUCTURAL RELATIONS.

Moreover, the inclusion of reverse axes in XPath has
been shown in [155] not to increase the expressive power
of XPath. Consequently, they are used infrequently and,
with the exception of the trivial parent axis, are considered
optional features in XQuery that do not have to be provided
by a conforming implementation.

Nevertheless, the efficient realisation of closure axes has
proved to be one of the more fruitful issues on the road to-
wards a scalable XML query language. In the following sec-
tion, we classify approaches for implementing tree queries
expressed in XPath or XQuery. All of these approaches have
to deal in some form or the other with the presence of
closure axes.

E. Tree Queries on Tree Data

Though XQuery (and even full XPath 1.0) can express also
more powerful (graph) queries, the most significant results
have been achieved on the implementation of tree queries
(often roughly considered equivalent to navigational XPath,
possibly without set operations and equality).

For tree queries, the restriction of XML to tree data can
be exploited to provide highly efficient (linear time and
space) evaluation of XML queries even in the absence of
sophisticated indices.

To keep the discussion focused we ignore index-based
evaluation of XML which is survey in [192]. Though path
indices such as the DataGuide [95] or IndexFabric [67] and
more recent variants [58] can significantly speed up path
queries they suffer from two anomalies: First, if a tree query
contains many branching nodes (i.e., nodes with more
than one children) they generally do not perform better
than, e.g., the structural join approach below. Second, even
though only path queries can be directly answered from
the index, the index size can be significantly higher than
the size of the original XML documents.

We can classify most of the remaining approaches to the
evaluation of XML tree queries in four classes (the corre-
sponding complexity for evaluation XPath (and similar) tree
queries on tree data is summarized in Table IV):

1) Structural joins: The first class is most reminiscent

of query evaluation for relational queries and arguable
inspired by earlier research on acyclic conjunctive queries
on relational databases [100]. Tree queries are decomposed
into a series of (structural) joins. Each structural join en-
forces one of the structural properties of the given query,
e.g., a child or descendant relation between nodes or a certain
label. Proposed first in [5], structural joins have also been
used to great effect for studying the complexity of XPath
evaluation and proposing the first polynomial evaluation
of full XPath [99]. Due to its similarity with relational
query evaluation it has proved to be an ideal foundation
for implementing XPath and XQuery on top of relational
databases [101]. It turns out, however, that the use of
standard joins is often not an ideal choice and structure- or
tree-aware joins [31] (that take into consideration, e.g., that
only nodes in the sub-tree routed at another node can be
that nodes a-descendants) can significantly improve XPath
and XQuery evaluation.

2) Twig joins: In sharp contrast, the second class employs
a single (thus called holistic) operator for solving an entire
tree query rather than decomposing it into structural joins.
These approaches are commonly referred to as twig or
stack join [40], [56] and essentially operate by keeping one
stack for each step in, e.g., an XPath query representing
partial answers for the corresponding node-set. Theses
stacks are organized hierarchically with (where possible,
implicit) parent pointers connecting partial answers for
upper stack entries to those of lowers. The approaches
mostly vary in how the stacks are populated. In contrast
to the other approaches, twig joins are limited to vertical,
i.e., child and descendant, axes and have not been adapted for
the full range of XPath axes. They also, like structure-aware
joins [31], exploit the tree-shape of the data and can, at
best, be adapted to DAGs [55].

3) PDA-based: Where twig joins assume one stream
of nodes from the input document for each stack (and
thus XPath step), the third class of approaches based on
pushdown automata aims to evaluate XPath queries on a
single input stream similar to a SAX event stream. SPEX,
e.g., [152]–[154] also maintains a record of partial answers
for each XPath step, but minimizes used memory more
efficiently and exploits the existential nature of most XPath
steps by maintaining only generic conditions rather than
actual pointers to elements from the XML stream (except
for candidates of the actual results set, of course). Also
it supports all XPath axes in contrast to the twig join
approaches. The cost is a slightly more complex algorithm.

4) Interval-based: Finally, interval-based approaches are
a combination of the tree awareness in twig joins and SPEX
and the structural join approach: The query is decomposed
into a series of structural relations, but each relation is
organised in such a way that all elements related to one
element of its parent step are in a single continuous
interval. This allows both an efficient storage and join
of intermediate answers. The first interval-based approach
are the Complete Answer Aggregates (CAA) [146], [147]. In



[90] the CIQCAG algebra is proposed which improves on the
complexity of CAA (to the linear complexity given in Ta-
ble IV) and covers, in contrast to CAA, arbitrary tree-shaped
relations. It is also shown that interval-based approaches
can be extended even to a large, efficiently detectable class
of graph data (so called continuous-image graphs) that is
not covered by any of the other linear time approaches
discussed above.

Currently, extensions of the above algorithms for larger
classes of graph data are investigated, e.g., in [55] and [90],
see also Section IV-C on reachability in RDF graphs.

F. Supporting Order

In the previous sections, we have focused on the tree
aspect of XML and its effect on query languages and their
evaluation. However, XML is also set apart from many other
data formats by an emphasize on ordered data that is
very appropriate in a document setting such as XHTML
or DocBook [188]. For query languages, which traditionally
prefer a set-oriented perspective under the assumption that
it enables more diverse evaluation strategies and thus better
automatic optimization, this is a challenge that has been
addressed in different ways in XML query languages.

Most of the early proposals ignore order in XML doc-
uments entirely or support it only superficially. Though
XPath 1.0 allows querying the order, its results are either in
document or in reverse document order, depending on the
axis of the final step. This is fitting as XPath 1.0 is focused
on selection and not (re-) construction of nodes.

For query languages like XQuery that also support con-
struction of new XML trees, however, this is utterly insuf-
ficient. E.g., selecting authors together with their articles
from the sample data in Section II-A and then constructing
one XHTML section for each author containing a list of its
articles requires control over the order in which section ele-
ments (e.g., h1s) and list elements (ul or ol) are intertwined.

This need is recognized in XQuery and, in many ways, all
of XQuery is designed around proper support for ordered
XML. Where in XPath 1.0 the results of path expressions are
node sets, XQuery and XPath 2.0 use sequences. Sequences
can be constructed or result from the evaluation of an
XQuery expression. In contrast to XPath 1.0, sequences can-
not only be composed of nodes but also from atomic values,
e.g., (1, 2, 3) is a proper XQuery sequence. Combined
with XQuery’s iteration expression (for) we control precisely
how we iterate both over nodes of the input and in which
order we create new nodes. In this respect it is more similar
to languages such as DAPLEX [180] which provide precise
control over iteration on sequences of relational tuples, than
to SQL, which only allows control over the order of the
result sequence, let alone (set-based) relational algebra.

XSLT 2.0 [122] goes even further than XQuery in this
respect. It is based on the same data model as XQuery
(sequences of nodes), but also provides grouping based on
order using the group-adjacent attribute of xsl:for-each-group.

The disadvantage of XQuery’s (and XSLT 2.0’s) choice
to make order such prevalent in the language is that
implementations have to painstakingly maintain this order
to conform to the specification, see, e.g., [102] for a detailed
account. In XQuery this has been partially recognized by
providing the unordered keyword that allows a sub-query
to be evaluated order indifferent, as if it had a set-
based semantics. See, e.g., [103] on how to exploit order
indifference in XQuery. Similarly, some alternative query
languages, most notably Xcerpt [173] provide both ordered
and unordered queries without preference for either.

This concludes our brief overview of XML query lan-
guages. For a comparison of a larger set of XML query
languages see [14]. Here, we focus on highlighting some of
the most innovative issues around XML query languages,
viz. how languages cope with the need to query not only
direct structural relations but also reachability, how the
restriction on tree queries and tree data allows for a more
efficient evaluation than on arbitrary relational data, and
how order as a central concept in XML affects XML query
languages. In all three cases, XML has triggered the devel-
opment of novel approaches to query evaluation that have
considerably extended our understanding of hierarchical
queries in general. In the next section, we turn to RDF
and try to illustrate where similar questions arise for RDF
querying, though RDF being a considerably less established
data format and topic of research shows in the comparative
lack of significant advances to existing knowledge about
query evaluation.

IV. QUERIES AS PROGRAMS II:
RDF QUERY LANGUAGES

Compared with XML query languages, the field of RDF
query languages is less mature and has not received as
much attention from research, just as RDF in general. Re-
cently, the W3C has started to derive a standard RDF query
language, called SPARQL [165], that is, visibly influenced by
languages such as RDQL [149], RQL [119], and SeRQL [37],
aiming to create a stable foundation for use, implementa-
tion, and research on RDF databases and query languages.
Where XML query languages focus on trees and order, RDF
query languages have to deal with the simple, but also
highly flexible RDF: RDF data comes (see Section II-B) in
the shape of arbitrary (usually node- and edge-labeled)
graphs. Yet surprisingly and in stark contrast to the XML
case, many RDF query languages only provide access to
direct properties, but not to reachability information, see
Section IV-C. In contrast to relational or object-oriented
(which can also be considered representing graph data)
data all properties (i.e., outgoing edges) are optional and
multi-valued. For instance, an author may or may not
have a last name and may even have many such names.
How query languages deal with this inherent optionality
is discussed in Section IV-D. Resources (i.e., nodes) are in
general labeled with (globally) unique identifiers that allow



us to talk about the same resource in different data sets.
However, RDF also allows blank nodes which play the role
of local-only identifiers. Blank nodes are like existential data
and pose particular challenges for RDF query evaluation
(see Section IV-E).

Again, we start off the discussion of RDF query languages
with a closer look at two of the more prominent exemplars:
SPARQL and RQL. These introductions are focused on their
essentials. For a more in-depth comparison of (more than
a dozen) RDF query languages see [92].

A. SPARQL 1000 Words

Fundamentally, SPARQL is a fairly simple query language
in the spirit of basic subsets of SQL or OQL. However, the
specifics of RDF have lead to a number of unusual features
that, arguably, make SPARQL more suited to RDF querying
than previous approaches such as RDQL [149]. However,
the price is a more involved semantics complemented by a
tendency in [165] to redefine or ignore established notions
from relational and XML query languages rather than build
upon them.

Nevertheless, SPARQL is expected to become the “lin-
gua franca” of RDF querying and thus well worth further
investigation. In the following sections, we first briefly
introduce into SPARQL and its semantics (based on [161]
and [162] but extended to full SPARQL queries rather than
only patterns).

l) Example.: The following SPARQL query selects from
the graph in Section II-B all articles in the journal with
name “Computer Journal” and returns a new graph where
the bib:isPartOf relation of the original graph is inverted to
bib:hasPart.5

CONSTRUCT { ?j bib:hasPart ?a }
2 WHERE { ?a rdf:type bib:Article AND ?a bib:isPartOf ?j

AND ?j bib:name ‘Computer Journal’ }

The query illustrates SPARQLs fundamental query con-
struct: a pattern (s, p,o) for RDF triples (whose components
are usually thought of as subject, predicate, object). Any
RDF triple is also a triple pattern, but triple patterns allow
variables for each component. Furthermore, SPARQL also
allows literals in subject position, anticipating the same
change also in RDF itself. We use the variant syntax for
SPARQL discussed in [161] to ease the definition of syntax
and semantics of the language. For instance, standard
SPARQL, uses . instead of AND for triple conjunction. We
consider two forms of SPARQL queries, viz. SELECT queries
that return list of variable bindings and CONSTRUCT queries
that return new RDF graphs. Triple patterns contained in a
CONSTRUCT clause (or “template”) are instantiated with the
variable bindings provided by the evaluation of the triple
pattern in the WHERE clause. We omit named graphs and
assume that all queries are on the single input graph. An

5Here, and in the following we use namespace prefixes to abbreviate
IRIs. The usual IRIs are assumed for rdf, rdfs, dc (dublin core), foaf (friend-
of-a-friend), vcard vocabularies. bib is a prefix bound to an arbitrary IRI.

extension of the discussion to named graphs is easy (and
partially demonstrated in [162]) but only distracts from the
salient points of the discussion.

The full grammar of SPARQL queries as considered here
(extending [161] by CONSTRUCT queries) is as follows:

〈query〉 ::= ‘CONSTRUCT’ 〈template〉 ‘WHERE’ 〈pattern〉
| ‘SELECT’ 〈variable〉+ ‘WHERE’ 〈pattern〉

〈template〉 ::= 〈triple〉 | 〈template〉 ‘AND’ 〈template〉 | ‘{’
template ‘}’

〈triple〉 ::= 〈resource〉‘,’ 〈predicate〉‘,’ 〈resource〉
〈resource〉 ::= 〈iri〉 | 〈variable〉 | 〈literal〉 | 〈blank〉
〈predicate〉 ::= 〈iri〉 | 〈variable〉
〈variable〉 ::= ‘?’ 〈identifier〉
〈pattern〉 ::= 〈triple〉 | ‘{’ 〈pattern〉 ‘}’

| 〈pattern〉 ‘FILTER’ ‘(’ 〈condition〉 ‘)’ |
| 〈pattern〉 ‘AND’ 〈pattern〉 | 〈pattern〉 ‘UNION’

〈pattern〉
| 〈pattern〉 ‘MINUS’ 〈pattern〉 | 〈pattern〉 ‘OPT’

〈pattern〉
〈condition〉 ::= 〈variable〉 ‘=’ 〈variable〉 | 〈variable〉 ‘=’

(〈literal〉|〈iri〉)
| ‘BOUND(’ 〈variable〉 ‘)’ | ‘isBLANK(’

〈variable〉 ‘)’
| ‘isLITERAL(’ 〈variable〉 ‘)’ | ‘isIRI(’

〈variable〉 ‘)’
| 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

〈negation〉 ::= ‘¬’〈condition〉
〈conjunction〉 ::= 〈condition〉 ‘∧’ 〈condition〉
〈disjunction〉 ::= 〈condition〉 ‘∨’ 〈condition〉

We pose some additional syntactic restrictions: SPARQL
queries are range-restricted, i.e., all variables in the “head”
(CONSTRUCT or SELECT clause) also occurs in the “body”
(WHERE clause) of the query. We assume error-free SPARQL
expressions (in contrast to [161] and [162]), i.e., for each
FILTER expression all variables occurring in the (right-hand)
condition must also occur in the (left-hand) pattern. The
first limitation is as in standard SPARQL, the second is
allowed in standard SPARQL but can easily recognized a-
priori and rewritten to the canonical false FILTER expression
(as FILTER expressions with unbound variables raise errors
which, in turn, are treated as a false filter, see “effective
boolean value” in [165].

Finally, we allow only valid RDF constructions in
CONSTRUCT clauses, i.e., no literal may occur as a subject, all
variables occurring in subject position are never bound to
literals, and all variables occurring in predicate position are
only ever bound to IRIs (but not to literals or blank nodes).
The first condition can be enforced statically, the others by
adding appropriate isIRI or negated isLITERAL filters to the
query body.

Following [162], we define the semantics of SPARQL
queries based on substitutions. A substitution θ =
〈v1,n1, . . . , vk : nk〉 with vi ∈ Vars(Q)∧ni ∈ nodes(D)} for a
query Q over a data graph D maps some variables from Q to
nodes in D . For a substitution θ we denote with dom(θ) the



variables mapped by θ. Given a triple pattern t = (s, p,o),
we denote with tθ the application of θ to t replacing all
occurrences of variables mapped in θ by their mapping
in t . For a triple (s, p,o) containing no variables, we say
(s, p,o) ∈ D if there is a p labeled edge between s and o
labeled nodes in D .

On sets of substitutions the usual relational operations
Z, ∪, and \ apply. We define the (left) semi-join R X S =
(R Z S)∪ (R \ S).

Finally, given a template t , i.e., a conjunction of triple
patterns, std(t ) returns t but replacing each blank node
identifier (i.e., strings of the form _:identifier) with a new
blank node identifier not occurring in D and not created
by a prior application of std. Intuitively, std(t ) creates a new
instance of t such that the blank nodes of two instances
(and any instance with the input graph) do not overlap.

Using these definitions, Table V gives the semantics
of SPARQL SELECT and CONSTRUCT queries by means of
J KD . J KD translates the WHERE clause using J KD

Subst and a
CONSTRUCT clause, if present, using J KD

Graph. For a SELECT

query, we project the set of substitutions returned by J KD
Subst

to the set of answer variables V . For a CONSTRUCT query we
apply each substitution θ ∈ JP KD

Subst to a new instance of the
template t contained in the CONSTRUCT clause created using
std. Applying a substitutions is straightforward except that
triples containing one or more variables that bound to nil
by θ are omitted entirely.

The semantics of a SPARQL pattern P contained in the
WHERE clause is given by JP KD and produces a set of sub-
stitutions (or bindings) for variables in P . Triple patterns t
(case 1) are evaluated to the set of substitutions θ such that
the tθ contains no more variables and falls in D . Pattern
compositions AND, UNION, MINUS, and OPT are reduced to the
appropriate operations on sets of substitutions (cases 2–4).
FILTER expressions (case 5) are again evaluated straight-
forwardly, as restrictions on the substitutions returned by
the (left-hand) pattern with the boolean formula that is
provided by J KD

Bool for the condition of the filter expression.
Vars(condition) ⊂ dom(θ) is not strictly necessary as it merely
restates that we only consider error-free SPARQL queries.

Recently, SPARQL has been the target of a number of
studies and extensions. Its complexity and formal seman-
tics have been studied in [161], where it is shown, that,
unsurprisingly, full SPARQL patterns are just as expressive as
relational algebra and thus PSPACE-complete w.r.t. query
complexity. This is somewhat disappointing as thus many
graph queries (including simple reachability queries) are
not expressible in SPARQL, yet highly desirable for RDF
query languages, see, e.g., [10]. Extensions of SPARQL with
rules [162], [175] have received some attention in part as
they can address some of these weaknesses and as they
are seen as the natural next step towards a Semantic Web
query engine. Also studied have been several embeddings
of SPARQL in XQuery or vice versa, see, e.g., [163].

B. RQL and SeRQL

Under “RQL family”, we group the languages RQL [119]
and SeRQL [37]. Common to these languages is that they
support combining data and schema querying. In the case
of RQL, the RDF data model deviates slightly from the
standard data model for RDF and RDFS: (1) cycles in the
subsumption hierarchy are forbidden, and (2) for each
property, both a domain and a range must be defined.
These restrictions ensure a clear separation of the three
abstraction layers of RDF and RDFS: (1) data, i.e. descrip-
tion of resources such as persons, XML documents, etc.,
(2) schemas, i.e. classifications for such resources, and (3)
meta-schemas specifying meta-classes such as rdfs:Class, the
class of all classes, and rdf:Property the class of all properties.
They make possible a flexible type system tailored to the
specificities of RDF and RDFS.

In the following discussion we concentrate on RQL, the
“RDF Query Language”, that has been developed at ICS-
FORTH [60], [116]–[119]. Its most distinguishing feature is
a strong support for typing as well as a more complete
set of advanced language operators such as set operations,
aggregation, container construction and access than in
most other RDF query languages.

SeRQL aims to be a more accessible derivate of RQL.
Therefore several syntactic shorthands (e.g., object-property
and object lists and optional expressions, all three later
adopted in SPARQL) are introduced for common query
situations. Also SeRQL drops built-in support for typing
beyond literals, presumably under the impression that the
multitude of language constructs provided in RQL makes
the language too complex. The same reasoning applies for
advanced query constructs such as set operations, universal
quantification, aggregations, etc.

Another derivate of RQL is eRQL, a radical simplification
of RQL based mostly on a keyword-based interface (see
also Section VI). It is the expressed goal of the authors of
eRQL to provide a “Google-like query language but also with
the capacity to profit of the additional information given by
the RDF data”.6 The resulting language is, unsurprisingly, of
rather limited expressiveness and can not express most of
the sample queries.

m) Basic schema queries.: A salient feature of RQL is
the use of the types from RDFS schemas. The query subClas-
sOf(bib:Article) returns the sub-classes of the class bib:Article.
A similar query, using subPropertyOf instead of subClassOf,
returns the sub-properties of a property. The following
three queries returns the domain ($C1) and range ($C2) of
the property author defined at the URI named books. The
prefix $ indicates “class variable”, i.e., a variable ranging on
schema classes. It can be expressed in RQL in three different
manners:

1) using class variables:

1 SELECT $C1, $C2 FROM {$C1}bib:author{$C2}
USING NAMESPACE bib = &http://example.org/bib#

6http://www.dbis.informatik.uni-frankfurt.de/∼tolle/RDF/eRQL/



J (s, p,o)KD
Subst = {θ : dom(θ) = Vars((s, p,o))∧ tθ ∈ D}

Jpattern1 ANDpattern2 KD
Subst = Jpattern1 KD

Subst Z Jpattern2 KD
Subst

Jpattern1 UNIONpattern2 KD
Subst = Jpattern1 KD

Subst ∪Jpattern2 KD
Subst

Jpattern1 MINUSpattern2 KD
Subst = Jpattern1 KD

Subst \Jpattern2 KD
Subst

Jpattern1 OPTpattern2 KD
Subst = Jpattern1 KD

Subst X Jpattern2 KD
Subst

JpatternFILTER conditionKD
Subst = {θ ∈ JpatternKD

Subst : Vars(condition) ⊂ dom(θ)

∧JconditionKD
Bool (θ)}

Jcondition1 ∧ condition2 KD
Bool (θ) = Jcondition1 KD

Bool (θ)∧Jcondition2 KD
Bool (θ)

Jcondition1 ∨ condition2 KD
Bool (θ) = Jcondition1 KD

Bool (θ)∨Jcondition2 KD
Bool (θ)

J¬conditionKD
Bool (θ) = ¬JconditionKD

Bool (θ)

JBOUND(?v)KD
Bool (θ) = vθ , nil

JisLITERAL(?v)KD
Bool (θ) = vθ ∈ L

JisIRI(?v)KD
Bool (θ) = vθ ∈ I

JisBLANK(?v)KD
Bool (θ) = vθ ∈ B

J?v = literalKD
Bool (θ) = vθ = literal

J?u =?v KD
Bool (θ) = uθ = vθ∧uθ , nil

J tripleKD
Graph (θ) = tripleθ if ∀v ∈ Vars(triple) : vθ , nil, > otherwise

J template1 AND template2 KD
Graph (θ) = J template1 KD

Graph (θ)∪J template2 KD
Graph (θ)

JCONSTRUCT t WHEREp KD =
⋃
θ∈JP KD

Subst
Jstd(t )KD

Graph (θ)

JSELECTV WHEREp KD = πV (JP KD
Subst)

TABLE V
SEMANTICS FOR SPARQL

2) using a type constraint7:

SELECT C1, C2 FROM Class{C1}, Class{C2},
{;C1}bib:author{;C2}

3) without class variables or type constraints:

1 SELECT C1, C2 FROM
subClassOf(domain(bib:author)){C1},

subClassOf(range(bib:author)){C2}

While the first two queries return exactly the same
result—namely the domain and range of the bib:author-
property and all possible combinations of their subclasses—
the third query does not include the domain and range
of bib:author itself but only the combinations of their sub-
classes. There is another subtle difference: the first two
queries should only return class combinations for which
actual statements exist, the third should also return class
combination where no actual statement for that combina-
tion exists.

The query topclass(bib:Article) returns the top of the sub-
sumption hierarchy that Article is part of. Similar constructs
for querying the leaves of the subsumption hierarchy or the
nearest common ancestor of the two classes are available.
Moreover, RQL has “property variables” that are prefixed by
@ and which can be used to query RDF properties (just as

7In the following we omit the namespace part.

classes can be queried using class variables). The following
query, with property variables prefixed by @ returns the
properties, together with their actual ranges, that can be
assigned to resources classified as bib:Article:

SELECT @P, $V FROM {;bib:Article}@P{$V}

n) Data queries.: With RQL, data can be retrieved
by its types or by navigating to the appropriate position
in the RDF graph. Restrictions can be expressed using
filters. Classes, as well as properties, can be queried for
their (direct and indirect, i.e., inferred) extent. The query
bib:Article returns the resources classified as bib:Article or
as one of its sub-classes. This query can also be expressed as
follows: SELECT X FROM bib:Article{X}. Prefixing the variable
X with ˆ in the previous queries, yields queries returning
only resources directly classified as bib:Article, i.e., for which
a statement (X , rdf:type,bib:Article) exists. The extent of a
property can be similarly retrieved. The query ^bib:author
returns the pairs of resources X ,Y that are in the bib:author
relation, i.e., for which a statement (X ,bib:author,Y ) exists.
RQL offers extended dot notation as used in OQL [48], for
navigation in data and schema graphs. The data selected
by an RDF query can be restricted with a WHERE clause:

SELECT X, Y FROM {X;bib:Article}bib:isPartOf.bib:name{Y},
2 {X}dc:title{T}
WHERE T = "...Semantic Web..."



o) Mixed schema and data queries.: With RQL, access
to data and schema can be combined in all manners, e.g.,
the expression X;bib:Article restricts bindings for variable
X to resources with type bib:Article. Types are often useful
for filtering, but type information can also be interesting
on their own, e.g., to return a “description” of a resource
understood as its schema:

1 SELECT $C, ( SELECT @P, Y FROM {Z ; ^$D} ^@P {Y}
WHERE Z = X and $D = $C )

3 FROM ^$C {X}, {X}dc:title{T} WHERE T = "...Semantic
Web..."

This query returns the classes under which the resource
with title “...Semantic Web...” is directly classified; ^$C{X}
finds the classes under which the resource X is directly
classified.

Further features of RQL are not discussed here, e.g.,
support for containers, aggregation, and schema discovery.
Although RQL has no concept of “view”, its extension RVL
[137] gives a facility for specifying views.

RQL has been criticized for its large number of features
and choice of syntactic constructs (like the prefixes ^ for
calls and @ for property variables), which resulted in the
simplifications SeRQL and eRQL of RDF. On the other hand,
RQL is capable of expressing a wider range of queries than
most other RDF query languages, especially those of the
SPARQL family.

For a detailed formal semantics for RQL see [119].

C. Reachability

In stark contrast to the XML case, many RDF query
languages do not provide means to access reachability
information or any other form of navigation in the RDF
graph beyond direct edge traversal. In [10], a set of graph
queries that are desirable for an RDF query language are
described, but neither SPARQL nor RQL can express the
majority of these constructs.

However, if we look beyond SPARQL and RQL we find
that RDF query languages actually support a wide variety
of path expressions:

1) Basic path expressions are only abbreviations for triple
patterns as seen in SPARQL or RQL. They allow only the
specification of fixed length traversals, i.e., the traversed
path in the data is of same length as the path expression.
These path expressions are not more expressive than triple
patterns (and therefore SPJ queries), but are nevertheless
encountered in several query languages as “syntactic sugar”.
Examples of query languages with only basic path expres-
sions are GEM [197], OQL [48], SPARQL [165], and RQL
[119].

2) Unrestricted closure path expressions are a common
class of path expressions that adds to the basic path
expressions the ability to traverse arbitrary-length paths.
XPath path expressions (disregarding XPath predicates for
the moment) fall into this category with closure axes such as
descendant. This type of path expressions is very common in
XML query languages (e.g., XML-QL [74], Quilt [53], XPath

and all XML query languages based on XPath). It is also
used in the RDF query language iTQL [1]. Its expressiveness
is indeed higher than that of basic triple patterns (SPJ
queries). It can be realized in languages that provide only
triple patterns but additionally (at least linear) recursive
views. SQL-99 is an example of a language that provides no
closure path expressions but linear recursion and thus can
emulate (unrestricted) closure path expressions. For RDF,
there are few query languages that fall into this class since
RDF has, in contrast to XML, no dominating hierarchical re-
lation but many relations of equal importance. This makes
unrestricted closure often too unrestrictive for interesting
queries.

3) Therefore, several RDF query languages provide gener-
alized or regular path expressions. Here, full regular expres-
sion syntax including repetition and alternative is provided
on top of path expressions. E.g., a*.((b|c).e)+ traverses
all paths of arbitrary many a properties followed by at least
one repetition of either a b or a c in each case followed
by an e. Such regular path expressions are provided, e.g.,
by Versa’s traverse operator, Xcerpt’s qualified descendant, or
the XPath extension with conditional axes [143]. The latter
work showed that regular path expressions are even more
expressive than unrestricted closure path expressions and
a path language like XPath becomes indeed first-order
complete with the addition of regular path expressions.
Nevertheless, direct language support is not only justified by
the ease of use for the query author but also by complexity
results, e.g., in [142] that show that regular path expressions
do not affect the complexity of a query language such as
XPath and can be evaluated in polynomial time w.r.t. data
and query size. Simulation of regular path expressions using
triple patterns (SPJ queries) and recursive views is possible
but the resulting queries become excruciatingly complex
even for simple regular path expressions.

Summarizing, path expressions provide convenient
means to specify structural constraints in RDF queries
and are therefore supported by a large number of RDF
query languages. However, surprisingly many RDF query
languages ignore (unrestricted or regular) closure path
expressions. This is surprising as these path expressions
make query authoring (they allow avoiding recursive views)
easier and can be implemented efficiently as research on
these constructs for XML query languages has shown. In
particular, unrestricted closure path expressions can be
implemented nearly as efficiently as basic path expressions:

p) Evaluation of reachability queries on graphs.: For
tree data, membership in closure relations can be tested
in constant or almost constant time (e.g., using interval
encodings [78] or other labeling schemes such as [193]).
However, for graph data this is not so obvious. Fortunately,
there has been considerable research on reachability or
closure relations and their indexing in arbitrary graph data
in recent years. Table VI summarizes the most significant
approaches for RDF querying.

Obviously, we can obtain constant time for the member-



ship test if we store the full transitive closure matrix. How-
ever, for large graphs this is clearly infeasible. Therefore,
two classes of approaches have been developed that allow
with significantly lower space to obtain sub-linear time for
membership test.

The first class are based on the idea of a 2-hop cover [62]:
Instead of storing a full transitive closure, we allow that
reachable nodes are reached via at most one other node
(i.e., in two “hops”). More precisely, each node n is labeled
with two connection sets, in(n) and out(n). in(n) contains
a set of nodes that can reach n, out(n) a set of nodes that
are reachable from n. Both sets are assigned in such a way,
that a node m is reachable from n iff out(n)∪ in(m) , ;.
Unfortunately, computing the optimal 2-hop cover is NP-
hard and even advanced approximation algorithms [176]
have still rather high complexity.

A different approach [4], [55], [185], [190] is to use interval
encoding for labeling a tree core and treating the remaining
non-tree edges separately. This allows for sublinear or even
constant membership test, though constant membership
test incurs lower but still considerable indexing cost, e.g.,
in Dual Labeling [190] where a full transitive closure over
the non-tree edges is build. GRIPP [185] and SSPI [55] use
a different trade-off by attaching additional interval labels
to non-tree edges. This leads to linear index size and time
at the cost of increased query time.

This consideration shows that reachability (at least in
its basic form) does not need to significantly degrade the
performance of RDF query evaluation (and clearly does not
affect its complexity, seeing that already SPARQL SELECT
queries are PSPACE-complete).

D. Optionality

So far, we have mostly focused on pure conjunctive
queries only. Disjunction or equivalent union constructs
allow the query author to collect data items with different
characteristics in one query. E.g., to find “colleagues” of
a researcher from an RDF graph containing bibliography
and conference information, one might choose to select
co-authors, as well as co-editors, and members in the same
program committee. On RDF data, disjunctive queries are
far more common place than on relational data since all
RDF properties are by default optional. Many queries have
a core of properties that have to be defined for the sought-
for data items but also include additional properties (often
labeling properties or properties relating the data items to
“further” information such as Web sites) that should be
reported if they are defined for the sought-for data items
but that may also be absent. E.g., the following SPARQL
query returns pairs of articles and editors for articles that
have editors and just articles otherwise. If one considers the
results of a query as a table with nil values, the translator
column is nil in the latter case, i.e., if there is no bib:editor
property for that article.

1 SELECT ?article, ?editor

WHERE { ?article a bib:Article AND
3 OPTIONAL { ?article bib:editor ?editor } }

Such optional selection eases the burden both on the
query author and the query processor considerably in
contrast to a disjunctive or union query which has to
duplicate the non-optional part:

1 SELECT ?article, ?editor
WHERE { ?article a bib:Article AND

3 ?article bib:editor ?editor }
UNION

5 { ?article a bib:Article }

Furthermore, the latter is not actually equivalent as it
returns also for writings X with translators one result
tuple (X ,nil). Indeed, this points to the question of the
precise semantics of an optional selection operator. One
can observe that the answer to this question is not the
same for different RDF (or XML) query languages. The
main difference between the offered semantics in languages
such as SPARQL, Xcerpt, or XQuery lies in the treatment of
multiple optional query parts with dependencies. E.g., in
the expression A∧optional(B)∧optional(C ) the same variable
V may occur in both B and C . In this case, if we just go
forward and use the B part to determine bindings for V
those bindings may be incompatible with C , i.e., prevent
the matching of C . The way this case of multiple inter-
dependent optionals is handled allows to differentiate the
following four semantics for optional selection constructs:

1) Independent optionals: Interdependencies between
optional clauses is disregarded by imposing some order on
the evaluation of optional clauses. SPARQL, e.g., uses the
order of optional clauses in the query: The following query
selects articles together with editors and, if that editor is
also an author, also the author name.

1 SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article AND

3 OPTIONAL { ?article bib:editor ?person }
OPTIONAL { ?article bib:author ?person AND

5 ?person bib:name ?name } }

If we change the order of the two optional parts, the
semantics of the query changes: select all articles together
with authors and author names (if there are any). The
second optional becomes superfluous, as it only checks
whether the binding of ?person is also an editor of the
same essay but whether the check fails does not affect the
outcome of the query.
It should be obvious that this semantics for interdependent
optionals is equivalent to allowing only a single optional
clause per conjunction that may in turn contain other
optional clauses. Therefore, the above query could also be
written as follows:

1 SELECT ?article, ?person, ?name
WHERE { ?article a bib:Article .

3 OPTIONAL { ?article bib:editor ?person
OPTIONAL { ?article bib:author ?person AND

5 ?person bib:name ?name }
} }



approach characteristics query time index time index size

Shortest path [159] no index O (n +e) – –
Transitive closure full reachability matrix O (1) O (n3) O (n2)

2-Hop [62] 2-hop covera O (
p

e) ≤O (n) O (n4) O (n · pe)

HOPI [176] 2-hop cover, improved approximation al-
gorithm

O (
p

e) ≤O (n) O (n3) O (n · pe)

Graph labeling [4] interval-based tree labeling and propaga-
tion of intervals of non-tree descendants.

O (n)b O (n3) O (n2)c

SSPI [55] interval-based tree labeling and recursive
traversal of non-tree edges

O (e −n) O (n +e) O (n +e)

Dual labeling [190] interval-based tree labeling and transitive
closure over non-tree edges

O (1)d O (n +e +e3
g ) O (n +e2

g )

GRIPP [185] interval-based tree labeling plus addi-
tional interval labels for edges with in-
coming non-tree edges

O (e −n) O (n +e) O (n +e)

aIndex time for approximation algorithm in [62].
bMore precisely, the number of intervals per node. E.g., in a bipartite graph this can be up to n, but in most (sparse)

graphs this is likely considerably lower than n.
cMore precisely, the total number of interval labels.
d [190] introduces also a variant of dual labeling with O (logeg ) query time using a, in practical cases, considerably

smaller index. However, worst case index size remains unchanged.

TABLE VI
COST OF MEMBERSHIP TEST FOR CLOSURE RELATIONS. n,e : NUMBER OF NODES, EDGES IN THE DATA, eg : NUMBER OF NON-TREE EDGES, I.E., IF T (D) IS A

SPANNING TREE FOR D WITH EDGES ET (D) , THEN eg = |ED \ ET (D)|.

This observation, however, only applies if the optional
clauses are interdependent. If they are not interdependent
multiple optional clauses in the same conjunction differ
from the case where they are nested.

2) Maximized optionals: Another form of optional se-
mantics considers any order of optionals: In the example it
would return the union of the orders, i.e., either first bind-
ing translators than checking whether they are also authors
or first binding authors and author names then checking
whether they are also translators. This is more involved than
the above form and assigns different semantics to adjunct
optionals vs. nested optionals. The advantage of this se-
mantics is that it is equivalent to a rewriting of optional to
disjunctions with negated clauses: A∧optional(B)∧optional(C )
is equivalent to (A ∧ not(B)∧ not(C ))∨ (A ∧ not(B)∧C )∨ (A ∧
B ∧ not(C ) ∨ (A ∧ B ∧C ). This semantics ensures that the
maximal number of optionals for a certain (partial) variable
assignment is used. This semantics has been introduced in
Xcerpt [173].

3) All-or-nothing optional: A rare case of optional se-
mantics is the “all-or-nothing” semantics where either all
optional clauses are consistent with a certain variable
assignment or all optional variables are left unbound. This
semantics can be achieved in SPARQL and Xcerpt using a
single optional clause instead of multiple independent ones.

E. Existential Information

Recall, that RDF data may contain specifically marked
resources (called blank nodes) that remain without iden-
tity but express only existential information. In fact, if

we consider an RDF graph as a logical conjunction of
triples they become existential quantifiers over the resulting
formula. They pose a number of challenges for RDF query
evaluation.

First, when blank nodes are selected by a query should
a query language return them like any other resource?
Recall, that blank nodes are essentially local identifiers
and thus outside the scope of their original graph may
not carry much information. Furthermore, blank nodes
express existential information and such information may
be redundant, i.e., already implied by the other data. E.g.,
if the data contains the statement that the article smith2005
is part of issue 11 of some journal in addition to the
data from Figure 2 that information is obviously implied
already from the remaining data (that smith2005 is part of the
issue 11 of the journal “Computer Journal”) and thus can
be safely omitted. An RDF graph without such redundant
information is called lean [109]. Ideally, we might expect
an RDF query language to return only blank nodes that
are non-redundant (and for these maybe enough additional
information to retrieve them again, e.g., a concise bounded
description [182]). However, simply computing the lean
graph for any given RDF graph is already CO-NP-complete
[107] and thus undesirable for most query evaluation. Thus
most RDF query languages choose to ignore this issue and
return blank nodes just like any other resource.

Second, when constructing new RDF graphs (e.g.,
through SPARQL’s CONSTRUCT clause) we need to be able to
construct also new blank nodes to obtain an adequate RDF
query language. However, such blank node construction



easily introduces a form of construction: Say we want to
construct a new blank node with edges to all articles se-
lected by this query. Then a single blank node for all articles
is needed. However, we might also want to construct, for
each article, a new blank node with edges to each of its
authors. Now we need one “fresh” blank node for each
article (otherwise all articles share all authors) but only
one for each group of authors of the same article. SPARQL
only allows the construction of blank nodes that are in the
scope of all query variables and thus can express neither of
the above queries. In RDFLog [44], [45] the effect of blank
nodes on RDF querying is studied in detail. It is shown,
in particular, that the combination of blank node support
(even as in SPARQL) with (recursive) rules (as, e.g., in [175])
immediately leads to an undecidable, Turing-complete lan-
guage that can be reduced, using Skolemization and a novel
form of un-Skolemization, to standard logic programming.
It is also shown that arbitrary scoping of blank nodes is
not more expensive as SPARQL-style ∀∃ scopes and that, at
least in presence of rules, the two are actually equivalent.

This concludes our brief summary of core issues on RDF
querying and RDF query languages. For a comparison of
a larger set of RDF query languages see [92]. The above
discussion shows clearly that RDF querying is yet a less
mature field of research than the XML case, but that there
are a number of open questions that urgently need to
be addressed for efficient and convenient access to RDF,
and thus arguably the entire Semantic Web vision to move
forward.

V. QUERIES AS PROGRAMS—OUTLOOK:
VERSATILE LANGUAGES

In the previous sections we have separated Web and
Semantic Web query languages into XML and RDF query
languages. However, in recent years GRDDL [66] and similar
initiatives have given renewed evidence to the effort of
defining a means to conveniently access both XML and
RDF data within the same application and even same query
language. This has been reflected in an increasing number
of integration approaches for XML and RDF querying.
Previous approaches for integrating XML and RDF access
fall roughly into two categories: transformation and multi-
language approaches. In the former, a pure XML or a pure
RDF query language is used and data in the respectively
other format can only be accessed by some encoding in
the other one. In the latter, a query language for one of
the data formats is combined, most often embedded into
the other one (e.g., XSPARQL, GRDDL). The advantage of
transformation approaches is that users have to learn only
a single language. However, this is offset by the need to
understand the encoding of RDF in XML or vice versa
and very limited support for specifics of the encoded data
format that are not present in the native format.

A unique position among these approaches is held by
Xcerpt and its extension XcerptRDF: Through a slight exten-
sions to the pattern- and rule-based XML query language

Xcerpt convenient querying of RDF is enabled that, in
contrast to, e.g., SPARQL, address also the graph nature
of RDF. The vast majority of language features is shared
by both the XML and the RDF version of Xcerpt, thus
alleviating the problems of the above mentioned integration
approaches.

For a more detailed look at Xcerpt see [173] and for its
RDF extension XcerptRDF [46].

Here, we briefly outline the basic ideas of Xcerpt to
give an impression of how a versatile semi-structure query
language compares with XQuery or SPARQL as discussed in
the previous sections.

A. Xcerpt

Xcerpt [173] is a query language designed after principles
given in [42] for querying both data on the “standard Web”
(e.g., XML and HTML data) and data on the Semantic Web
(e.g., RDF, Topic Maps, etc. data). Xcerpt is “data versatile”,
i.e. the same Xcerpt query can access and generate, as
answers, data in different Web formats. Xcerpt is “strongly
answer-closed”, i.e. it not only allows one to construct
answers in the same data formats as the data queries like,
e.g., XQuery [50], but also allows further processing of the
data generated by this same query program. Xcerpt’s queries
are pattern-based and allow to incompletely specify the
data to retrieve, by (1) not explicitly specifying all children of
an element, (2) specifying descendant elements at indefinite
depths (restrictions in the form of regular path expressions
being possible), and (3) specifying optional query parts.
Xcerpt’s evaluation of incomplete queries is based on a
novel unification algorithm called “simulation unification”.
Xcerpt’s processing of XML documents is graph-oriented,
i.e., Xcerpt is aware of the reference mechanisms (e.g.,
ID/IDREF attributes and links) of XML.

An Xcerpt program consists of a finite set of Xcerpt
rules. The rules of a program are used to derive new,
or transform existing, data from existing data (i.e. the
data being queried). Construct rules are used to produce
intermediate results while goal rules form the output of
programs.

While Xcerpt works directly on XML or RDF data, it
has its own data format for modeling XML documents or
RDF graphs, viz. Xcerpt data terms. For example, the XML
snippet <book><title>White Mughals</title></book> cor-
responds to the data term book [ title [ "White Mughals"]

]. The data term syntax makes it easy to reference XML
document structures in queries and extends XML slightly,
most notably by allowing unordered data and making
references first class citizens (thus moving from a tree to
a proper graph data model).

For instance, in the following query the construct rule
defines data about books and their authors which is then
queried by the goal. Intuitively, the rules can be read as
deductive rules (like in, say, Datalog): if the body (after FROM)
holds, then the head (following CONSTRUCT or GOAL) holds.



A rule with an empty body is interpreted as a fact, i.e., the
head always holds.

GOAL
2 authors [ var X ]
FROM

4 book [[ author [ var X ] ]]
END

6

CONSTRUCT book [ title [ "White Mughals" ],
8 author [ "William Dalrymple" ] ] END

Xcerpt query terms are used for querying data terms and
intuitively describe patterns of data terms. Query terms
are used with a pattern matching technique8 to match
data terms. Query terms can be configured to take par-
tiality and/or ordering of the underlying data terms into
account during matching (indicated by different types of
brackets). Query terms may also contain (logic) variables.
If so, successful matching with data terms results in variable
bindings used by Xcerpt rules for deriving new data terms.
Matching, for instance, against the XML snippet above
the query term book [ title [ var X ] ] with results in the
variable binding {X/"White Mughals"}. In addition to the
query term types discussed in [173], we also consider non-
injective ordered and unordered query terms indicated by
three braces or brackets, respectively.

Construct terms are essentially data terms with variables.
The variable binding produced via query terms in the body
of a rule can be applied to the construct term in the head
of the rule in order to derive new data terms. For the
example above we obtain the data term authors [ "William

Dalrymple"] as result.
A visual language, called visXcerpt [24], [25], has been

conceived as a visual rendering of textual Xcerpt programs,
making it possible to freely switch during programming
between the visual and textual view, or rendering, of a
program.

More details on Xcerpt and the vision of versatile Web
querying can be found in [42], [43], [90] and on its imple-
mentation in [41], [90].

VI. QUERIES AS KEYWORDS:
KEYWORD-BASED QUERY LANGUAGES

In the literature, the term keyword-based query language
is used to refer to a group of query languages that use
(relatively) unstructured bags of words that the user deems
significant as queries or a part thereof. A typical character-
istic of keyword query languages is the implicit conjunctive
semantics, that is, by default the data must contain all
words in a query to be a match without this being explicitly
expressed in the query.

The traditional query languages for semi-structured data
discussed in the introduction require at least some knowl-
edge of the structural organization of the data to be queried
as well as of the syntactic constructs and principles of the

8Called simulation unification. For details of this technique, please refer
to [172].

query language. In contrast to this, the motivation behind
developing keyword-based query languages for XML and
RDF is to enable casual users to construct queries and
obtain useful results without having to undergo training in a
query language, having to know the underlying structure of
the data and even without having a clear understanding of
the data structures. Another advantage of these query lan-
guages is that they allow for querying over heterogeneous
data i.e. data with different underlying schemas.

Keyword queries are not only easy to construct, but
have proven to be surprisingly effective in helping the user
to localize relevant information. Consequently, keyword
querying has become an established technique for finding
information that virtually all Web users are familiar with.
Keyword search is used in a wide variety of applications
and domains, in Web search engines such as Google9

and Yahoo!10 which allow for general internet search over
various types of documents as well as in more specialized
contexts and domains. For example, the query “XML Web”
entered into Google yields a lists of Web pages in which
the terms occur. On the shopping site Amazon11 and the
auction site Ebay12 it results in a list of products available
on the site and on the social networking site Facebook13,
the search results for the same query contain relevant user
groups, events, user profile add-ons and users who are
interested in the Web and XML.

Since keyword-based querying is established and shows
great effectiveness in querying the Web in a variety of
domains, it is a promising and worthwhile approach to
achieve non-expert querying of XML and RDF data. Various
keyword query languages have been proposed in recent
years. The goal of this section is to present the different
approaches taken and to give an overview over the different
paradigms and concepts as well as the expressive power
of the individual languages. Keyword querying in relational
databases (see e.g. [112]) is a related topic that will not be
treated here.

A. Characteristics of keyword query languages

Keyword querying as normally used on the Web on the
one hand and traditional RDF and XML query languages on
the other hand can be seen as two extremes with respect
to the degree to which querying the structure of the data
is possible; in the former, the structure of the data cannot
normally be queried. For example, Amazon’s regular search
interface does not allow to indicate that a keyword should
be matched on authors’ names. In the latter case, the
structure of the data may (but does not necessarily have
to be, see below) fully specified, for example in SPARQL
and XPath.

9http://www.google.com/
10http://www.yahoo.com/
11http://www.amazon.com/
12http://www.ebay.com/
13http://www.facebook.com/



Based on this observation, at least three different types of
keyword-based query languages for structured data can be
distinguished according to where they fall on this spectrum:

1) Keyword-only query languages, the simplest variant.
Here, queries consist of a number of words, which are
usually matched on the textual content of nodes in an
XML or RDF document. In some cases, the keywords
may also be matched against node or, in the case of
RDF, edge labels, but generally, the query makes no
reference to the structure of the data.
Most keyword query languages for XML and RDF
presented in the following fall into this category, for
example XKeyword [15], [111], XRank [106] and XK-
Search [196].

2) Label-keyword query languages, e.g. XSearch [64],
where a query term is a label-keyword pair of the form
l:k. The term matches data where a node with the
label l has textual content, either directly or through
a descendant node, matching the associated keyword
k. It is thus possible to indicate some structure in the
query.
Depending on the query language, either the label
or the keyword may be optional, meaning that query
terms may be of the form :k, l: or l:k. For example,
the query “title:Web” applied to the example data, an
excerpt from a fictional bibliographical XML database
(Figure 1) matches nodes 3 and 17. The query “:Web”
on the other hand, a keyword-only query since no label
is specified, matches nodes 3, 17 and 26, since it does
not impose constraints on the node label.
The difference between keyword-only languages that
match both on labels and content and label-keyword
languages is that in the latter case, the association
between label and keyword and the kind of element
each keyword refers to (node label or node content) is
represented, allowing for more targeted queries since
label-content or parent label-descendant content rela-
tionships can be explicitly specified.

3) Keyword-enhanced query languages like for instance
Schema-Free Query [133] integrate traditional query
languages like XPath with simple keyword querying as
described in this article. They allow for the specifica-
tion of the structure to the degree that it is known,
but also include constructs that make it possible to
use keyword-querying where it is not, thus offering
a smooth transition between keyword querying and
creating fully specified queries.
Keyword-enhanced query languages constitute exten-
sions of traditional query languages, meaning that they
provide their full power.
Since traditional query languages offer ways to specify
queries when the user lacks knowledge about the
data structure, e.g. through regular path expressions
in XPath, the question arises how traditional query
languages and Keyword-enhanced query languages can

be differentiated. As is pointed out in [88] and [178],
regular path expressions are useful if the the structure
is not completely known to the user, but are not
practical if the user has no knowledge of the structure
at all.
One important difference is thus that keyword query-
ing aims at accommodating the lack of knowledge
about the structure in a more fundamental and com-
prehensive way and thus has a philosophy and caters
to a community that are different from those of tradi-
tional query languages.

A second, complementary characteristic of keyword
query languages is how they are realized:

1) The majority of keyword query languages are imple-
mented as a stand-alone system that handles the query
evaluation and determining and, where applicable,
ranking of the return entities.

2) Another group of keyword query languages translate
the keyword queries into another query language and
thus outsource the query evaluation.

3) Keyword-enhanced query languages combine conven-
tional query languages like XPath or XML-QL with
keyword-querying techniques and thus build on ex-
isting systems.

B. Using structural information for keyword querying

As mentioned, keyword querying is an established tech-
nique in various Web applications like search engines.

In these applications, most queries are keyword-only
queries although for instance Google supports a lim-
ited set of label-keyword-like constructs in queries like
allintitle:XML which retrieves Web sites that have the
word XML in their title element.

But overall, querying the structure of Web documents is
only enabled to a very limited degree, for example, it is not
possible to specify an arbitrary HTML tag as a surrounding
context for a keyword. At least in the case of Web search
engines which process an extremely big amount of data (in
July 2008, Google stated their link processing system had
found more than 1 trillion individual links, although not
all pages found are indexed14), this can be attributed to
the fact that indexing and retrieving structural information
would increase the data and processing load even further,
decreasing the efficiency of search.

Amazon on the other hand which operates on less nu-
merous, and homogenous data in a limited domain, offers
advanced search15 (see Figure 4) for various categories of
products like books and magazines. Here, the user can fill
in values for a number of given attributes, for instance
author and language when she is looking for a book. While
the advanced search is realized as filling out a form, it

14http://googleblog.blogspot.com/2008/07/we-knew-Web-was-big.html
15http://www.amazon.com/gp/browse.html?node=241582011



Fig. 4. The Amazon advanced search interface

essentially constitutes the equivalent of a very limited label-
keyword query language. For example, providing “XML” as
a value for the “title” field in the form can be seen as being
equal to a query “title:XML”.

However, this form of label-keyword querying relies on
clean, structurally homogenous data and thus does not con-
stitute a suitable solution for flexible and versatile querying
of generic XML or RDF data.

1) Computing query answers: In keyword querying on
the Web, some structural information may be taken into
account when ranking the results, for example by assigning
different scores depending on whether a keyword occurs
in the title or is printed in big or bold text [36], but the
structure of a document plays no role when determining
the return value type which is fixed. Apart from efficiency,
two reasons can be seen for this. First, Web or Wiki pages
are typically of a comparably small size, and it is thus
reasonable to return results at the granularity of whole Web
pages. Secondly, in the case of domain-specific querying
on a limited, homogeneous data set like on shopping Web
sites, querying only serves one task, i.e. finding matching
products and there are only few types of objects, e.g. books
and DVDs, and the return types (or the information initially
displayed in the results list) can easily be predefined. For
example, keywords matching a book might yield a return
entity of type book which by default displays the title,
author and price, while the return entity for DVDs might
show the title, price and region code.

On the other hand, when applying the concept of
keyword-search to RDF or XML documents, we may be
dealing with a single big document that e.g. represents a
bibliography or an address book which contain thousands
of entries or more. In this case, it is not meaningful to return
the whole document, but only parts of it. Defining return
types manually may be feasible but is harder to realize
than in the above-mentioned examples since the data may

represent many different types of entities.
Therefore, it is preferable to employ some method to

automatically determine a useful return value, a semantic
entity. In order to achieve this, matched nodes have to be
connected, that is, grouped according to their membership
in semantic entities, particularly when there are several
matches for some or all keywords. Note that grouping into
semantic entities also serves the goal of establishing the
domain of the answer, potentially enabling the targeted
selection of return values like retrieving the publication
years of all books by a certain author.

Additionally, a metric for ranking these result elements
that, unlike rankings of HTML documents, performs at the
granularity of the returned structures is needed. That means
that the entities to be ranked are not complete documents
but fragments of structured data. Finally, RDF and often
XML have a deeper, more semantically meaningful structure
than HTML, meaning that they profit more from a more
comprehensive exploitation of the structure of the results
in ranking.

However, note that XHTML is an application of XML
which illustrates that it is necessary to keep in mind that
XML documents are not always data-centric like bibliogra-
phies (Figure 1) but may also be document-centric and
represent a text and its structure or formatting (as shown in
Figure 5). A truly versatile keyword-based query language
for XML should ideally yield useful results for both kinds of
documents (and any that might exist in between) and not
impose restrictions on the type of documents.

As an illustration of the return value problem, consider
the XML document representing a bibliography in Figure
1. A query K = {w1, ..., wk } matched on an XML data set T
yields the result L = {L1, ...,Lk } where each Li = {v1, v2, ...}
consists of all nodes v which contain wi .

Applied to the data in Figure 1, the first word in the query
K = {Smi th,W eb} (conjunction is assumed here and in the
following) has one match, the content of node 11 which is
the last name of one of the authors of an article (L1 = {11}),
while “Web” matches the titles of both articles and thus
L2 = {3,17}.

Returning only the matched nodes would not provide
useful information for the user, as would returning the
whole document which might contain many more entries.
Given the nature of the data and the query, the user can
be assumed to be interested in receiving information about
articles whose data contain his search terms. That means
that the “article” nodes in the data govern the subtrees
which constitute meaningful semantic entities that should
be returned, as a whole or in part, as answers to the query.

A common approach to the evaluation of matches in
keyword-based query languages is to find the most specific
element that is an ancestor to at least one match instance
of each keyword and to construct a return value from this
node, e.g. take the subtree of which it is the root. The idea
behind this is that the ancestor-descendant relationship
indicates a strong semantic connection, especially when
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the distance between ancestor and descendant is small.
Correspondingly, a node which is the closest common
ancestor of instances of all keywords is assumed to encode
the most specific concept that the keyword matches have
in common.

In the case of tree-shaped XML data, this is defined
as the Lowest Common Ancestor (LCA) [108], a common
concept in graph theory which takes an answer set Si and
computes the lowest node that has all nodes in Si among
its descendants. Depending on the application and specific
algorithm, S = {S1,S2, ...} may contain either all answer sets
that cover the query exactly, i.e. contain one matched node
for each keyword (‖Si‖ = ‖K ‖), or allow the answer sets to
contain more than one match instance for each keyword.

In this example, assuming the latter case, the three
answer sets are S1 = {11,3} S2 = {11,17} and S3 = {11,3,17}
with the respective LCA nodes LC A(S1) = 2, LC A(S2) = 1
and LC A(S3) = 1. Intuitively, the subtree governed by node
2 constitutes the domain of the best answer of the query
and is preferred to the other answers which are not specific
enough and should not be displayed or should be ranked
lower.

Several adaptations of LCA have been proposed to rem-
edy the problems of false positives, that is, results which
are not relevant. These variants, which will be presented
in the following, reduce the set of answers by filtering
out false positives. As will be shown, in this process, false
negatives can be introduced, that is, not all relevant answer
are retrieved.

But false positives and false negatives are not the only
problem that LCA grouping and related methods have;

sometimes, a relevant answer may not be contained in
the LCA subtree. For example, a query K = {author :
Doe, author : Smi th} yields node 5 as the LCA, implying
an answer that is not necessarily informative since it is
only concerned with the authors’ names, while it can
plausibly be assumed that the user is interested in further
information like the titles of the articles they coauthored..

Basic approaches to ranking use the length of the paths
from the matched nodes to the LCA node to determine
ranking order, shorter paths are assumed to mean that the
answer is more specific, that is, better.

For both tasks, determining the domain of the return
value and ranking, the structure of the queried data set
proves helpful in finding a solution and thus structural
analysis is employed in keyword-based query languages
even though the structure may not always be queried
explicitly.

The majority of research is concerned with querying XML
data, but keyword-based query languages for RDF data,
more complex to realize because of the graph structure, la-
beled edges and blank nodes, do exist and will be presented
in the following. Familiarity with XML, RDF and their data
models is assumed, see Section II.

C. Keyword Query Languages Implemented as Stand-alone
Systems

In the following section, the approaches are presented
grouped according to their type of technical realization as
outlined above as well as the kind of data they operate and
are sorted in chronological order.

1) Querying XML:



a) Xkeyword: Unlike almost all later approaches to
XML keyword querying which can be applied only to tree-
shaped data, XKeyword16 [15], [111] can be used on XML
graphs and does not require the XML data to have one com-
mon root node. As in most other keyword query languages,
queries are simply keywords whose list is assumed to be
in conjunction. Keywords are matched both on node la-
bels and values. To achieve semantically meaningful return
values, the XML schema graph is manually grouped into
possible return types, target objects, which are annotated
with their relationships to other target objects. For example,
a target object of type article could consist of article, author
and title nodes and stand in a contained in relation to a
target object of type proceedings.
The system stores the XML data in a relational database
as a set of connection relations and an inverted index
that indicates for every keyword the elements in which it
occurs. Queries are then processed by retrieving the relevant
objects for the keywords and generating minimal cycle-
free subgraphs that contain all input keywords. These in
turn can be mapped onto subtrees of the target object
graph, yielding the query results. The results are generated
in parallel, meaning that smaller results are generated first,
resulting in a ranking of the results according to size.

The results can be be displayed in a list or as a pre-
sentation graph that can be navigated through clicking and
expanding results. Trivial and duplicate matches are initially
hidden and results are grouped by their schema.

b) XSearch: [64] is a label-keyword query language for
XML that includes a ranking mechanism. Search terms can
be of the form l :, : k or l : k. A term l : k matches a node if
the node has label l and a descendant in whose content k
is contained. All terms are optional unless prepended with
“+”.

Matched nodes are grouped into entities according to the
interconnection relationship which says that the path from
two nodes v1 and v2 to their LCA may not contain distinct
nodes with the same labels except for v1 and v2. An answer
set contains only one match for each keyword in the query
and is interconnected if either it contains a node, the star
center, that is interconnected with all other nodes in the
set (star related) or if all nodes are pairwise connected (all-
pairs related). The type of connection condition may be
chosen depending on the data.

A query result is defined as an answer set that fulfills the
selected interconnection constraint.

As an example, consider the query K = {+l ast : Smi th,+ :
W eb} evaluated on the example data. As in the similar
query before, L1 = {11} and L2 = {3,17}. Since every answer
set must have the cardinality of the query and every
keyword must be matched, the answer sets are S1 = {11,17}
and S2 = {11,3}. The shortest path between objects 11 and 3
contains every node label only once which means that they
are interconnected. On the other hand, nodes 17 and 3 are

16Project Pages: http://db.ucsd.edu/XKeyword/

not interconnected since nodes 2 and 16 which both lie on
the path between the respective nodes and the LCA node
“bib” have the same label, “article”. The only answer to the
query is thus S1 = {11,3}. The interconnection relation in
this case avoids grouping matches together that belong to
different articles as simple LCA-based grouping does.

Since there are only two elements in each Si in the
previous example, the interconnected nodes are both star-
related and all-pairs related. However, since star-relatedness
is a relaxation of the constraint of all-pair relatedness in
the sense that for a set of nodes to be all-pairs related,
every node has to be a star center, this is not always the
case as illustrated by the following example: The query K =
{+l ast : Smi th,+l ast : Doe,+year : 2005} yields the answer
set S1 = {11,8,4}. Nodes 11 and 8 are not interconnected
since the path between them passes two nodes with label
“author”. Node 4 however is interconnected with both 11
and 8. Consequently, S1 = {11,8,4} is not a query answer if
all-pairs interconnection is used, but it is according to star
related interconnection.

Grouping using all-pairs related interconnection is thus
more restrictive than star related interconnection which
in turn is more restrictive than simple lowest common
ancestor calculation.

The above example also illustrates that all-pairs intercon-
nection can lead to false negatives, since S1 is a valid answer
to the query K . Additionally, both types of interconnection
semantics are sensitive to false positives when node labels
are different but refer to similar concepts. In Figure 23,
the query K = {+ : Smi th,+ : 2003} with S1 = {11,18} and
LC A(S1) = 1, the root node is wrongly returned as a result
of the query since “article” and “book” are different labels
but signify conceptually related entities.

The query answers are ranked using the vector space
model [171] and the tf-idf measure [115] applied at the
granularity of individual nodes. Other factors in calculating
the ranking score distance between the nodes in the answer
set and the number of pairs of nodes that stand in an
ancestor-descendant relationship, since this relationship
generally indicates a strong connection.

The system is implemented using inverted indices for
keywords and labels, an interconnection index and a
path index. The interconnection index contains the pre-
computed interconnection relations between all pairs in a
document, while the path index stores for each keyword
the paths by which it can be reached which allows to
compute answers in ranking order when only the subtree
size and the number of ancestor-descendant pairs are
considered. The interconnection index which stores the
interconnection relationships between nodes can be pre-
computed or generated incrementally online as queries are
evaluated.

c) XRank: [106], as the name suggests, puts a big-
ger focus on result ranking and employs more refined
ranking techniques than the above-mentioned approaches.
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The system allows for querying a mix of (graph-shaped,
i.e. containing hyperlinks) XML and HTML documents.
When dealing with XML, query results are XML fragments,
but XRank behaves like a traditional Web search engine
when dealing with HTML documents, returning complete
documents as search results. XRank is one of the few query
languages presented here that assume document-centric
XML and exemplify the grouping on such data.

XML query evaluation in XRank proceeds by first match-
ing the keywords on the content of nodes. Hyperlinks are
ignored when calculating query results. A query result then
is computed by finding R0 the set of nodes that contain
at least of instance of each keyword in the query via an
ancestor-descendant relationship.

A query result node then is a node in R0 for which it
holds that, for each keyword, it contains at least one match
instance that is not contained in any of its descendant
nodes also in R0. Formulated in terms of the Lowest Com-
mon Ancestor, the procedure yields those LCA nodes which
either are not ancestors to any further possible LCA nodes
or, if they are, which are also LCA nodes when ignoring the
keyword matches in the contained LCA subtree.

As an example, consider the query K = {X ML,W eb}
evaluated on the data in 7. The keyword match lists
are L1 = {13,15} and L1 = {2,12,13,16,19}. Based on this,
some exemplary answer sets are S1 = {13}, S2 = {15,16},
S3 = {13,12} and S4 = {15,19}. S1 consists only of one node
which contains all keywords, meaning that the LCA of S1

is identical with its element, node 13. Since this node is
the LCA node and does not have any children, it is a result
of the query. Similarly, node 14, the LCA of S2, is also a

result node. On the other hand, S3 and S4 both have the
LCA node 11 which is an ancestor of nodes 13 and 14, that,
as explained, are themselves LCA nodes. k2 = W eb has an
occurrence contained by 11 which is not part of an LCA,
namely in node 12. However, there is no match of k1 = X ML
in a descendant of node 11 which is not also contained in
an LCA. Therefore, node 11 cannot be a return node.

The intent behind ruling out non-minimal LCAs is to
retrieve only maximally specific query results. However,
since document-centric XML represents a cohesive text
where structurally close elements can be expected to be
strongly interrelated in their topic, it is also of interest to
account for such matches.

The XRank grouping mechanism is susceptible to the
same types of false positives are LCA and interconnection
semantics (in the case of synonym or near-synonym labels)
are, that is, unrelated entities may be grouped together.

Three criteria, specificity, keyword proximity and the
connections between elements are used to rank the results.
Specificity refers to the distance between the matched leaf
nodes and the return node, while keyword proximity means
the distance between the keyword matches themselves.
Specificity –vertical distance– and keyword proximity –
horizontal distance– thus combine into a two-dimensional
proximity metric. Finally, a variant of Google’s PageRank,
ElemRank, is used to let the links between elements factor
into a result node’s ranking value.

The PageRank value of a Web site represents the proba-
bility of reaching it through randomly following links [36];
the algorithm employs link-based propagation of ranking
values. ElemRank is an adaptation of PageRank that takes
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specific characteristics of XML data into account, namely
the bi-directional propagation of ElemRanks through links,
the aggregation semantics for reverse containment rela-
tionships and the distinction between containment links
and hyperlinks. While hyperlinks are ignored when match-
ing the keywords, they are considered when calculating
ElemRanks. Since containment links, the parent-child re-
lationship between XML elements, represent a stronger
relation than hyperlinking through e.g. IDREFs, the two
are handled separately with the propagation of ElemRank
value between elements connected by containment edges
being bi-directional. Additionally, the ElemRank of a node
is defined as the sum of the ElemRanks of its children,
meaning that the ranking values of an entity’s subparts in
turn combine into that entity’s ranking value.

The ranking value of each instance of a keyword match
is then calculated as its ElemRank value, scaled by a decay
factor that is inversely proportional to the distance between
the result node and the keyword match.

Finally, the ranking value of the result tree is the sum of
the ranking values of the contained keyword occurrences
multiplied by a measure of keyword proximity which is
based on the size of the smallest text window containing
all matches.

If a keyword has several occurrences in the subtree
governed by the result node, the value of the node with
the highest ElemRank value is used.

In summary, the criterion of specificity is realized as
the decay scaling factor where the decay increases as the
distance between a keyword occurrence and the result node
grows, meaning that the ElemRank calculated from the
link connections between the elements becomes smaller.
The keyword proximity criterion on the other hand is
represented as the scaling factor of the overall ranking value
of the result, here, a bigger distance between the keyword
occurrences corresponds to a lower scaling factor.

The calculation of the result nodes themselves is im-
plemented via evaluation of Hybrid Dewey Inverted Lists.
Dewey ID enumeration [183] is a system to enumerate
nodes in an XML tree. A Dewey ID is a vector that sum-
marizes the path from the root node of a document to
a node. Figure 8 shows the data from the previous figure
enumerated using Dewey IDs. In this enumeration scheme,
the ID of an ancestor node is a prefix of the IDs of its
descendants. The Lowest Common Ancestor of a set of
nodes can thus be easily computed by determining the
longest prefix shared by all nodes’ Dewey IDs. For example,
S2 = {15,16} and S4 = {15,19}, using Dewey enumeration,
become S2 = {0.1.2.2.0,0.1.2.2.1} and S4 = {0.1.2.2.0,0.1.2.3.1}
and this information suffices to compute the respective
LCA nodes, 0.1.2.2 and 0.1.2. This property allows for the
efficient computation of result nodes in a single pass when
all keywords are stored in an inverted list associated with
their Dewey ID.

The authors present two techniques for the calculation of
result nodes which can produce the top-k results, meaning
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that not all results have to be generated before ranking can
occur. A hybrid model allows for the combination of both
techniques depending on whether there is a high or low
correlation between the occurrences of the keywords.

d) XKSearch: 17 [196] introduces the notion of the
Smallest Lowest Common Ancestor which extends the defi-
nition of LCA by a minimality criterion. Only LCA nodes that
do not have further LCA nodes among their descendants are
also SLCA nodes. Note that this definition is stricter than
that of result nodes in XRank in that SLCA generally forbids
LCA nodes that have LCA nodes among their descendants,
while XRank only constrains the context in which an LCA
may contain another LCA. Further, SLCA only allows one
match instance for each keyword in an answer set.

SLCA addresses the problem of false positives as de-
scribed in Section VI: Evaluation of the query K =
{Smi th,W eb} on the data in Figure 1 leads to the resulting
LCA nodes 2 and 1. Node 2 represents a node of type article
and constitutes a meaningful result, while node 1 is the
root node of the document and the keyword matches are
distributed over two different articles.

According to SLCA semantics, only node 2 is a suitable
result node since it does not contain LCA nodes. Node 1 is
a LCA node but not a return node since it is an ancestor
of another LCA node, node 2.

However, false positives are still possible when SLCA is
used for grouping. The query K = {Smi th,2003} has S1 =
{11,14} and LC A(S1) = 1 as a result according to SLCA. This

17Project Pages: http://db.ucsd.edu/People/yu/xksearch/index.htm



query answer is not meaningful since the keyword matches
are distributed over two different articles, but is not filtered
out since there is no valid result and thus no further LCA
in the data.

Additionally, disallowing nested LCAs can also lead to
false negatives, for example when the same query, K =
{Smi th,W eb}, is applied to the data in Figure 9, result-
ing in, among others, the answer sets S1 = {18,14} and
S2 = {10,2} and the corresponding groupings LC A(S1) = 13
and LC A(S2) = 1. Both LCA nodes represent articles which
contain both of the query terms and thus can be considered
suitable results. However, since the second LCA is an an-
cestor of the first, SLCA filters out the latter. Consequently,
only the article referenced in the other article is retrieved
as a result.

The authors present two efficient algorithms for calcu-
lating SCLA nodes, Indexed Lookup Eager and Scan Eager,
that are based on the observation that a set of nodes lying
close together in the tree translates to their LCA being in
closer proximity to them, meaning that for each keyword
match, only the nearest two matches for the other keywords
have to be taken into consideration when computing the
SCLA.

e) Pradhan: [164] presents a keyword-only approach
targeted at querying XML data representing textual docu-
ments, e.g. Web sites or books.

Document-centric XML has a more variable schema and
weaker semantics than data-centric XML since the XML
structure may represent formatting or structural subdivision
in e.g. paragraphs.

Due to these differences, Pradhan argues that while
the LCA subtree containing one match for each keyword
may be a suitable query answer for data-centric XML,
it does not constitute a meaningful query answer in the
case of document-centric XML documents where adjacent
paragraphs may each contain one or more of the query
terms.

A query is matched on node content and a query an-
swer may contain more than one match instance of each
keyword. An answer is constructed from sets of answer
fragments where each set contains a matching node for one
keyword. These fragments are then joined, connected along
the shortest path through the XML tree, to yield answer
candidates. All combinations of elements from the sets are
computed and filtered, for example by the size or height
of the resulting answer. The query answer may be a single
node if all keywords are matched in its textual content.

Since the computational cost of this procedure can be
very high when there are many keyword matches, the
author suggests optimizing the calculation by iteratively
applying joins and removing redundant elements in the
fragment sets, that is, fragments that would be subsumed
by a join of some other fragments in the set, or, more
informally, fragments that lie in the path that directly
connects two other fragments in the same set.

In addition to filtering, the number or query answers is
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reduced by eliminating duplicates.
f ) Abbaci et al.: [2] present a keyword-only query

language that, compared to the other approaches discussed
here, offers a relatively complex syntax, namely the oper-
ators AND (conjunction), OR (inclusive disjunction), INC
(inclusion, one operand must occur in a node that is a
descendant of the node containing the other operand) , SIB
(sibling) and NOT (negation) and additionally parentheses
to indicate precedence. The query language operates on
XML documents and keywords are matched on node labels
as well as node content.

Query evaluation is realized by transforming the query
into a binary tree where the leaf nodes contain the keywords
and the other nodes contain the operators. Next, sets of
matching elements are constructed for each leaf node, that
is, each keyword. If a node vi contains a keyword wi , all



ancestors of vi are also represented in the list of matches
for wi since they contain it indirectly. The data structure
in which the matches are recorded represents the ID of the
node in which the keyword term occurs, the type of the
occurrence and the distance from the keyword match to
the respective node (i.e. the distance is 0 when the node
contains the keyword directly). The answer sets for each leaf
node are then further processed by applying the operator
specified in a node to the answer sets of its children. AND
corresponds to the intersection of two sets, OR to the union
and NOT to the difference. INC and SIB are realized via
constraints on the distance from the keyword match. The
query tree is processed in a bottom-up fashion and once
the root node of the query tree has been processed, only
the nodes matching the full query remain. Since indirect
matches via ancestors are included in the answer sets, in
the case of conjunctive queries, the LCA node is among the
query results.

As an illustration, consider the query “Web AND NOT
semantic” evaluated on the data in Figure 1. The query
tree of this query is displayed in Figure 10. The query is
then evaluated by first adding information about matching
nodes to the leaf nodes as shown in Figure 11. Note that for
simplicity’s sake here only the IDs of the matching nodes
are shown in the lists and not the information about the
match types and distances which is only used for ranking.
The keyword “Web” is contained directly in nodes 26, 17
and 3 and indirectly, i.e. via a descendant, in nodes 2, 1 and
16. “semantic” is contained directly in node 3 and indirectly
in all ancestors of 3, that is, nodes 2 and 1. To apply the NOT
operator, the difference between the set of all nodes in the
XML data and the nodes containing “semantic” is taken,
yielding the set of nodes that do not contain “semantic”
either directly or via an ancestor. Finally, to find the nodes
that fulfill both conditions, the intersection of the sets of
nodes that contain “Web” and those that do not contain
“semantic” is taken. The node list after application of the
AND operator is the final result since the root node has
been reached.

g) Saito et al.: The label-keyword query language for
XML data conceived by Saito et al. [170] has a syntax
that allows for the use of some XPath operators and con-
structs, for example paths or parts thereof can be specified
through the use of the child and descendant operators. The
query language might thus also be considered a keyword-
enhanced query language, but since the extent of XPath
and its expressions that can be used in this query language
are unclear and not discussed further, we consider the
query language to be a keyword-label query language that
offers some support for paths rather than the other way
around. An example of a label-keyword query term is
k = //l ast/text () =“Smi th”, while only the nodes con-
taining “Smith”, regardless of their labels, are matched for
k =“Smi th”.

The method used for grouping matched nodes is called
Amoeba join. An Amoeba is an answer set which contains

its LCA node, that is, one of the nodes in the answer set is in
an ancestor-descendant relationship with all other nodes in
the set. The authors refer to this as the nodes being bound
to the Amoeba root and state that the relationship between
nodes in an answer set is “very weak” if their LCA node is
not also an Amoeba root.

For example, the query K1 = {“Smi th”,“W eb”,“ar ti cle”}
applied to the data in Figure 1 yields, among others, the
answer sets S1 = {11,17,2} and S2 = {11,3,2}. The former is
not an Amoeba since LC A(S1)=1, i.e. the root node is the
LCA node of S1. Consequently, S1 does not constitute a
result to the query according to Amoeba join. S2 on the
other hand has node 2 as its LCA. Since node 2 is also
contained in the set, S2 is an answer to the query.

However, Amoeba join can be too restrictive, leading to
false negatives and unintuitive behavior; the query K2 =
{“Smi th”,“W eb”} finds no results in the data in Figure 1
although it is a relaxation of K1 and all query answers of
K1 should also be answers to K2.

On the other hand, recursive elements can lead to false
positives as discussed in [186].

h) Li et al.: The work of Li et al. [132] is concerned
with improving on the shortcomings of LCA and SLCA when
grouping the matches and determining the return entity. As
discussed above, the application of LCA and SLCA can lead
to matches that are not very informative for instance when
a user queries for a name and words from a paper’s title
and is returned two distinct publications, one written by an
author with the name given in the query and one having
the other keyword in its title.

On the other hand, nested XML structures can lead
to false negatives, that is, results that are not retrieved
although they would be an informative answer to a query.
As explained in Section VI, when the XML representation
of an article matches all keywords and contains another
article that also matches the query in its references, only
the latter will be returned according to SLCA semantics.

To resolve these problems, the authors introduce the
concept of Valuable LCA (VLCA). A VLCA is an LCA where
the keyword-matching nodes are homogeneous. A set of
matched nodes is defined to be homogeneous if no node
label in the paths between them (excluding the labels of
the matched nodes themselves) and their LCA occurs more
than once. That means, each element in the set of the labels
encountered when traversing from each matched node to
the common LCA should be unique. For example, in Figure
1, nodes 7 and 22 are not homogenous since there are two
nodes with label “article” in the path between them, nodes 2
and 16. Nodes 3 and 5 on the other hand are homogenous.

VLCA is conceptually identical to all-pairs related inter-
connection semantics in XSearch and has the same prob-
lems with false positives and false negatives as described
above in VI-C1b.

To achieve faster computation of VLCA nodes, the au-
thors present the notion of Compact VLCAs and Compact
answers. Compact VLCAs are compact in that they enforce



maximally specific results.
A Compact LCA node is the LCA node of an answer set

that dominates all the nodes in the set. A node vi dominates
another keyword-match node v j if there is no answer set
involving v j that has an LCA which is a descendant of vi .
Put more simply, an LCA is only a Compact LCA if it holds
for all contained matched keywords that they could not be
part of a grouping of matches that has a more specific LCA.

Accordingly, a CVLCA is a CLCA that is also a VLCA.
The Compact Answer to a keyword query contains only the
CVLCA node and the labels and content of the matched
nodes governed by it.

The authors further present a stack-based algorithm to
efficiently calculate Compact Answers that exploits the fact
that one matching node can only have one CVLCA.

i) XSeek: 18 [134], [135] places emphasis on methods
of inferring return structures from keyword queries to XML
data. Most approaches to keyword querying XML focus on
grouping the matches into semantic entities and establish-
ing their root nodes. The return value is then taken to be
either only the root node, the whole semantic entity (that
is, subtree) or the paths from the keyword matching nodes
to the root node.

The authors point out that all these approaches are
suboptimal since the second strategy may lead to large
return trees of which only a small portion is relevant, while
the first and the third do not provide enough information
to be helpful.

In addition to these points raised by the authors, more
targeted return values also allow for a more sophisticated
and controlled querying that has some more of the power
of traditional query languages. As mentioned, a query for
two authors’ names on bibliographic data can reasonably
be expected to return information about publications they
co-authored, yet none of the approaches presented so far
that use LCA-based grouping would yield this result.

XSeek matches queries both on node labels as well as on
content and employs VLCA to group the resulting matches.
The keywords in the query are automatically grouped into
those that express search predicates and those that specify
return information. If a keyword wi matches a node label
and no other keyword in the query matches the node
content of a descendant of wi , then wi is considered to
be a return node. All nodes that cannot be determined to
be return nodes are predicates.

If no return nodes can be inferred, the entities in the
paths from the matched nodes to the VLCA node as well
as the VLCA node’s lowest ancestor entity are considered to
be the return nodes. A node is considered an entity if it is
in a many-to-one relationship with its parent. For example,
a bibliography often has several article nodes among its
children, making article nodes entities. These relationships
can be inferred from the relations in the data or, if present,
from the schema.

18Project Pages: http://xseek.asu.edu/intro/Home.htm

A node that is not an entity and has only one child
which is a value on the other hand is considered to be an
attribute, while nodes that are neither attributes nor entities
are connection nodes.

According to these rules, the “article” and “author” nodes
in Figure 1 are entities, “title”, “year”, “journal”, “first” and
“last” are attributes and “authors” is a connection node.

The result of a query is constituted of two parts, the
return nodes and their associated information and the
paths from the VLCA to the matched nodes.

The information that is displayed for each return node
depends on its type, attributes are displayed as their name
and value, while for entities and connections, the subtree
rooted by the node is included. Since the resulting subtree
may be large, child entities are initially shown collapsed.

j) Kong et al.: To allow for more flexible and complete
query results, Kong et al. [128] introduce the idea of Relaxed
Tightest Fragments (RTF) which is another method for
connecting node matches for keyword-only queries on XML
data. In addition, they present a ranking mechanism for RT
fragments and an efficient algorithm for their computation.

In many previous approaches to the problem of con-
necting keyword matches, only one match instance of each
keyword is considered for the computation of the common
root; RTF on the other hand allows for multiple matches
of a keyword to be present in one result fragment. The
keywords in the query are matched against node contents
only.

RTF imposes the constraints that, for a given answer set
Si , no subset which is also an answer set may have an LCA
that is different from the LCA of Si . Additionally, the set of
keyword matches has to be the maximum set of matches
for the given LCA. That is, it should not be possible to add
further keyword matches to the set without the addition
resulting in a different LCA. Finally, the third constraint says
that no keyword match node in the set can be part of a
keyword answer set whose LCA node is a descendant of
the LCA of Si .

Essentially, RTF is a variation of CVLCA where the mode
of generation of the answer set and the first two constraints
ensure that the result subtrees are complete with respect to
the keyword matches while still being as small as needed
to cover at least one instance of each keyword match.

For example, the query K = {X ML,RDF } executed on the
data Figure 1 yields keyword match lists L1 = {14,15,21} and
L2 = {17,21} and, among others, answer sets S1 = {14,17}
and S2 = {14,15,17} with LC A(S1,S2) = 11. S1 fulfills the first
requirement since it contains no subset answer sets. But
keyword matches could be added to S1 without changing
the LCA node, so S1 is not a valid query answer. S2 has an
answer set subset, namely the elements of S1, but the LCA
nodes of S1 and S2 are identical. The only keyword match
that could be added to S2 is node 21, which would change
the LCA node to node 10. There are no possible LCA nodes
below the LCA node of S2. Therefore, all constraints are
fulfilled and S2 is considered a query answer. The root node



of S2 together with the keyword matches and the paths to
them form the return entity, a Relaxed Tightest Fragment.

RTF can lead to false positives when keyword matches
are distributed over several unrelated semantic entities (see
above).

The RTFs for a query could be calculated by generating all
candidates and applying the constraints in order to filter out
results which are not RTFs. Since this would be very costly,
the authors present the Layered Intersection Scan Algorithm
which efficiently generates RT fragments. The algorithm is
based on the observation that, given lists of matches for
all keywords, the intersection of all Dewey prefixes can
represent an RTF root node under certain conditions.

The ranking system XKSMetaRank computes an RTF’s
meaningfulness as the weight of its root node. This in turn is
computed recursively as a function of the weight of a node
which is given through its label’s weight and the weight of
its descendants. At the lowest level of the recursion, the
weight of a leaf node is given as the overlap between the
keyword query and the content of the leaf node.

2) Querying RDF:
a) QuizRDF: [71] is a browse and query system for

Web pages that combines full text search with querying,
where present, RDF annotations. The motivation for this
combined querying is that not all Web data is annotated
and furthermore it is not possible to capture every detail
of the content of a text in its annotations, meaning that
combining full text search with RDF querying can improve
recall.

QuizRDF is described as an “information-seeking system”
where finding information is an interactive, gradual process
rather than a targeted, single-step search. This approach is
similar to what [178] propose and allows users to explore
the data, refining their queries as they gain more informa-
tion about the nature of the data.

Initially, a so-called ontological index is created from both
the textual content of a Web site and its RDF annotations
which are linked to the RDF Schema [35] ontology. This
index can then be queried using keyword search which
returns a list of matching Web sites, ranked using the tf-idf
[115] measure. For the Web sites in which RDF annota-
tions are present, the search results can then be refined
by restricting matches to a certain RDF resource class
and entering literal values for RDF properties. To provide
information about the ontological structure, QuizRDF also
displays superclasses of the currently selected class as well
as relations to to other classes.

Suggested enhancements of QuizRDF include the ranking
of clusters of documents belonging to the same resource
class and chaining in the form of allowing the combination
of several queries at the RDF level.

b) Q2RDF: [166] is a system for querying RDF data
using keyword-only queries and ranking the results that
is relatively similar to Q2Semantic. Q2RDF operates on an
RDF sentence graph [198], an undirected graph consisting
of RDF sentences and the connections between them. An

RDF sentence is the set of all RDF triples that are b-
connected, that is, that contain the same blank node. B-
connectedness is transitive and RDF statements which do
not contain blank nodes are separate sentences. The label of
a node in an RDF sentence graph are the words contained
in the subjects, predicates and objects it summarizes. Any
RDF graph can be collapsed into an RDF sentence graph.
Figure 12 shows an example of an RDF graph and its
grouping into sentences. Due to the transitivity of the b-
connectedness relation, RDF sentences are not stable and
may change when a blank node is introduced in another
part of the RDF graph (compare Figures 12 and 13).

In the preprocessing step, an inverted index which in-
dicates which word appears in which sentences and the
path index are created. The path index indicates for each
node which other nodes it can reach and all shortest paths
between nodes can be constructed from it. The shortest
paths are calculated using Dijkstras single source shortest
path algorithm.

When a user poses a query, the keywords are first mapped
onto the RDF sentences in which they appear.

The goal is then to find answer trees, that is, trees that
contain all keywords and in which all leaf nodes contain
contain at least one keyword. This is realized by starting
from the matched nodes and gradually visiting nodes until a
path connecting all matched nodes is found. The next node
to visit is determined by first choosing the set of keyword
match nodes with the lowest cardinality, i.e. the smaller
number of elements and expanding them first. Then, the
closest node from the node currently being expanded is
visited and added to the set of nodes to expand.

Using this method, it is possible to generate the top-
k answer trees without having to generate all answer trees
first if only tree size is considered as a measure of goodness
since the length of the paths and thus the results trees grow
as the number of visited nodes increases (the same is true
for finding the top-k lowest cost answer trees in Q2Semantic
since all cost values are positive).

The algorithm can result in isomorphic answer trees,
the duplicate answers are discarded. The generated answer
trees are ranked using a variant of the term frequency
measure.

D. Translation Keyword Query Languages

c) SemSearch: [130] is a search engine for Web
documents augmented with RDF annotations and as an
output returns a ranked list of matching HTML documents.
Only the RDF data but not the documents themselves are
processed during query evaluation.

The syntax of SemSearch consists of pairs of subjects and
keywords, connected by a colon and the operators “and”
and “or” to indicate conjunction and disjunction.

During evaluation, the keywords are matched only to
semantic entities, that is, classes, properties and instances,
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but not to relations. It is assumed that query subjects refer
to RDF classes and specify the return type. If no classes
match the subject, the type of the subject is determined
and rules are used to infer the return type from the types of
entities of the keyword and subject. For instance, Mary:John
are both instances and the rule for that case says that the
return type should also be an instance, e.g. an article which
Mary and John co-authored.

Using the list of matching entities and their types, the
user query is then translated into SeRQL through employing
templates. Multiple queries are constructed if a keyword
matches several semantic entities. As the number of queries
can be very big when one or more keywords in the query
have multiple matches, rules are employed to reduce the
number of constructed queries. For example, only the most
specific class is considered if there are several matches of
type class. The application of the rules can be expected to
decrease the recall of the search.

For ranking, two factors, namely the distance between
each keyword and its matches and the number of keywords
satisfied by a search result are considered; it is not clear in
detail how the former is quantified or measured or how the
two are combined.

Finally, the retrieved documents are displayed in ranking
order, the individual results are augmented with informa-
tion about the matched entities.

d) SPARK: [201] is a search system for RDF data that
translates keyword-only queries into SPARQL and ranks
the resulting queries. The keywords are mapped onto re-
sources, that is, classes, instances, properties and literals,
in the knowledge base. This is achieved using both the
form and the semantics of the keywords. The form-based
mapping uses string comparison techniques like the Edit
distance [131] and in addition applies stemming [136]. The
semantics-based mapping retrieves semantically related
words like synonyms using thesauri. One query term can
be mapped to several resources of different resource types
in this process. The different mappings are augmented
with confidence scores based on the similarity between the
keyword and the concept.

In the next step, the query sets are constructed. If all
keywords were uniquely mapped to one resource, there is
only one query set, otherwise all combinations of query
sets where each query set contains one resource for each
keyword are generated. For each query set, a query graph
is constructed using Kruskal’s Minimum Spanning Tree
algorithm [129] and missing relations and concepts are
introduced to form a connected graph which is then trans-
lated into a SPARQL query.

Finally, the ranking scores of the generated queries are
computed from the the similarity of the keywords and the
concepts they are mapped to, the proportion of overlap in
resources between the keyword query and the correspond-
ing SPARQL query and the information content of the query.

e) Q2Semantic: 19 [191] provides a system for querying
RDF data using keyword-only queries that are translated
into formal queries which in turn can be mapped directly
onto SPARQL queries. The system aims at providing higher
efficiency than comparable approaches since it operates
on summarized RDF graphs, RACK graphs, instead of the
original data, thus reducing the data space.

Q2Semantic ranks the query results and uses Wikipedia
to find related concepts for keyword query terms. These are
also used to assist the user in entering his keyword query
as the interface offers auto-completion for RDF literals and
Wikipedia terms.

When displaying the query results, Q2Semantic also
shows the portion of the RDF data used in the query as
well as the translated formal query and its natural language
explanation.

An RDF graph is converted into a so-called RACK graph
by mapping relations, attributes, instances and attributes
values onto R- and A-Edges and C- (instances) and K-nodes
(attributes) respectively. R- and A-Edges and C-nodes are
then clustered together if they have the same labels and,
for the edges, the same connections. K-Nodes are merged
when they connect to the same A-Edge and the new merged
node inherits the labels of both or all K-Nodes. Costs are
calculated for edges and nodes based on the number of
elements merged to obtain them.

A keyword query is first matched against an inverted
index which stores the K-Node labels and is augmented
with terms extracted from Wikipedia, e.g. the anchor text
of articles linking to an article whose title is a K-node label,
to allow for a broader vocabulary in the queries. Keywords
are thus only matched to RDF attribute values. If there are
several matches for one term, all are returned and used in
the next step.

Starting from the matched K-Nodes for all query terms
and using the cost functions of the edges as a heuristic
for guiding the search, a tree is then gradually built up in
the graph in a round robin fashion. To avoid recursion,
repeated exploration of the same node within one path is
penalized through adding a high number to the cost. A
formal query is found when a root that is common to at
least one instance for each keyword is reached. Note that
this concept is similar to the idea of the Lowest Common
Ancestor.

Since there may be several possible formal queries for
one keyword query, a ranking function is employed that
uses the lengths of the paths in the formal query, the scores
of the matched K-nodes present in the formal query and
tf-idf-like measure for determining the importance of the
individual query elements to calculate ranking scores.

As mentioned, Q2Semantic and Q2RDF represent similar
approaches which both summarize the initial RDF graph
and then construct minimal answer trees containing all
matched nodes to find the top-k results which are then

19Project Pages: http://q2semantic.apexlab.org/



select $p

2 from bib
e→ article $p

$p
e→ authors

e→ authors
e→ last

e→ cdata $a

4 $p
e→ title cdata $t

where $a = "Smith"
6 and $t like "Web"

Fig. 14. An example query

select meet(o1,o2)

2 from *
e→ cdata

e→ string o1, *
e→ cdata

e→ string o2
where o1 contains "Smith"

4 and o2 contains "Web"

Fig. 15. An example query using the meet operator

ranked using a tf-idf-like measure.
The main differences between the two approaches lie

in the way in which they evaluate results –Q2Semantic
translates queries into complex queries while Q2RDF re-
trieves the results directly–, reduce the RDF graph, the
element types against which keywords are matched and the
cost function that guides the search for the answer trees.
Additionally, since Q2Semantic merges edges and attributes
only when they have the same label while Q2RDF collapses
all elements that belong to the same sentence into a node,
Q2Semantic’s answer trees reflect a lower granularity.

E. Keyword-enhanced Query Languages

f) Schmidt et al. : [178] present one of the first
approaches to keyword querying XML data. Their goal is to
enable explorative querying when the schema is unknown,
that is, querying is seen as an interactive process where the
user can refine her query based on the result of a previous,
less specific query. The keyword querying presented in this
approach is implemented as part of a traditional query
language where the results of the keyword querying provide
information for the construction of complex queries. The
query keywords here are matched only to the content of
leaf nodes and not to node labels.

The query language being enhanced [177] is a variant of
SQL that allows to specify paths and path variables. A query
which selects publications by authors with the last name
“Smith” whose title contains “Web” from data structured as
those in Figure 1 is shown in Figure 14.

A query returns the nearest concept, that is, the LCA node
that encompasses all search terms.

The authors present the meet operator which, given an
arbitrary number of keywords, returns their LCA node.
A query using the meet operator which returns results
identical to the path query in the figure above is shown
in Figure 15. The output of the meet operator calculated
on the Monet transform [177] of an XML document, a

where <article><authors><author><last>$N</last></author>
2 </authors>

<title>$T</title><year> 2005 </year>
4 </article> ELEMENT_AS $E IN "bib.xml",

$N like *Smith*, $T like *Web*
6 construct $E

Fig. 16. An XML-QL query

path-centric representation of XML data, proceeding in a
bottom-up fashion from the matched leaf nodes. Nodes are
contracted until the meet node is found or the root node is
reached. This procedure is only suited for tree-shaped XML
data, meaning that XML containing IDs and IDREFs cannot
be queried.

The results can be further restricted, for instance by
allowing only certain types of nodes as a result or setting a
maximum on the distance between keyword-matched leaf
nodes.

Further, the authors suggest the use of thesauri on the
keyword search terms when only few answers are returned,
since the user may not be aware of the names of the node
labels. Their suggested technique thus combines explorative
querying with (semantic) query relaxation.

For ranking, the distance between the leaf nodes and the
meet node is used as a simple heuristic as the keyword
matches can be assumed to be more strongly associated if
the distance between them is smaller.

g) Florescu et al.: The work presented by Florescu et
al. [88] is based on extending XML-QL with a contains
predicate. This addition makes it possible for a query
language to be usable both by naive users who do not
know the structure of the data or the syntactic constructs of
the query language as well as experts whose queries may
require more precision than keyword-based querying can
offer.

The query language presented operates on a set of
documents that contain XML that does not contain IDREFs.

The contains predicate takes four arguments, namely a
signifier for an XML element that function as the root of
the subtree in which the search is conducted, a keyword, an
integer specifying the maximum depth at which to search
and a set of boolean expressions to constrain the type
of XML element, tag or attribute name and content or
attribute value, in which the keyword may appear.

This provides flexibility to the user who can fully specify
XML-QL queries to the degree that her knowledge of the
structure of the data and of the query language allow
and who can use the convenient contains predicate where
needed.

For example, the queries in Figures 16 to 18 all express
the same intention, namely retrieving articles written by



where <article> <authors> </authors> ELEMENT_AS $A,
2 <title>$T</title>

</article> ELEMENT_AS $E IN "bib.xml",
4 contains($A,"Smith",3, any), $T like *Web*,

contains($E,"2005",3,any)
6 construct $E

Fig. 17. The query from Figure 16 reformulated using the contains
predicate

contains($E,"Smith",3, any), contains($E,"2005",3,any),
2 contains($E,"Web",3, any)
construct $E

Fig. 18. The query from Figure 16 reformulated using the contains
predicate

Dingle in 1999 that contain the term “Web” in the title,
but they display different levels of specificity. The query
in Figure 16 is regular XML-QL, Figure 17 shows a query
that could have been created by a user who has only a
vague idea of the structure of bib.xml, and finally query
18 presupposes no knowledge of the structure besides the
presence of an article element. Note that the granularity
of the return value depends on how much of the query is
explicitly specified, for example, in query 18, it would not
be possible to retrieve the contents of the author element,
since its presence is not stated in the query and thus no
variable can be bound.

The query system is implemented in a relational database
where for each keyword the nodes containing it are repre-
sented in an inverted index. The authors observe that this
technique leads to a storage size about ten times that of
the original XML document, which may be problematic if
a big amount of data is present in the system.

Compared to pure XML-QL, usage of the contains predi-
cate leads to a lower precision which is not surprising given
the less specific queries. It is suggested that users can refine
queries incrementally, using the answer from one query to
formulate a further, more specific query.

h) Schema-Free XQuery: [133] aims at enabling using
XQuery without full knowledge of the schema of the XML
data. To this end, the MLCAS (Meaningful Lowest Common

1 for $a in mlcas doc("bib.xml")//author
$b in mlcas doc("bib.xml")//title,

3 $c in mlcas doc("bib.xml")//year
where $a/text() = "Mary"

5 return <result> {$b, $c} </result>

Fig. 19. Schema-Free XQuery

1 for $r in doc("bib.xml")//bib[1],
$a in mlcas $r//author,

3 $b in mlcas $r//author
where $a/text() = "Mary" and $a != $b

5 return $b

Fig. 20. Schema-Free XQuery

1 for $y in mlcas doc("bib.xml")//year,
$a1 in mlcas doc("bib.xml"//author,

3 $t1 in mlcas doc("bib.xml")//title,
$t2 in

5 {
for $a in mlcas doc("bib.xml")//author,

7 $t in mlcas doc("bib.xml")//title
where $a/text() = "Mary"

9 return $t
}

11 where $t1 = $t2
return <result> {$y, $a1} </result>

Fig. 21. Schema-Free XQuery

Ancestor Structure) function is added to standard XQuery.
An example of a query in Schema-Free XQuery is dis-

played in Figure VI-E0h. The result of this query are the
years and titles of works by the author “Mary”. Since the
MLCAS keyword is present, upon evaluation, the variables
$a, $b and $c and are bound to nodes with labels “author”,
“title” and “year” respectively. In order to obtain a mean-
ingful result, the constraint that all three nodes have to be
part of the same MLCA structure is imposed.

The MLCA node of a set of nodes is its LCA node given
that for each pair of nodes, there are no other combinations
of nodes with the same label that has an LCA node which is
a descendant of their LCA node. Intuitively, this means that
for all keywords, the node with the keyword label that is
most closely related to the other matched nodes is found.
This technique is based on the assumption that a lower
LCA means a stronger connection. The concept (and the
problems) of MLCA is very similar to that of SLCA with the
difference that SLCA does not impose constraints on the
node labels. The MLCAS then is the structure consisting of
the nodes among which the MLCA relationship holds.

Having determined the MLCAS, the variables are then
bound to the content of the children of the respective nodes
in the MLCAS. The keyword-aspect of Schema Free XQuery
thus pertains to node labels and not, as in many other
keyword query languages, to the content. As can be seen
in the example in Figure VI-E0h, restrictions on the content
are imposed in the where clause of the query.

The user can create more complex queries using regular
XQuery as is shown in the query in Figure VI-E0h which
retrieves co-authors of Mary. All uses of the MLCAs keyword
within the same query refer to the same mlcas, but nesting
allows for separate MLCA structures as demonstrated in the



query in Figure VI-E0h.
Another feature of Schema-Free XQuery that furthers the

goal of creating a query language that does not require
knowledge of the schema is term expansion. Term expan-
sion means that a user does not have to indicate the exact
node label in a query if she is not sure. It has been found
that less than 20% of people chose the same name for
a common object [93] and it can be assumed that node
labels referring to the same entities are similarly varied. The
solution suggested in Schema-Free XQuery is the use of an
expand function that the user can employ to indicate that
she is not sure she used the correct node label in the query.
These node labels are then matched in a thesaurus which
retrieves possible alternatives. To avoid having to evaluate
multiple queries, this synonym relationship is represented
in the database.

For the computation of MLCA structures, the authors
present a stack-based algorithm which significantly im-
proves performance over exhaustively computing trees and
removing those whose root node is an ancestor of another
from the answer set.

F. Summary and Discussion

The majority of keyword query languages discussed in
this article target keyword-only querying of XML data. Few
proposals address querying RDF data and several of them
translate keyword queries into traditional query languages.
On the other hand, XML keyword query languages for the
most part are implemented as systems that evaluate the
query without mapping it onto another query language.

However, most keyword query languages for XML limit
themselves to processing tree-shaped data, that is, XML
without any kind of hyperlinks. Those query languages that
do work on graph-shaped XML, for example XRank, do not
incorporate hyperlinks during the grouping of the matches.
There is work on extending interconnection semantics to
deal with XML data containing IDREF links [63] which due
to its purely theoretical nature has not been discussed here.
So far, to the best of the authors’ knowledge, no keyword
query language for graph-shaped XML that makes full use
of the document links exists.

As [178] point out, one contributing reason for this is the
expected increase in complexity and thus processing time
which is detrimental in an application area dealing with
large amounts of data.

Correspondingly, the lack of RDF keyword query lan-
guages that evaluate queries directly can be attributed to
the fact that RDF is graph-shaped and cannot be easily
converted into tree-shaped data like XML can. In addition,
querying RDF poses the additional problems of treating
labeled edges and blank nodes. One approach is to summa-
rize the RDF graph into a different structure [166], [191], but
this means that the structure of the data is partially ignored
and the granularity of the query result is reduced.

In XML querying on the other hand, connecting or
grouping matches is of great concern and a focus of many

of the presented approaches. Several heuristics for grouping
have been proposed as refinements to the established LCA
concept, for example SLCA [196]), MLCA [133], CVLCA [132]
and interconnection semantics [64]. All these approaches
can be interpreted as extensions of LCA which add con-
straints in order to remedy the false positive problem of
LCA and achieve improvement in grouping matched nodes
according to their semantic entities. The difference between
the algorithms for the computation of SLCA, VLCA etc. is
thus the filter that they apply to remove undesirable results
from the set of LCA nodes and, given a query and data,
they produce a set of results that is a subset of the results
obtained by applying LCA computation.

Determining semantic entities in structured data is im-
portant to keyword querying since, unlike in traditional
query languages, queries are never fully specified –and
indeed often do not allow the user to fully specify the
query–, and consequently, the inferred semantics are used
to retrieve informative results. While the approaches above
determine the LCA, that is, the root node of the common
entity of all keyword matches, based on keyword match
instances, an alternative approach that was only used in
the works discussed in this article in XKeyword [15], [111],
but also mentioned in connection with XRank [106] and
employed in keyword querying databases [27], [70] is to
manually group the data into concepts and thus pre-define
the possible query answer components. The difference
between the two approaches is that the latter uses an extra
level of processing where parts of query answers are defined
a priori and therefore independent of a specific query. While
this has the arguable disadvantage of requiring manual
annotation, it foregoes two fundamental problems of LCA-
based methods for automatic grouping:

The first is the underlying assumption that no element
not in the subtree governed by the concept root node is
relevant to the query answer. As mentioned in Section VI,
this means that relevant information about an entity is not
returned when the keywords in a query are contained in
a subtree of the tree representing the entity. Returning to
the example data in Figure 1, this means for instance that
the queries K = {Doe,Smi th} and K = {Semanti c,2005}
will yield trivial results but not more information about
the respective articles, for example the title and year of
coauthored articles in the first case and the names of the
authors in the second.

There are two different approaches to overcome this
problem, namely displaying the query result in conjunction
with the data and to enable search and browse behav-
ior, or to allow matching on label nodes and enable a
more targeted specification of a return value. Then, for
example, the first keyword query could be extended to
K = {Doe,Smi th, t i t l e, j our nal }, meaning that the concept
node (i.e. the root node of the semantic entity) is of type
“article” and not “authors” and the entity subtree contains
the desired information. This is possible in Cohen et al.’s
query language [64] and XSeek [134], [135] and will be



discussed further below.
The first problem might be indicative of the second

problem, namely that the different heuristics for grouping
aim at being universal, or, at least, versatile solutions
(which is why grouping is required in the first place,
recall Amazon and their Advanced Search and uniform data
structure mentioned in Section VI), but on the other hand
appear to be data-driven solutions which make assump-
tions about the relations between structure and semantics
which may not be universal. For example, the difference
between data-centric and document-centric XML suggests
different requirements concerning grouping and return val-
ues with multiple occurrences of the keywords within an
XML subtree being indicative of particular relevance when
document-centric XML is queried, which is not necessarily
the case for data-centric XML. Consequently, all grouping
strategies presented are not universally applicable and un-
der certain circumstances lead to both false positives and
false negatives. This observation raises the question to what
extent it is even possible to reliably deduce semantics purely
from structural characteristics of XML data.

In summary, manual grouping at the schema level per-
forms well but has the obvious disadvantage that it requires
users or administrators to invest time and effort to define
the groupings. Manual grouping also has the advantage
that data containing hyperlinks does not pose a problem.
On the other hand, LCA and its variations are computed
automatically but all algorithms rely on the presence of
certain characteristics in the data to perform well.

Based on these observations, one way to achieve good
grouping performance could be to simply consider the
manual grouping as another, potentially optional, step of
semantic annotation and to employ means to encourage
users to perform the grouping.

A more promising solution is the use of modes to de-
termine which grouping mechanism is appropriate given
a certain data set or combination of query and data set.
Since different assumptions about the relation between
syntax and semantics in the data underlie the various
grouping algorithms, the best algorithm could then be
selected automatically, potentially leading to an improved
overall performance.

To evaluate the feasibility of this approach, several ques-
tions have to be addressed: On the one hand, it is not
clear how many –and which– grouping algorithms should
be used, whether there is a universally optimal combination
of grouping mechanisms or whether the selection should be
application- and domain-dependent. Another, more basic,
question is according to what characteristics the grouping
mechanisms should be selected – it may be advantageous
to use only a small number of maximally complementary
algorithms to make the mode selection easier, but a com-
binations of a bigger number of algorithms could improve
results since it could prove more versatile.

Another aspect are the questions which features or char-
acteristics of the data or query should be considered to

trigger a change of mode, how the optimal mode should be
selected and, finally, how to combine the two, that is, create
a mechanism that, given certain observed characteristics in
the data, selects the preferred mode.

Possible features could be for example the amount of
content relative to the amount of structural information,
term frequency distributions and structural characteristics
derived either from the schema or the data itself.

Learning, either through implicit or explicit feedback,
could prove useful in arriving at a system which automati-
cally selects the appropriate mode. Implicit feedback could
for example be based on an analysis of which results are
favored and disfavored by the users based on which results
are clicked and which are skipped on a page of results
[167]. Explicit feedback could be employed in the form of
learning from a manually annotated training set or Query-
By-Example type queries [202] where the user indicates the
intended form of the result. Querying semi-structured data
using the Query-By-Example paradigm has been researched
previously, resulting in the query languages visXcerpt [23],
[22] which both operate on XML data.

Even if automatic mode selection proves feasible, the
issue of treating cyclic data remains since none of the
automatic grouping mechanisms can operate on data con-
taining hyperlinks. It is thus desirable to find a generalized
universal grouping mechanism which can be applied both
to XML and RDF data.

While connecting keyword matches is the focus in many
of the keyword languages discussed, the form of the query
answers themselves is less addressed. Strategies are for
example to return the subtree governed by the concept
node, the paths from the keyword matches to the concept
nodes, or just the label of the concept node. These different
return structures vary in their balance of the tradeoff
between conciseness and information value. One important
characteristic of traditional query languages, namely the
targeted and flexible retrieval of elements, is present only in
two of the presented stand-alone keyword query languages,
namely Cohen et al.’s approach [64] and XSeek [134], [135].
In principle, the selection of the content of a node is
realized in both through returning the content of a node
whose label is matched. However, neither query language
makes it possible to bind specific values to variables, and
therefore it is not possible to further use query results
in construct terms, as is a desirable feature in various
applications, for example when embedding queries in Wiki
pages.

Keyword-enhanced query languages, on the other hand,
allow for more targeted selection and construction to vary-
ing degrees. Schmidt et al. [178] only retrieve the label of the
LCA node, Florescu et al.’s approach [88] makes the gran-
ularity of the return value dependent on the specificity of
the query and Schema-Free XQuery allows for the binding
of variables to specific nodes in an entity subtree.

Unsurprisingly, keyword-enhanced query languages in
general have greater expressiveness than the translation-



based languages and those implemented as stand-alone
systems. Almost all of the translation keyword query lan-
guages have a very simple syntax with queries consisting
only of keywords or label-keyword pairs. SemSearch, and
Abbaci et al.’s [2] and Saito et al.’s [170] approaches are
exceptions to this. SemSearch only offers a disjunction
operator in addition to the implicit conjunction common to
most other keyword query languages, while [170] allow for
the use of some XPath operators. Among the stand-alone
keyword query languages presented here, that in Abbaci
et al.’s approach [2] has the most comprehensive query
syntax with operators for disjunction, inclusion, parent-
child relationship and negation. This query language is not
directly concerned with grouping, but proposes a method
for applying query operators by performing operations on
sets of matched nodes that could potentially be combined
with grouping heuristics to yield a query language that is
both expressive and performs grouping while still having a
simpler syntax than keyword-enhanced query languages.

Another focus in the area of keyword querying is the
ranking of the results which in general is based on the
principle that a smaller distance between matched nodes
and between matched nodes and concept nodes means
more specific and thus better results. Ranking usually is
realized using the Vector Space Model and a variant of
the tf-idf measure. It is advantageous to rank the results
before fully generating them since this makes it possible to
retrieve only the top k results, meaning that the results can
be shown faster to the user and that processing time can
be saved when the user is not interested in all results.

Another relevant issue is how to convey the vocabulary
for queries. Keyword query languages are flexible with
respect to the structure of the data and are the ability to
query over heterogeneous data is emphasized as one of the
advantages of keyword query languages. Heterogeneity can
refer either to differences in the structural organization of
the data or to differences in the vocabulary.

Figure 22 shows the data from Figure 1 in a differ-
ent structural organization20, namely here the articles are
grouped by their authors. Due to the automatic grouping,
one keyword query can be used to query both documents.
However, the query results may of course differ since
the grouping uses structural characteristics to find query
answers.

Figure 23 displays another reformulation of the data in
Figure 1 where the structure is identical but node labels
differ. Queries involving node labels over 1 and 23 can never
successfully retrieve results from both documents since
they use different vocabularies. For example, the label-
keyword queries K1 = {publ i shed : 2005, sur name : Smi th}
and K2 = {year : 2005, l ast : Smi th} express the same infor-

20The repetitions of the article subtrees are left out for reasons of
legibility

mational need, but do so in different words. Consequently,
K1 does not have any matches in the data in Figure 1, and
the same is true for K2 and 23. The problem is thus that
a term can have many different synonyms and the user
may not know which words to use to express her query.
The problem also exists when data that is homogeneous
with respect to their vocabulary are queried, since the
user initially does not know which terms are used in the
data, but is of particular concern when heterogeneous
data using different vocabularies is queried, since there, no
standardized vocabulary that the user could learn exists.

In a seminal study of the vocabulary problem, [93] found
that participants used a big number of different terms are
used to refer to the same concepts. The probability of two
people choosing the same word for a given object was
found to be below 20%. At most 36% of the participants
chose the “best”, that is, most frequent term for an object.
The proposed solution to remedy this problem is to estab-
lish lists of synonyms or aliases for each term. For example,
a system could map the term “published” to “year”, thus
enabling the use of both terms in queries.

Query expansion is thus applied to improve the re-
call in information retrieval applications through finding
synonyms, morphological variations and misspellings. A
variety of techniques for automatic query expansion have
been proposed [69], [181], [72], [114], some of which
are employed in the keyword query languages presented:
Q2Semantic uses Wikipedia to find terms similar to the
keywords. The authors of Schema-Free XQuery list several
possibilities for obtaining a domain-specific thesaurus to be
used with the “expand” function, namely deriving the syn-
onyms for each terms from the corpus of XML data, creating
it either manually or through information retrieval tech-
niques like bootstrapping. If no domain-specific thesaurus
is available, they suggest the use of a universal thesaurus,
for example WordNet. This is also how semantic mapping
functions in SPARK. In addition, morphological mapping
is employed, which functions on the form (and not the
semantics) of the keywords and uses stemming and other
methods and measures from Natural Language Processing.
Each term mapping is augmented with a confidence score,
meaning that the list of synonyms can also serve as a
controlled way to semantically relax the query.

Finally, one issue addressed in little of the presented
works is the combined querying of RDF and XML data.
SemSearch and QuizRDF can query Web documents aug-
mented with RDF annotations, but the former only evalu-
ates the query on the RDF annotations, meaning that it is
not possible to impose conditions on both the document
itself and its annotations in a query.

QuizRDF on the other hand allows to restrict the Web
documents matching a given query through their RDF an-
notations. However, it is not possible to query the structure
of the Web documents or combine XML and RDF search
in a single query. Further, QuizRDF is a search-and-browse
system and returns Web documents, that is, there is no
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grouping of entities and consequently no flexible return
values, meaning that the system is suited for interactive
exploration of data rather than expressive querying at a high
granularity.

The combined querying of XML and RDF is desirable in
the context on the Semantic Web where not all content of
the data (XML) is necessarily represented in metadata (e.g.
RDF) and vice versa [28]. If querying of the two formalisms
is possible using only one query language, recall is thus
increased and further casual users only need to familiarize
themselves with one query language, making the benefits
of the Semantic Web accessible to a broad user base.

Integrated querying of RDF and XML is generally possible
through serializing RDF into “flat triples” in XML, however
this method is disadvantageous over the more natural view
of RDF data as graphs [113], [91]. Integrated access to RDF
and XML has been investigated, among others, in [169],
[16], [160] and [91].

VII. CONCLUSION

With keyword-based query languages we have investi-
gated one of the most promising and the, by far, best
investigated approaches for combining the automation
and deduction features of traditional, database-style Web
queries with the ease-of-use of Web search.

As interesting and worthwhile as the comparison and
classification of keyword-based query languages is in itself,
in the context of the wider theme of this survey its most
significant contribution is the relative lack of success in
finding a universally applicable strategy for determining the
extent of a meaningful answer to a keyword query. Consid-
ering the extent of research revealed by the comparison, this
lack of success is all the more surprising and clear evidence
that the central question of the dichotomy of Web search
and Web queries remains unsolved: Can we find enable
automation and deduction on the Web without loosing the
accessibility for untrained operators?

In the presence of ever increasing data size, a positive
answer for this questions becomes ever more essential for
visions such as the Semantic Web. Though recent success
of social or human-in-the-loop solutions for such problems
(see Mechanical Turk21 or the general field of human
computation22) is certainly encouraging it is questionable
how well such approaches scale and how far they can be
generalized. In particular, where reliability and speed are
issues automation, even if programmed painstakingly and
at great cost, is unlikely to be replaced by social approaches.
On the other hand, giving the vast numbers of untrained
users in growing social networks on the Web just a little
bit of automation may go further than sophisticated that is
accessible only to few.

21http://www.mturk.com/mturk/welcome
22http://video.google.com/videoplay?docid=-8246463980976635143
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