INSTITUT FUR INFORMATIK

Lehr- und Forschungseinheit fur
Programmier- und

Modellierungssprachen

OettingenstralRe 67 D-80538 Miinchen

Optimizing Multiple Queries against XML Streams

Tim Furche

Diplomarbeit

Beginn der Arbeit: 01.02.2003
Abgabe der Arbeit: 31.07.2003
Betreuer: Prof. Dr. Francgois Bry

Dipl.-Ing. Dan Olteanu

Erklarung

Hiermit versichere ich, dass ich diese Diplomarbeit selbstéandig verfasst habe. Ich habe dazu keine anderen als
die angegebenen Quellen und Hilfsmittel verwendet.

Minchen, den 31.07.2003 Tim Furche

Classification

according to: ACM Computing Classification System (1998 Version)

Categories and Subject Descriptors:
H.2.4 [Database Management]: Systems;
H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing
— Indexing Methods;
H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval
— Information filtering; Search process;
H.3.4 [Information Storage and Retrieval]: Systems and Software
— Performance evaluation (e [ciehcy and e [ectiveness);
General Terms: Algorithms, Performance
Additional Key Words and Phrases: XML query evaluation, query merging, prefix merging, path sharing,

stream processing, cost function, query optimization

Abstract

Processing and querying streams, XML streams in particular, has recently become a widely recognized area
of interest both in research and in industry. In contrast to traditional query evaluation for databases, where
multiple queries against the same data can be evaluated sequentially, for a streamed environment only the
simultaneous execution of multiple queries is feasible, as the sequential evaluation requires multiple passes
over the stream.

This work presents an overview of techniques for optimizing multiple queries posed against a stream of
XML data. Building upon the SPEX query engine [79; 105], the problem how to find a cost-optimal query plan
that allows the simultaneous evaluation of multiple queries against the same stream is presented and shown
to be not only hard to solve but also hard to approximate, if arbitrary parts, and not only common prefixes as
in previous approaches, can be shared among query plans. Several heuristics are investigated and compared,
in particular with respect to their complexity. Furthermore, it is shown how to extend the SPEX query engine
to support such query plans for multiple queries. This extension proves to be both natural and e [cieht. An
extensive experimental evaluation shows that sharing arbitrary operators under a realistic cost function results
in query plans that have consistently lower cost for reasonable sets of queries than query plans where only
common prefixes are considered. In most cases, the relative improvement is higher than 50%. Although the
time for generating such query plans is higher than for query plans where only common prefixes are shared,

the increase in time is within an acceptable margin.

Zusammenfassung

Die Anfragebearbeitung auf Stromen, insbesondere Stromen von XML Daten, ist in den letzten Jahren weit-
gehend als interessante Herausforderung fir Forschung wie Industrie anerkannt worden. Im Gegensatz zu
traditionellen Anfrageauswertern fir Datenbanken, die mehrere Anfragen auf denselben Daten sequenziell
verarbeiten, ist diese Verarbeitungsform fur Strome nicht geeignet, da sie mehrere Durchlaufe Uber den Strom
erfordert. FUr Strome ist daher nur die gleichzeitige Auswertung mehrerer Anfragen akzeptabel.

Diese Arbeit gibt eine Uberblicksdarstellung der Techniken zur Optimierung mehrerer simultan auf einem
XML-Strom zu verarbeitenden Anfragen. Ausgehend von dem SPEX-Anfrageauswerter [79; 105] wird das Pro-
blem, einen kostenoptimalen Plan zur Anfrageauswertung zu finden, vorgestellt und gezeigt, daR es fur dieses
Problem nicht nur schwer ist, eine optimale Losung zu finden, sondern selbst eine nur angenaherte Losung
nicht einfach zu finden ist, wenn nicht nur gemeinsame Préafixe wie in bisherigen Ansatzen, sondern beliebige
Teile eines Plans von mehreren Plane gemeinsam genutzt werden kénnen. Mehrere heuristische Algorithmen
werden untersucht und verglichen, insbesondere im Hinblick auf ihre Komplexitat. Desweiteren wird gezeigt,
wie der SPEX Anfrageauswerter erweitert werden kann, um mehrere Anfragen gleichzeitig verarbeiten zu kon-
nen. Eine umfassende experimentelle Auswertung der Algorithmen zeigt, daR der vorgeschlagene Ansatz unter
einer realistischen Kostenfunktionen zu deutlich geringeren Kosten fir die generierten Plane zur Anfrageaus-
wertung fuhrt, als wenn nur gemeinsame Prafixe betrachtet werden. In den meisten getesteten Féallen ergeben
sich um mehr als 50% geringere Kosten. Weiterhin nimmt die benétigte Zeit zur Generierung solcher Plane
im Vergleich zu Pléanen, in denen nur gemeinsame Préfixe genutzt werden, zwar zu, der Anstieg ist jedoch

verhaltnisméagig gering.

Danksagung

Fur die sehr gute Betreuung und eine angenehme Atmosphare bei meiner Diplomarbeit mdchte ich mich beson-
ders bei meinen Betreuern Francois Bry und Dan Olteanu bedanken.

viii

Contents

Introduction 1
Challenges for Query Optimization on Semi-structured Streams 5
2.1 Traditional Query Optimization e 5
2.1.1 Optimizing Logical Query Plans 6
2.2 Querying XML Data e 7
2.3 Optimizing Queries against XML Streams e 10
2.3.1 Optimization Objective e 10
2.3.2 Query Plans for XML 11
2.3.3 Optimizing XML Query Plans e 12
2.3.4 Query Plans for Multiple Queries e 14
Related work 17
3.1 Trigger ProCessing o v i i i e e 17
3.2 Continuous QUEery SYSTEMS o e e 18
3.2.1 Continuous Query Systemson Tuple Streams 18
3.2.2 Continuous Query Systems on Semi-structured Streams 20
3.3 Publish-Subscribe Architectures 20
3.3.1 Content-based 22
3.3.2 XML-based e 26
3.4 Single Query Processors against XML Streams e 30
Concise Representation of XML Query Plans 33
4.1 Formalization of aQuery Plan. 33
4.1.1 Evaluation Model 33
4.1.2 Query Plan 34
4.2 Use Case: Traditional Relational Query Plans 35
4.3 Use Case: Query Plans for XML Streams i 35
The Minimum Common Super-Plan Problem 37
5.1 Complexity and Approximability of Optimization Problems 38
5.1.1 Optimization Problems e 38
5.1.2 NPOProblems 38
5.1.3 Approximability of NP-hard Problems 39
5.2 Minimum Common Super-Plan e e e 40
5.3 Related Problems e 42

6 Heuristics for the Stable Minimum Common Super-Plan Problem

6.1 Strategies forthe SMCSP
6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans
6.2.1 Incremental Pair Mergers
6.2.2 Local Search Pair Mergers

6.3 Set Mergers: Algorithms for Merging Sets of Query Plans

6.3.1 Pairwise Set Merger: Example for the Clustered Strategy

7 Use Case: SPEX

7.1 SPEXinaNutshell
7.2 Evaluating Query Plans for Multiple Queries

8 Cost Estimation in a Streamed Environment

8.1 Classesof Cost Functions
8.1.1 Independent Cost Functions
8.1.2 Local CostFunctions
8.1.3 Global Cost Functions

9 Experimental Evaluation

0.1 Setup

9.2 Assessing the Feasibility of the Approach
9.2.1 ComparingtheCost.
9.2.2 Comparingthe Time
9.2.3 ComparingtheResults

9.3 Comparison of Local Search Pair Mergers.

9.4 Comparison of Set Mergers

10 Implementation

10.1Basic Graph Library e
10.2From Graphsto Query Plans. e

10.2.1 Computing the costof aqueryplan
10.3PaAIr MEIgErS v e e e e e e e e e
10.4Set MErgers
10.5 Other Components of the Optimization Framework
10.6Testing o e

11 Conclusion and Future Work

A Bibliography

CONTENTS

Chapter 1

Introduction

Processing of data streams or sequences of blocks
of data (usually called elements of the stream) has
triggered rising interest, both in research [131; 24;
144] and in industry [33; 94]. Stream processing dif-
fers from conventional methods of data processing in
main memory or on data bases in the requirement to
process data immediately on its arrival in the stream
instead of creating an appropriate data structure that
is on which the actual processing is performed af-
terwards. In particular, if the data to be processed
changes fast, only small fragments of the data have

to be processed repeatedly, the data arrives at a high

systems, performed on streams of data provided ei-
ther by the system itself or by specific sensors infor-
mation, more and more essential. Recent work in this
area includes the analysis of network tra [c[128; 44,
33] and monitoring of sensor networks [17; 88].

— Publish-subscribe systems provide capabilities
to selectively disseminate information or publications
for a large number of users or subscribers based on
their profile or subscription [49]. These systems even
find applications ranging from news distribution net-
works [117] over event notification systems alerting

users of certain events [26] to the dissemination of

rate, or the amount of data is too large to be e [Ielevant information for di Cerbnt needs in a military

ciently stored and processed, stream processing pro-
vides clear advantages over traditional methods based
on in-memory data structures or databases.

Indeed, in most applications for stream processing
at least one of these characteristics can be observed,
including some of the most exciting areas of applica-

tion for streams:

— With increasing complexity of electronic and in-

formation systems, monitoring and analysis of these

[131] Terry, D. B, et al. 1992. Continuous queries over append-
only databases. In Proc. of the ACM SIGMOD International
Conference on Management of Data. ACM Press, 321-330.

[24] Carney, D., et al. 2002. Monitoring streams: A new class of

data management applications. In Proc. of the International

Conference on Very Large Databases (VLDB).

Yu, P. S, Ed. 2003.

Data Engineering:

[144] IEEE Transactions on Knowledge and

special section on online analysis and

querying of continuous data streams. Vol. 15. IEEE Com-
puter Society.

[33] Cisco Systems. 2000. Cisco 10S netflow — technology data

sheet.

Megginson, D. and Brownell, D. 2002. SAX: The simple API

for XML.

[94]

engagement [43].

— Another emerging application is the real-time in-

[128] Sullivan, M. and Heybey, A. 1998. Tribeca: A system for
managing large databases of network tra [c_In Proc. of the
USENIX Annual Technical Conference.

Du [Celdl N. G. and Grossglauser, M. 2001. Trajectory sam-
pling for direct tra Lc_abservation. IEEE/ACM Transactions

on Networking (TON) 9, 3, 280-292.

[44]

[17] Bonnet, P., et al. 2001. Towards sensor database systems.
In Proc. of the International Conference on Mobile Data Man-
agement (ICMDM). 3-14.

Madden, S. and Franklin, M. J. 2002. Fjording the stream:

An architecture for queries over streaming sensor data. In

[88]

Proc. of the International Conference on Data Engineering
(ICDE).
[49] Franklin, M. J., Ed. 1996. Special Issue on Data Dissemina-
tion. Data Engineering Bulletin, vol. 19, 3. IEEE Computer
Society.
[117] Ramakrishnan, S. and Dayal, V. 1998. The pointcast net-
work. In Proc. of the ACM SIGMOD International Conference
on Management of Data. ACM Press, 520.
[26] Carzaniga, A., et al. 2001. Design and evaluation of a wide-
area event notification service. ACM Transactions on Com-
puter Systems (TOCS) 19, 3, 332-383.
Douglass, R., et al. 1997.

dissemination (BADD for the warfighter.

[43] Battlefield awareness and data

In Proc. of the

tegration of fast “news feeds” from diverse sources,
similar to Google News (http://news.google.com)
or NewslsFree (http://www.newsisfree.com/). In
the context of web services, the automatic on-the-fly
syndication of streams generated by heterogeneous
services is viewed as an emmerging challenge.

— With the advent of MPEG-7 [92] it is expected
that an increasing number of multimedia streams ac-
companied by detailed meta-data information have to
be e Lciehtly filtered, transformed, and routed from
sources to consumers.

— Pipeline processing allows several independent
processors to be used in a pipeline, where the out-
put stream of one processor is the output stream of
the next one, therefore allowing each processor to per-
form its task as soon as the previous one delivers new
data. Pipeline processing is of particular importance
where large amounts of data have to be processed by
diverse components, e.g. in astronomic data analysis
[95; 65].

All these areas of applications share an inherent
heterogeneity of information sources in respect to the
data delivered, the parameters of the provided ser-
vice, or simply the administrative responsibility. For
example, monitors on devices from various vendors
in network analysis might generate monitoring data
with di Lerlng resolution, precision and in varying in-
tervals, the various news agencies used as sources
for syndication as well as dissemination will likely
focus on dilerknt stories or aspects of the same
story. These heterogeneous information sources re-
quire some agreed upon means for information en-
coding as provided by XML [20] dialects for the var-
ious areas such as NITF (News Industry Text Format,
http://www._nitf.org) for news, MPEG-7 for meta-

data on multimedia streams, or SensorML [18] for

SPIE, B. R. Suresh, Ed. Vol. 3080. SPIE — The International
Society for Optical Engineering, 18-24.

Martinez, J. M., Ed. 2002. Mpeg-7 overview. Tech. Rep.
N4980, ISO/IEC JTC1/SC29/WG11.

Mehringer, D. M, et al., Eds. 1999. Astronomical Data Anal-
ysis Software and Systems VIII: Data Pipelines. ASP (Astro-

[92]

[95]

nomical Society of the Pacific) Conference Series, vol. 172.
[65] Harnden, F.R., etal., Eds. 2001. Astronomical Data Analysis
Software and Systems X: Science Data Pipelines. ASP (Astro-
nomical Society of the Pacific) Conference Series, vol. 238.
Bray, T., et al., Eds. 2000.
(XML) 1.0 (second edition).
Web Consortium.

[20] Extensible markup language

Recommendation, World Wide

[18] Botts, M., Ed. 2002. Sensor model language (SensorML) for

INTRODUCTION
sensor information and configuration. Although in
some of these applications, most notably for sensor
data, one commonly expects rather flat data consist-
ing in simple attribute-value pairs—and even monitor-
ing data sometimes requires more sophisticated mod-
eling constructs, e.g., when representing the fused in-
formation from entire sensor networks or partial re-
sults of sensor analysis [19]—, others such as syndi-
cation of news or meta-data processing with MPEG-7
require the richer hierarchical relations provided by
XML.

¢

Summing up, a clear need for the e [Lcieht process-
ing of XML streams can be identified in all the above
application areas. In particular, all the described ap-
plications require some capability to query the incom-
ing stream: Sensor networks have to correlate and
monitor incoming data based on specifications of in-
teresting events (e.g., “send an alert, if the value of
sensor A is above a certain limit for more than 5 min-
utes”). Publish-subscribe systems route data based on
the subscriptions of their users, essentially filtering
the stream of data with large numbers of queries, such
as “send all publications containing a certain keyword
both in the title and the first paragraph”. Syndication
systems correlate information from di Lerent sources
and often, again based on user profiles, select only po-
tentially interesting data. Finally multimedia streams
have to be filtered and routed based on queries over
the meta-data, it is even possible to select only parts
of a multimedia stream, e.g. “return only those scenes
in the movie where a certain speaker uses a certain
word”.

As noted above, one of the advantages of stream
processing is the progressive delivery of result in a
single pass over the stream. One-pass processing is
required in particular on large or unbounded streams
or if the results have to be delivered continuously even
before all data has arrived, as it is common in moni-
toring and event notification systems. This manner
of processing imposes three important challenges to
a query engine:

(1) It is not feasible to look back in a stream (ex-
cept possibly within a certain small window). Hence,

in-situ and remote sensors specification. discussion paper
02-026r4, Open GIS Consortium.

Botts, M. and Reichardt, M. 2003. Sensor web enablement.
white paper, Open GIS Consortium.

[19]

http://news.google.com
http://www.newsisfree.com/
http://www.nitf.org

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

queries containing such backward navigation either
have to be rewritten, as proposed in [107], or disal-
lowed.

(2) As a stream is always processed sequentially,
traditional optimization techniques, such as database
indices, that are tailored to minimize the amount of
access to data and the result of intermediary results,
are not applicable to streams. Here, the optimization
objective is to minimize the number of operations per
element in the stream rather than the number of ele-
ments visited. This shift in the optimization objective
is reflected in the notion of a stream index employed
in the XML Toolkit [8] that does not provide e [cieht
access paths to data relevant for a query but rather al-
lows to skip elements not relevant for a query reduc-
ing the number of operations for each such element
to one.

(3) If several queries, such as monitoring condi-
tions or subscriber profiles, have to be evaluated
against the same stream, it is not feasible to evaluate
the queries sequentially as in traditional databases but

they have to be processed simultaneously

In this work, the last issue is further investigated:
The requirement to execute multiple queries concur-
rently against the same stream combined with the sec-
ond observation, that the number of operations per el-
ement is crucial for fast processing of streams, there
is an evident need for novel methods to optimize mul-
tiple queries for a single processing against a stream.
Indeed, all proposals [4; 28; 41] of query engines
for publish-subscribe systems are tailored to process
large amounts of queries, but due to their application

area restricted to the filtering of small self-contained

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.
of the EDBT Workshop on XML Data Management (XMLDM).
Lecture Notes on Computer Science (LNCS), vol. 2490.
Springer Verlag, 109-125.

[8] Avila-Campillo, I, et al. 2002. XMLTK: An XML toolkit for
scalable XML stream processing. In Proc. of the Workshop
on Programming Language Technologies for XML (PLAN-X).

[4] Altinel, M. and Franklin, M. J. 2000. E Lcieht filtering
of XML documents for selective dissemination of informa-
tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. E L[cieht filtering of XML docu-
ments with XPath expressions. The VLDB Journal (Special
Issue on XML Data Management).

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted for pub-
lication, ww.cs.berkeley.edu/~diaoyl/publications/
yfilter-public.ps.

documents from a stream of such documents . Among
the general query engines recently proposed [56; 60;
111; 14; 105] only the [56; 60] consider the optimiza-
tion of multiple queries. All these approaches have in
common, that the optimization is based on common
prefixes in the queries (for an in-depth comparison see
Chapter 3). The approach presented here improves on
these by considering not only prefixes but rather any
kind of shared subparts techniques for multi-query

optimization on XML streams in several points:

(1) A framework for multi-query optimization to-
gether with a formal representation of (logical) query
plans on XML streams is presented in Chapter 4.

(2) Based on this representation, the general prob-
lem to derive the (cost-) minimum common super-plan
for executing a set of queries is defined precisely and
its complexity and approximability properties are in-
vestigated in Chapter 5.

(3) Several heuristic algorithms to construct the
minimum common super-plan for a set of query plans
are given and compared in respect to their complexity
in Chapter 6.

(4) A cost model for navigational query languages
against XML streams is proposed, based on experience
with the SPEX processor (cf. [105]) in Chapter 8.

(5) The SPEX evaluation model is extended to allow
the execution of multiple queries according to a query
plan generated by the proposed algorithms in Chap-
ter 7.

(6) An extensive experimental evaluation of the
proposed algorithms based on the cost model intro-
duced proves the feasibility of the proposed methods
if the queries to be processed are known before pro-
cessing (in contrast to being updated during process-
ing) in Chapter 9.

[56] Green, T.J., etal. 2003. Processing XML streams with deter-
ministic automata. In Proc. of the International Conference
on Database Technology (ICDT). 173-189.

[60] Gupta, A. K. and Suciu, D. 2003. Stream processing of XPath
In Proc. of the Proc. of the ACM
SIGMOD International Conference on Management of Data.
Peng, F. and Chawathe, S. S. 2003a. XPath queries on
In Proc. of the Proc. of the ACM SIGMOD

International Conference on Management of Data.

queries with predicates.

[111]
streaming data.

[14] Barton, C., et al. 2003. Streaming XPath processing with

forward and backward axes. In Proc. of the International
Conference on Data Engineering (ICDE).

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

¢

The remainder of this work is structured as follows:
In Chapter 2 the proposed approach for multi-query
optimization is compared to conventional query opti-
mization techniques for databases and tuple streams
detailing the use of query plans for XML streams.
A more systematic survey of related work on multi-
query optimization follows in Chapter 3, focusing on
previous work on processing XML streams. Based on
the query plans informally introduced in Chapter 2,
Chapter 4 establishes a formal representation of query
plans together with an extensive use-case describing
structure and generation of query plans for SPEX. The
problem how to construct a common query plan with
minimal cost for multiple queries is formalized in
Chapter 5. Chapter 5 also investigates the properties
of the problem in respect to complexity and approx-
imability. Several heuristic algorithms for the gener-
ation process are described and compared with re-
spect to complexity in Chapter 6. Based on experi-
ence with the SPEX engine, Chapter 8 establishes cost
functions suitable for a streamed environment, where
statistics for the data are unlikely to be available. Ex-
tending the use-case on the generation of query plans
for SPEX from Chapter 2, Chapter 7 presents the eval-
uation of the query plans created by the algorithms
from the previous chapter. Using the cost functions
from Chapter 8 and the just introduced evaluation of
query plans with the help of SPEX, an extensive ex-
perimental evaluation of the algorithms is performed
in Chapter 9. Chapter 10 details the implementation
of the query optimization framework, the algorithms,
the cost functions, and extensions of the SPEX engine.
Finally, Chapter 11 concludes with a short outlook on

future work on the topic.

INTRODUCTION

Chapter 2

Challenges for Query Optimization on

Semi-structured Streams

The question, in which respect goals and challenges of query optimization for semi-structured streams di [er]

from those encountered in traditional query optimization, is to be investigated in this chapter. Preceded by

a short recall of query optimization in relational databases, the impact of the characteristics of a stream,

in particular a semi-structured stream, on query optimization is analyzed. This analysis motivates several

important shifts to the focus of query optimization in face of semi-structured streams.

Contents

2.1 Traditional Query Optimization

2.1.1 Optimizing Logical Query Plans

2.2 QueryingXMLData.

2.3 Optimizing Queries against XML Streams . .
2.3.1 Optimization Objective
2.3.2 Query Plans for XML

2.3.3 Optimizing XML Query Plans

2.3.4 Query Plans for Multiple Queries

To emphasize the novelties of query optimization
for semi-structured data streams, a short review of
traditional query optimization techniques (for rela-
tional databases) is indicated.

2.1 Traditional Query Optimization

Query optimization is an important part of query pro-
cessing. Query processing is often divided into two
steps: query compilation and query execution. During
query compilation a given query is parsed and com-
piled into a query plan that is afterwards executed by
the execution engine against the actual data. Follow-
ing, [51] query compilation can be further divided into

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-

plete book, 1st ed. Prentice Hall, Upper Saddle River, New

three phases (cf. Figure 2.1):

(1) The query, specified in an appropriate query
language, is parsed into a query parse tree.

(2) From the parse tree, a logical query plan is gen-
erated and subsequently optimized by various trans-
formation and rewriting rules. The translation from
the query tree to the logical query plan as well as
the rules used for optimization depend on the logical
query algebra [55] of the data model or the database
system. The logical algebra is closely related to the
data model of the query language (or languages) sup-
ported. Relational database systems usually employ
the relational algebra as logical query language.

Jersey.
Graefe, G. 1993. Query evaluation techniques for large
databases. ACM Computing Surveys 25, 2, 73-170.

[55]

6 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

i query

Parse

L query parse tree
Generate logical
query plan

L logical query plan
Optimize logical
query plan

L preferred logical query plan

Select physical
query plan

i physical query plan

Figure 2.1: Query compilation

(3) Following construction and optimization of the
logical query plan, both mostly independent of the
physical aspects of the query execution engine, the
logical query plan is translated into a physical query
plan specified in the physical algebra [55] of the
database system. The physical algebra, and conse-
quently the physical query plan, di Cers from the logi-
cal algebra in that it provides a finer granularity of op-
erators. Hence, a physical algebra contains for many
operators of the logical algebra several physical op-
erators with various trade-o [S“hmong the operators.
For example, the relational join operator can be real-
ized in numerous ways, such as nested-loop, merge or
hash-based join algorithms. Therefore, the translation
of a logical into a physical query plan often involves a
selection among many alternative plans, usually based
on a cost estimation.

As this work focuses on optimization of logical
query plans for semi-structured streams, in the fol-
lowing the premises and objectives for traditional op-
timization on logical query plans are examined. Some
consideration on the generation of a physical query
plan for the SPEX evaluation engine is given in Chap-
ter 7, presenting an application for the methods pro-

posed in the following chapters.

2.1.1 Optimizing Logical Query Plans

As briefly mentioned above, the primary objective for
query optimization on (relational) databases is to min-

imize access to data on secondary storage, as that ac-

[65] Graefe, G. 1993. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2, 73-170.

cess is usually by orders of magnitude more expensive
than in-memory operations, and to minimize interme-
diary results. To meet these objectives, the initial log-
ical query plan similar to the parse trees of a query,
is revised by applying rewriting and transformation
rules to the plan that change the estimated cost of
the query plan but not its semantics. The best results
in this optimization phase can be obtained if the se-
lection and the order of application of these rewrit-
ing rules is determined based on the estimated cost
of the resulting query plan, e.g., based on statistics
over the data accessed by the query or on properties
of the operators of the relational algebra. More in-
depth descriptions of query optimization and cost es-
timation for relational databases can be found among
many others in [55; 51].

To illustrate the kind of optimizations usually con-
sidered on a logical query plan consider Figure 2.2.
Figure 2.2(a) gives the initial query plan derived from
the SQL query SELECT S.b FROM S, R WHERE S.b =
R.a AND R.c = "v", selecting the b attribute from
relation S (denoted S.b), if there is a tuple in the
cross product of S with another relation R, such
that S.b is equal to R.a and R.c has the value
“v”. In relational algebra this query is denoted as
Tis.p(Os.b=R.a(Or.c=«v"(R % S))). The later expression
serves as basis for the initial query plan. Obviously
this query plan can be improved quite notably, if one
observes that a part of the selection expression con-
tains only attributes from relation R. Pushing the se-
lection to R and changing the cross product into a
join leads to the query plan shown in Figure 2.2(b), a
considerable improvement regardless of the concrete
data the query will be processed against as the initial
plan constructed first the entire cross product with a
size |R] - |S| and evaluated then the selection on all
constructed tuples, whereas the optimized query per-
forms the selection directly on R, thereby also reduc-
ing the number of tuples that have to be considered
for the join. If there is an index on the R.c attribute,
the advantage of the second query plan is even higher.
In this simple case the decision for the second query
plan is independent of the concrete data, but there are
many other cases where optimization has to rely on
statistics about the data to be queried, e.g., when con-
sidering the order of selections on a single relation.

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-
plete book, 1st ed. Prentice Hall, Upper Saddle River, New

Jersey.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

(a) Initial query plan (b) Optimized query plan

Figure 2.2: Two query plans for the same query

Similar to this example, optimization on logical
query plans for relation data often reduces to reorder-
ing of operators and in some cases to replacing oper-
ators (or sequences of operators) by ones that are ex-
pected to be evaluated more e [ciehtly. In particular,
operator reordering is possible due to the an impor-
tant property that is shared by all basic operators of
the relational algebra: they filter or enhance the origi-
nal data, but always retain either a super- or a subset
(with respect to the tuples or attributes) of the input.
This property leads to a high flexibility in the posi-
tioning of operators. For example, a selection can be
pushed to nearly any position in the query plan with
the single restriction not to be pushed after a projec-
tion that removes the attributes the selection is based
on. This flexibility in operator placement is consid-
ered one of the strengths of the relational data model,
as it allows extensive optimization without e [eck on

the correctness of the query plan.

It is worth mentioning, that these considerations
on operator reordering for relational databases apply
even stronger for query optimization on streams of
tuples or attribute-value pairs, as many such systems
emphasize on filtering of the incoming data and do
not provide more expensive, for unbounded or very
large streams infeasible, operators such as cross prod-

ucts or joins.

¢

Naturally, the operators used in querying semi-
structured data di Lerlconsiderably from the operators
used to access relational data. In particular, opera-
tor reordering is far less promising on semi-structured
data streams. To illustrate this issue, it is important
to identify the di Lerknces between the logical algebra

used in this paper for semi-structured streams and the

Figure 2.3: An XML data tree

relational algebra used as logical algebra in relational
database systems. Therefore, the following section
introduces the semi-structured data model together
with a query algebra and a query language on such

data.

2.2 Querying XML Data

In this work, XML data is considered to be tree-shaped.
The tree is an ordered, node-labeled and its nodes are
called elements of the XML data (for reasons of sim-
plicity, we do not distinguish between di Lerént kinds
of nodes such as element, text, or attribute nodes,
though the presented approach can easily be extended
to several node types). Each element can have a num-
ber of local properties or attributes. Here, we restrict
the attributes to the label of an element and the text
contained in an element. In Figure 2.3 a sample tree
is shown with labels represented left of the element
identified by its position in a pre-order traversal of
the tree. The text contained in an element is pictured
to the right of that element in quotation marks. It is
assumed that the siblings of an element are ordered
as depicted. There are several structural relations be-
tween elements that can be derived from such a docu-
ment tree: The three base relations child, next-sibling,
and next associate an element with its children, its
following sibling, and the following element in a pre-
order traversal respectively. For each base relation,
there is a transitive closure, viz. descendants, next-
siblings, and nexts, and an inverse relation (cf. [23]),
viz. parent, preceding-sibling, and preceding, that in
turn have a closure relation, viz. ancestors, preceding-
siblings, and precedings.

Let Relations be the set of relations just defined,

Labels the set of possible labels for an element, Texts

[23] Calvanese, D., et al. 2000. Containment of conjunctive reg-
ular path queries with inverse. In Proc. of the International
Conference on the Principles of Knowledge Representation

and Reasoning (KR). 176-185.

8 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

the set of possible texts contained in an element. Then
an XML data tree is formally defined as a tuple T =
(Elements, A, L, T) where

—Elements is the set of elements in the tree,

—A\ : Elements - Relations - p(EIements) is a map-
ping from elements and relations to set of elements,
such that Afr](e) is the set of elements in T that
stand in relation r with the element e,

—L : Labels - {Q(Elements) is a mapping from labels
to sets of elements, such that L[] is the set of ele-
ments in T with label I, and

—T : Texts - p(EIements) is a mapping from texts
to sets of elements, such that T [“t”] is the set of

elements in T containing the text “t”.

For querying such a data tree T, we use an abstrac-
tion of the navigational features of XPath [34; 15] in-
fluenced by [96], called RPQ (regular path queries).
RPQ contains nearly all features from positive core
XPath [53] adding intersections. RPQ uses variables
to identify sets of elements from the data tree and op-
erators to restrict the set of elements identified by a
variable. The bindings of the variables in an RPQ query
with n variables are represented as a set of n-tuples
over Elements, where each such tuple t [CElements"
represents one combination of variable bindings to el-
ements. For a tuple t, t.v represents the binding of
variable v in E. All variables are bound to all elements
in the tree, unless restricted by one or more of the
following expressions.

The operators of RPQ correspond to the relations
and properties defined on a data tree. For each of the
relations defined above, there is a relation operator,
as shown in Table 2.1. Relation operators form rela-
tion expressions v r w that restrict the set of variable
bindings such that for each binding tuple t the bind-
ing for v must stand in r relation to the binding for
w. Additionally, for each label 1 [Lhbels there is a

[34] Clark, J. and DeRose, S., Eds. 1999.
(XPath) version 1.0.
Consortium.
Berlund, A, et al., Eds. 2002. XML path language (XPath)
2.0. Working draft, World Wide Web Consortium.

Meuss, H. and Schulz, K. 2001.
gates for tree-like databases: A novel approach to combine

XML path language
Recommendation, World Wide Web

[15]

[96] Complete answer aggre-
querying and navigation. ACM Transactions on Information
Systems (TOIS) 19, 2, 161-215.

Gottlob, G., et al. 2003. The complexity of XPath query
In Proc. of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). 179-
190.

[53]
evaluation.

base inverse closure inverse closure
child < > <t >+
next-sibling 1 1 I |
next 1 —1 | | "
Table 2.1: RPQ relations
RPQ ::= Identifier(Var) : - Expr.
Expr ::= Expr [Expr | Expr CEXpr | (Expr) |

| Var Relation Var | Label (Var).
Relation ::= Base | Inverse | Base™ | Inverse™.

Base =< | L. IT_—1 Inverse :=>| CJ-1——1

Table 2.2: Grammar for RPQ

property operator | and for each text “t” [Téxts there
is an operator “t”. Property expressions use property
operators to restrict the bindings for a variable to ele-
ments with a certain property (label or text), e.g., I(v)
restricts the set of variable bindings to binding tuples
t such that t.v CL{I].

Relation and property expressions can be combined
via [Car [Id form conjunctions or disjunctions. An
RPQ query is an expression of the form Q(h) :- E
where Q is an arbitrary identifier for the query, h is
a variable occurring in E that identifies the set of ele-
ments that are selected by the query, and E is either a
relation or property expression or built up from such
expressions using conjunctions or disjunctions. h is
referred to as the head variable, all other variables oc-
curring in E are body variables. For the precise syntax,
please refer to Table 2.2

Given an RPQ expression E, the result of evalu-
ating E against T = (Elements, A, L, T) is S[E](B),
where 3 = Elements”. The result is a subset of the
Elements", i.e., a set of tuples, where each tuple con-
tains one binding for each variable in E. From the
result set, the bindings for the head variable v are
obtained by a simple projection. Hence, for a query
Q(Vv) :- E, R[Q(Vv) :- E](Bindings) specifies the set
of bindings of the head variable v to elements in the
XML data tree. The precise definition of the semantics
is given in Table 2.3 by means of the semantic map-
pings R for queries and S for expressions of RPQ.

Table 2.3 shows that disjunctions, resp. conjunc-
tions of RPQ expressions can be directly mapped to
intersections of the result of their

unions, resp.

operands. Furthermore, the relation and property op-

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 9

R : Query - Bindings - Nodes
R[Q(V) :- E](B) = v (S[E](B))

©
S : Expression - Bindings - Bindings A o
s[Ex CEB](B) = S[EL[(B) n S[E2[(B) ;,A ,,,%?
= S[E:](S[E2](B)) = S[E2](S[E:](B)) ol Al
S[E: CER](B) = S[E+](B) CS]E[(B) &

sl®]®) =s[E]®)

S[vi r V2] (B) = Oty rafr]eva) (B) = . .)
= {t CRIl tve CA[r](tvi)} Figure 2.4: Query Q(v4) :-v0 vl [alvl) vl

SIWIB) = oy ey (B) = {t CRI| t.v CLI]} v2 [hi(v2) Y’ (v2) [l 3 [vB < v4 [
S['s” WI®) = oev -1 (B) = {t LRI tv CT['s"]} c(v4)

Table 2.3: Denotational Semantics for RPQ

erators are reduced to selections on the set (or rela-
tion) of bindings. Therefore, all properties of the rela-

Element relations

tional algebra carry over to the semantics of RPQ. bindings of 0 stand in ... relation to bindings of 1
In the following, inverse relations are not explicitly O

considered, for replacing in an RPQ each v ¥ w, where AI child A descendant

T is inverse to a base relation r, by w r v yields an v +

equivalent RPQ without inverse relation. (Note that next:sibling @ <D nextsiblings

such a rewriting might result in complex queries with © < next <t nexts

intersections. [107] describes this and more sophisti- D O]

cated rewritings of inverse relations resulting in sim- -
Element properties

pler queries.) bindings of 0 have ...
¢ a(® label “a” @' string value v’
To further illustrate the features of RPQ consider
the RPQ query Q(v4) :- vO < vl [akvl) V1 < Structural properties
v2 [Chi(v2) [V’ (v2) v V3 CvB <t v4 [
c (v4) that selects all ¢ elements v4 that are descen- @ bindings for 0 part of result

dants of elements v3 that are following siblings of a

elements v1 that have at least one b child containing . . .
] Figure 2.5: Legend to the graphical notation for RPQ

the text “v” and are children of an element. The mean-

ing of the query can be more easily grasped if one pic-

tures the relations among the elements in a graphical

manner, as shown in Figure 2.4. This graphical nota-

tion of RPQ is referred to in the following as query

graph, a legend to it is provided in Figure 2.5. On the e

XML tree from Figure 2.3 this query selects only the ¢ D) o b1
element 8, but not the other c elements, as they are not A‘ /// ‘?\\\7‘7
descendants of an element that is a following sibling lf\:::i‘;,,//ji o
of an a. The corresponding bindings of the variables b L‘\‘\V\ Ai /')/ DV b G (8
to elements in the data tree is pictured in Figure 2.6 c 4\H . J

It proves to be helpful, to classify RPQ queries by

the allowed relations among variable bindings as these
Figure 2.6: Binding for variables from Figure 2.4 to the

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc. data tree in Figure 2.3
of the EDBT Workshop on XML Data Management (XMLDM).
Lecture Notes on Computer Science (LNCS), vol. 2490.
Springer Verlag, 109-125.

10 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

a () a@ a(®
I\ AN A
|

+A\ b12 Db

| X \\ A
L <l

c@ c@®

(@) General
query

graph (b) Distinct-intersection DAG

query

Figure 2.7: Graph queries

classification closely corresponds to di Cerkent classes
of complexity for evaluation as shown in [106]. In-
formally, queries are classified by the shape of their
corresponding query graph. If the query graph is a
single path (all nodes have at most one in- or out-
going edge respectively) the corresponding query is
called path query, is the query graph tree-shaped (con-
taining nodes with several outgoing edges) the corre-
sponding query is called a tree query, and if the query
graph is a full graph (containing also nodes with sev-
eral incoming edges) the corresponding query is called
a graph query. Furthermore, distinct-intersection DAG
queries are queries where the corresponding query
graph is acyclic and does not contain two distinct di-
rected paths with the same source and sink. The latter
restriction restricts the graph in such a way that for all
nodes the incoming paths have to be distinct, i.e., may
not contain a same node. Figure 2.7 shows a general
graph query, that is not a distinct-intersection DAG
query, and a very similar distinct-intersection DAG
query. Both queries select c elements, if they are de-
scendants of an a and children of an b containing the
text “v” that are children of an a. But the first query
stipulates additionally, that the b must be children of
the same a that the c is descendant of. As such, in con-
trast to the first one the second query still matches if
one adds an additional a between elements 2 and 3 in
the data tree from Figure 2.3. This lack in expressive-
ness of distinct-intersection DAG queries is o [Set by
the fact that they can be often more e [ciehtly evalu-
ated (cf. [106]).

Having established a framework for querying XML,
we can know turn our attention back to the question
how to optimize the just introduced queries using log-

ical query plans.

[106] Olteanu, D, et al. 2003. Advanced techniques for streamed
and progressive evaluation of XPath. Research report, Uni-
versity of Munich, Institute for Computer Science.

2.3 Optimizing Queries against XML

Streams

2.3.1 Optimization Objective

Where the previous section establishes a framework
for querying XML, this section focuses on the opti-
mization of queries against XML data, in particular
XML streams. The semantics discussed in the last
section allows to query XML with (relation and prop-
erty) operators that are composed from the basic re-
lation operators. This seems to suggest, that common
techniques for query optimization on relational query
plans can be easily adapted to XML. Indeed, the Tuk-
wila system [72; 73] demonstrates the feasibility of an
approach based on an evaluation model similar to the
RPQ semantics on a small number of elements: A spe-
cial operator provides all combinations of elements
needed for further evaluation, the remaining opera-
tors (e.g., selection or join operators) are evaluated on
these combinations following a query plan. For the
query from Figure 2.4 this operator returns for each
a element in the data each combination of b elements
and c elements that are related to the a as given by the
query. Obviously, this approach is not judicious for a
larger (or even unbounded) number of elements to be
queried, as the number of generated tuples can grow
exponential in the number of elements.

If the elements and their relations can be easily ac-
cessed in arbitrary order, it is possible to retain al-
most all of the freedom in choosing the order of op-
erator application that the relational algebra provides
but still to avoid to compute all combinations of bind-
ings for all variables. In this work, we focus on the
influence of streamed processing of XML data on (log-
ical) query optimization. As stated above, the pivotal
premise of streamed processing is to process the data
progressively as it arrives without first creating inter-
mediary data structures to hold the data and without
several passes over the data. In a stream, the data tree
from Figure 2.3 is serialized in pre-order leading to
a stream of nested elements that are represented by

[72] ves, Z. G, etal. 2001. Integrating network-bound XML data.
IEEE Data Engineering Bulletin 24, 2, 20-26.
[73] ves, Z. G, et al. 2002. An XML query engine for network-

bound data. VLDB Journal Special Issue on XML Data Man-
agement.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

begin- and end-element markers or tags:

[(BITAMDITENA [Z€ (TFb OBITET7e (TFb (T7a]
DITET7e b b L]

The sequential nature of the data stream has se-
vere implications on query evaluation and optimiza-
tion. As it is not acceptable to store the stream for
later processing, all operators have to operate on the
current elements only and can never “look back”. The
fundamental observation for querying an XML stream
is that the sequence of the data implies the sequence
in which the relation operators can be applied. This
is due to the fact that all the relation operators re-
late an element with other elements that come later in
the stream (assuming we have rewritten inverse rela-
tions as described above). To illustrate this, consider
again the query from Figure 2.4. There are property
operators that operate solely on the bindings of v1
or v2,e.g., a(vl) or “v’(v2). Conventional optimiza-
tion techniques might suggest to evaluate first these
property operators and then to relate the (hopefully
considerable smaller) result bindings with the relation
operator < that relates v1 and v2. Furthermore, as-
suming it is known that there are very few c elements
occurring in the data at all, first to look at the bindings
of v4 that have the label c and then to relate them via
the bindings of v3 to v1. But in a streamed context,
this is not possible, as it would require to store all
the elements that occur in the stream but are to be
considered later due to the query plan. This would vi-
olate the essential objective for streamed processing,
to store as few data as possible and to output result
as soon as it is available. In a streamed environment,
all property operators operating on a elements have to
be evaluated before such operators on bs and cs that
are related to an a as such bs and cs occur after the
related a in the stream.

This fundamental realization restricts the freedom
of query optimization severely: For streamed process-
ing the order of access to the data is dictated by the
stream and can not be selected by the optimizer. The
immediate consequence of this property of streamed
querying is that the optimization objective changes:
Where optimizers for relational databases try to re-
duce access to secondary storage (i.e., optimize the ac-
cess paths) and to reduce intermediary results, query
optimization for XML data streams is concerned more
about

11

Figure 2.8: Query plan for query from Figure 2.4

(1) generating query plans that respect the order of
access to data dictated by the stream, in particu-
lar any kind of access to past elements should be
avoided at all cost and

(2) minimizing the number of operations performed
by the evaluation engine per element. This actu-
ally might entail the minimization of the number
of elements for which some evaluation beyond
mere skipping is required, therefore the mini-

mization of intermediary results.

2.3.2 Query Plans for XML

To allow a deeper discussion of these challenges for
optimizing queries on XML streams, an informal in-
troduction to query plans for XML is in place. Based
on the operators just defined as part of a (logical)
query algebra for navigational query languages such
as RPQ or XPath, a query plan is specifying the flow of
data through this operators. Figure 2.8 shows a logical
query plan for the query from Figure 2.4. It specifies
that all data will flow starting from in through the op-
erators in the direction of the edges. Note, that there
is a single data source, the stream, in contrast to re-
lational query plans that usually contain several rela-
tions as sources of data. The operators used in the
query plan are the operators from the logical query al-
gebra, i.e., relation and property operators, with some
additional structural operators added that are used to
specify branches and joins in the graph. With these
additional operators, the relations among the vari-
ables in an RPQ query can be represented in the struc-
ture of the query plan without having to retain the
variables in the graph:

— Path queries are represented naturally by con-
necting the corresponding operators into a path, e.g.,
the query Q(v2) :- a(vl) [l < v2 [CbI(v2) that
selects all b children of a elements leads to the query
plan in Figure 2.10. This query plan can be interpreted
as follows: All elements from the stream are passed
through the three operators in sequence. The data
stream is enriched with bindings to elements, that

indicate elements that are selected by the query so

12 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

Ao

Figure 2.9: Plan for Q(v2) :- a(vl) [l < v2 [1

b (v2).

far. Initially, there are bindings to all elements in the
stream, as stipulated by the RPQ semantics ~Bach op-
erator changes the bindings it finds in the stream, e.g.,
the property operator a retains only bindings to ele-
ments with label a, the <1 operator replaces the bind-
ings encountered in the stream by bindings to the chil-
dren of those elements for which it finds a binding in
the stream. There is one special operator, that is not
directly derived from the query algebra, the head or
output operator labeled with out. It indicates that the
bindings encountered at that point are result.

— Tree queries such as the query from Figure 2.4,
for which Figure 2.8 gives a query plan, require the use
of one additional structural operator to express sev-
eral restrictions on the same variable. The predicate
operator labeled with [] indicates that the bindings
encountered in the stream are restricted by several re-
lation operators instead of only one.

— Finally, for graph queries (cf. Figure 2.7) two
more operators are needed to indicate that the bind-
ings obtained by di [erknt sub-plans have to be consid-
ered together, either by retaining only those bindings
that occur in both (intersection operator labeled with
n) or by accepting all bindings (union operator labeled
with [_The full notation is given in Figure 2.10.

In the described way, the query plan specifies an in-
cremental construction of the query bindings for the
result variable only. Not all the tuples of bindings
are constructed as the semantics of RPQ suggests, but
rather the bindings for di Cerknt variables are consid-
ered in sequence. The order in that they are consid-
ered is determined by the relations among them: an
expression v1r v2 where r is a relation indicates that
the bindings for v1 are constructed before the bind-
ings for v2 and used by the r relation operator to ob-
tain bindings for v2. All property operators for v1
have to be placed before any relation operator for a re-

lation expression with v1 as source and after relation

“Fhis is due to the implicit binding of all variables in RPQ to
all elements in the data tree unless the variables are restricted
further. For query languages such as XPath, that allow queries
to select, e.g., only the top-most element, appropriate operators
can be easily added, but are not considered here for reasons of

simplicity.

Element relations

select elements that stand in ... relation with current element

@1 child @hescendant
next-sibling next-siblings
< next nexts

Element properties

select only elements with ...
@ label “a” string value “v”

Structural properties

indicates a(n) ... on the current element

@ intersection @ union
@ structural predicate
current element is part of result

in access to stream

Figure 2.10: Graphical notation for RPQ query plans

operators for a relation expression with v1 as sink.
Hence, the query plan respects the order of access to
elements in the data stream, as stipulated above.

2.3.3 Optimizing XML Query Plans

To give an impression of the optimization possible on
these query plans, some examples for optimization
techniques are apt to be considered:

— Whereas reordering of operators is a central
concept when optimizing query plans for relational
databases, in the query plans just introduced the po-
sition of most operators is fixed due to the sequential
nature of the access to data from the stream. More
precisely, the order of the relation operators can not
be changed and all non-relation operators (such as a
label or text operator) can not be moved before or af-
ter a relation operator. Therefore, reordering can only
be applied if there are several property or structural
properties in between two relation operators. For ex-
ample, if there is a restriction on the label and the
text of a variable, as in the query from Figure 2.4 for
variable v2, the order of the two property operators
is arbitrary and can be determined by the optimizer.
In the same way, the optimizer might decide the order
of the predicate operator in the corresponding query
plan (cf. Figure 2.8) and the label operator a that are

both within the same relation operators. Instead of

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

QR
D\\ ﬂ//

x N,/

A

Figure 2.11: Query with inverse relation

Figure 2.12: Optimized plan for query from Fig-
ure 2.11

placing the label operator as shown, it might for ex-
ample be put on both branches after the prefix.

It should be obvious that this kind of reordering, al-
though in some cases useful, is less central to the op-
timization of query plans than in the relation case, due
to the reasons stated above.

— Another common technique for plan optimiza-
tion is the replacement of operators or operator
groups by other, better suited operators. One exam-
ple for this optimization has been considered above
directly on the query, but can be as well performed
in the logical plan optimization: The replacement of
operators on inverse relations. In this case, only the
optimized query plan will respect the order of ac-
cess as dictated by the stream. Figure 2.11 depicts
the query Q(v3) :- a(v0) M0 <* vl vl >+
v2 [bi(v2) R < v3, that selects the children of
an element that is the descendant of an a and has an
ancestor b. Informally, this query is equivalent to a
query that selects the children of an element, if it is
the descendant of both an a and an b, leading to the
optimized query plan shown in Figure 2.12. For more
such rewritings refer to [107].

— If one recalls, that the second objective for
the plan optimization on XML streams presented in
Section 2.3.1 is to minimize the number of opera-
tions performed per element, it is natural to consider
whether it is possible to “reuse” certain operators that
process the same (or similar) elements. This strategy
can be observed on a query as shown in Figure 2.13.
An initial query plan directly derived from the query

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.
of the EDBT Workshop on XML Data Management (XMLDM).
Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109-125.

13

(b) Optimized query plan

Figure 2.14: Query plan for query from Figure 2.13

graph is shown in Figure 2.14(a). But that query plan is
not taking into consideration that both branches fol-
lowing the predicate operator [] start with a < oper-
ator. In particular, since both operators also process
the same input (in particular, the same bindings) and
yield the same result, sharing these operator seems
very natural as shown in Figure 2.14.

Indeed, operator sharing proves to be one of the
most promising strategies for optimizing logical query
plans on XML streams, even if the operators are not
guaranteed to process the same bindings as in this
case, as there is often a considerable overlapping
among the bindings that are input for di Lerknt op-

erators due to the closure relations such as <1 or /1

that cover large fragments of the input stream and due
to the fact that some operators might perform opera-
tions on all elements in the input (e.g., bookkeeping of

the current level of the data conveyed in the stream).

In the remainder of this chapter, the latter avenue
shall be investigated more closely, in particular if
there are several queries to be evaluated simultane-
ously against the same stream.

14 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

2.3.4 Query Plans for Multiple Queries

As discussed above, due to the requirement to pro-
cess a stream in a single-pass, multiple queries that
are to be evaluated against the same stream have to be
processed simultaneously. In the context of optimiza-
tion, this means that there should be a single query
plan generated for all queries to be processed simul-
taneously. Clearly, the optimization of such a query
plan poses several challenges beyond what has been

discussed in the last section.

Though no core area of research, multi-query op-
timization for traditional (non-stream) DBMS has re-
ceived some attention [48; 123; 119; 124; 120], dom-
inated by two primary approaches: Merging of com-
mon subexpressions and merging of local query plans
for single queries into a global query plan for sev-
eral queries. Both techniques are based on finding
appropriate sub-queries by reordering [123] that can
be shared. Notwithstanding the fact that these tech-
niques have limited appliance for our concern when
considering the order of property operators, most of
the more advanced techniques (e.g., subsumption of
expressions in [119]) to exploit commonality between
expressions are tailored to reducing access to sec-
ondary storage, whereas for our concern the reduction
of the number of operations performed on a single
data element is crucial. [119] presents an approach to
find an almost optimal set of sub-queries, that if ma-
terialized and reused, can improve the speed of the
query processing. Clearly, this technique is not ap-
plicable to streams where the queries are processed
simultaneously instead of sequentially and where the
operator order that is heavily employed to find the
best set of sub-queries in [119] is much less flexible.

Some of the previous work on evaluating and op-

[48] Finkelstein, S. J. 1982. Common subexpression analysis in
In Proc. of the ACM SIGMOD Inter-

national Conference on Management of Data. 235-245.

database applications.
[123] Sellis, T. K. 1988. Multiple-query optimization. ACM Trans-
actions on Database Systems (TODS) 13, 1, 23-52.
Rosenthal, A. and Chakravarthy, U. S. 1988. Anatomy of a
modular multiple query optimizer. In Proc. of the Interna-
tional Conference on Very Large Databases (VLDB). 230-239.
Sellis, T. K. and Ghosh, S. 1990.
optimization problem. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 2, 2, 262-266.
Roy, P., et al. 2000. E Lcieht and extensible algorithms for
multi query optimization. SIGMOD (ACM Special Interest
Group on Management of Data) Record 29, 2, 249-260.

[119]
[124]

On the multiple-query

[120]

timizing queries for XML streams, such as [4; 28; 56],
has considered the optimization of multiple queries to
be evaluated simultaneously. But, where appropriate,
only some form of prefix compaction on tree queries
is considered, where operators are shared only if they
can be shared continuously from the beginning of the
query plan. Furthermore, no systematic consideration
to the problem has been presented so far. In the fol-
lowing chapter, related work on multi-query process-
ing and querying XML streams is investigated closely.

This work extends these previous approaches by
proposing a novel method to the optimization of
multiple-queries, that optimizes the query plan for
multiple, simultaneously evaluated queries by consid-
ering common sub-queries at any position in the query
plan. For example, if the two very similar queries from
Figure 2.4 and 2.13 are to be executed simultaneously,
the similarities among the queries can be used to re-
duce the operations per element considerably: In Fig-
ure 2.15(a) a common query plan for both queries is
given where the edges are labeled with the queries (for
space reasons 1 stands for the first, 2 for the second
query) they are part of. For convenience, operators
belonging to the first query only are colored in blue,
those part of the second query only in red, and shared
operators remain black. In contrast to a query plan as
shown in Figure 2.15(b), where only those operators
are shared that are part of a common prefix of the re-
spective query plans, this query plan shares also the
label operator ¢ and the output operator. But whereas
the sharing of operators part of the common prefix of
the respective single query plans creates only negligi-
ble overhead on the evaluation (as the bindings gen-
erated by the operators are the same of both queries
until the queries split up), this inner sharing requires a
slight change to the evaluation engine: when elements
and bindings to elements can arrive from several op-
erators that are part of diLerent queries, as it is the
case for the c operator, the following operators have

to process on all bindings encountered, similar to the

[4] Altinel, M. and Franklin, M. J. 2000. E Lcieht filtering
of XML documents for selective dissemination of informa-
tion. In Proc. of the International Conference on Very Large
Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. E Lcieht filtering of XML docu-
ments with XPath expressions. The VLDB Journal (Special
Issue on XML Data Management).

[56] Green, T.J, etal. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference
on Database Technology (ICDT). 173-189.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

(b) Prefix sharing

Figure 2.15: Plans for Figure 2.4 and Figure 2.13

union case. But when the queries are split again or,
as in this case, the result for the di Cerent queries are
determined by the output operator, the bindings en-
countered at that point have to be split based on the
bindings encountered when the sharing started. For
example, in this query plan when the result of query
1 (cf. Figure 2.4) is determined by the output opera-
tor, only those cs for which bindings where created
by the <1 operator connected to the c label operator
have to be considered, but not bindings created by the
<" operator. For a more in-depth description of these
additions to the evaluation model see Chapter 7.

This additional processing introduced by inner
sharings means that it is not always preferable to
share all operators possible, but rather only, if the ex-
pected gain is larger than this overhead. For this rea-
son, the optimal query plan for several queries is not
necessarily the plan with the lowest numbers of oper-
ators, but rather the one that has the best estimated
cost (cf. Chapter 8).

Another important observation when considering
the best query plans for some queries is that the
merged plan may not be cyclic (as any query plan).
Therefore, if you consider the query from Figure 2.4
and the query Q(v4) :- v1 <% v2 [Ccl(v2) [k
v3 [alv3) /B < v4 [biv4) [(v4) for which
a query plan is shown in Figure 2.16, the query plan
shown in Figure 2.17(a) is not a legal query plan for
the two queries. The elements from the stream are
processed several times by the same operator in such
a cyclic query plan which is contradictory to the initial
goal, to reduce the number of operations per element.

15

Furthermore, in such a query plan the simple descrip-
tion of the data flow given above is not any more ap-
plicable. Figure 2.17(b) and 2.17(c) show two di [er}
ent legal query plans for the two queries, the first one
sharing the two <1 operators with their corresponding
label operators, the second one sharing the <1* oper-
ator and its corresponding label operator. Although,
the first query plan has a lower number of operators
and thus seems to be preferable at the first glance, the
second one shares the comparatively expensive <1*
operator and might therefore actually provide a better
evaluation time. Again, the selection of the query plan
depends on the estimation of the cost for evaluating
the query plan as discussed in Chapter 8.

After this informal introduction of queries and (log-
ical) query plans for single and multiple queries, the
next chapter emphasizes the contribution of this work
by presenting a survey of related work on multi-
query optimization and query evaluation against XML
streams. Building upon the informal presentation in
this chapter, a formal definition and description of a
query plan is given in Chapter 4 that is used in Chap-
ter 5 to define the optimization problem, how to con-
struct the optimal query plan for several queries or

query plans.

16 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

Figure 2.16: Plan for query Q(v4) :- v1 <" v2 [c(v2) WP <1v3 [alv3) [WB <v4 [Chiv4) [N (v4)

out

(c) Alternative legal plan

Figure 2.17: Query plans for Figure 2.4 and Figure 2.16

Chapter 3

Related work

In this chapter, a comprehensive overview over research relevant for our concern is presented. Though the

focus is on comparable XML-based systems, some consideration is given to earlier work on relational databases

and tuple streams. Based on the discussion of what sets query optimization for semi-structured data streams

apart from traditional techniques in Chapter 2, an overview over related relational systems is presented cov-

ering scalable trigger systems, continuous query engines and publish-subscribe architectures based on tuple

streams. A more in-depth discussion of XML-based publish-subscribe systems follows, where the number of

queries is large compared to the size of the documents. Single query processors on XML streams, as presented

in the final section, are tailored to the reverse scenario: a single query is processed over a very large (possibly

unbounded) stream.

Contents
3.1 Trigger ProCcessing o o o 17
3.2 Continuous QUEry SYStEMS o i 18
3.2.1 Continuous Query Systems on Tuple Streams 18
3.2.2 Continuous Query Systems on Semi-structured Streams 20
3.3 Publish-Subscribe Architectures 20
3.3.1 Content-based 22
3.3.2 XML-based e 26
3.4 Single Query Processors against XML Streams 30

In order of their emergence, several areas of re-
search on streaming query systems are discussed. It
is worth noting, that the expressiveness of the used
query language decreases from the very general ECA-
Rules in Section 3.1 to the rather limited query abil-
ities of the publish-subscribe systems in Section 3.3.
The decrease in expressiveness is accompanied by
an increase in scalability, allowing more and more
queries to be evaluated at once.

3.1 Trigger Processing

Trigger processing for active databases has attracted
[38; 136].
databases are database systems supporting event-

a great deal of interest, cf. Active
condition-action rules (also called triggers), i.e., rules
that trigger one or more actions if a certain condi-
tion is fulfilled on an incoming event, e.g., an update.
Hence, triggers, more specifically the conditions of
triggers, can be considered as queries on a sequence
or stream of incoming events. Most active databases

17

[38] Dayal, U, et al. 1995. Active database systems. In Modern

Database Systems. 434-456.

[136] Widom, J. and Ceri, S., Eds. 1996. Active Database Systems:
Triggers and Rules For Advanced Database Processing. Mor-
gan Kaufmann.

18

only allow a small number of triggers per event type,
[62] de-
scribes an approach to scalable trigger processing al-

e.g., per update event on a certain table.

lowing large numbers of triggers per event type based
on the TriggerMan system [45] for asynchronous trig-
ger processing. Similar to our work, their approach
is based on the observation, that among a large num-
ber of triggers many are likely to diLlerlonly in the
constants used. Hence, they propose a grouping tech-
nique for triggers based on the signature of their re-
spective predicates, where an expression signature de-
fines an equivalence class of all instantiations of that
expression with di [erent constant values. The con-
stants occurring in expressions of one class are stored
in in-memory data structures for finding all intervals
overlapping a point in the information space. To this
end, the use of the IBS-tree (interval binary search tree)
[63; 64] or the interval skip list [61; 46] as dynamic
data structures for interval data is proposed, i.e., to
support storage of interval data with e [cieht inser-
tions and deletions. Furthermore, an indexing tech-
nique for the expression signatures is defined, index-
ing the expression signatures by their data sources.
There is a substantial di Cerknce to our approach, as
in the case of XML streams the predicates are grouped
by the inherent order of the stream (cf. Chapter 2) and
thus no further indexing of the expression signatures

is possible.

[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In
Proc. of the International Conference on Data Engineering
(ICDE). IEEE Computer Society Press, 266-275.

Eric, H., et al. 1997.
ger processor as an extension to an object-relational DBMS.
Tech. Rep. 97-024, University of Florida, CISE Department.
Hanson, E. N. and Chaabouni, M. 1990. The IBS-tree: A
data structure for finding all intervals that overlap a point.
Tech. Rep. WSU-CS-90-11, Dept. of Computer Science and
Engineering, Wright State University.

[45] TriggerMan: An asynchronous trig-

[63]

[64] Hanson, E. N., et al. 1990. A predicate matching algorithm
for database rule systems. In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data. ACM Press,
271-280.

Hanson, E. N. 1991.

ture for finding all intervals that overlap a point.

[61] The interval skip list: A data struc-
In Proc.
of Workshop on Algorithms and Data Structures, Ottawa,
Canada. Springer Verlag, 153-164.

Eric N. Hanson, T. J. 1996.
for active databases using interval skip lists.

Systems 21, 3, 269-298.

[46] Selection predicate indexing

Information

RELATED WORK
3.2 Continuous Query Systems

Driven by the increasing demand for event-driven
information delivery, in the early 1990s continuous
query systems on relational data streams have been
proposed. In contrast to one-time queries, i.e., queries
that are evaluated once over a point-in-time snap-
shot of the data set, a continuous query is continu-
ously processed over a stream of data. Continuous
queries are often used for monitoring and flow analy-
sis, as they o Lerlexcellent support for alerts and no-
tifications. Typical queries are e.g., “select all stocks
whose price increased by 10% over the last 10 min-
utes” in a financial monitoring system or “report all
packets with a certain destination address” for net-
work analysis. Exemplary applications are the finan-
cial search and monitoring engine Traderbot (http:
//www . traderbot.com) or the stock news monitoring
system “Fly on the Wall” (http://theflyonthewall .
com).

There is an obvious similarity between event-
condition-action rules and continuous query. The
most important di Cerknce is, that trigger processors
usually reside upon traditional DBMS and are tightly
integrated with them. Apart of that, continuous query
systems can be seen as a specialization of trigger sys-
tems, providing a more e [cieht and scalable query

evaluation at the cost of expressiveness.

3.2.1 Continuous Query Systems on Tuple

Streams

Early work on continuous query systems has concen-
trated on data streams consisting exclusively of inser-
tions (append-only) [131]. With the increasing success
of the Internet for information delivery, the need for
monitoring diverse data streams in a distributed envi-
[86] describes

the OpenCQ query system, a three-tier architecture

ronment has become more pressing.

for querying streams from diverse sources, and pro-
poses the use of common multi-query optimization
enhanced by incremental query evaluation as detailed

[131] Terry, D. B, et al. 1992. Continuous queries over append-
only databases. In Proc. of the ACM SIGMOD International
Conference on Management of Data. ACM Press, 321-330.

Liu, L., et al. 1999.
event-driven information delivery.
Knowledge and Data Engineering (TKDE) 11, 4, 610-628.

[86] Continual queries for internet scale

IEEE Transactions on

http://www.traderbot.com
http://www.traderbot.com
http://theflyonthewall.com
http://theflyonthewall.com

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

in [85].
system [128] employs a rather constricted query lan-

Catered to network analysis, the Tribecca

guage, allowing only operations on the current data
item of the stream or on a fixed-size window. Opti-
mization for multiple queries are not considered.

Recently, research on continuous queries over
streams of tuples has concentrated on two areas. In
the context of the Telegraph project at UC Berkeley,
several techniques for adaptive continuous query sys-
tems have been proposed [89; 30]. In this context,
an adaptive continuous query system treating queries
and data as duals, i.e., where both data and queries are
streaming and multi-query processing is viewed as a
join of query and data streams. Therefore, these sys-
tems allow new queries as well as new data to arrive at
any time. They combine conventional techniques for
multi-query optimization (most notably the predicate
filter as detailed in [89] that is similar to the approach
in the TriggerMan system) with a novel adaptive query
planer [9]. Furthermore in [30], the approach of treat-
ing data and queries in a symmetric manner is ex-
tended to the notion of allowing new queries to be
evaluated even on data that has arrived prior to the
query.

Another focus in research is the definition and im-
plementation of a general architecture for relational
stream management systems. There are two major
projects currently underway to specify such an archi-
tecture: The STREAM project at Stanford and the Au-
rora project at Brandeis University, Brown University
and M.I.T. Both projects share the desire to present a
comprehensive framework for processing of relational
data on streams.

In [10] a survey over existing approaches and an

[85] Liu, L., et al. 1996.
queries. In Proc. of the International Conference on Dis-

tributed Computing Systems (ICDCS). 458-465.

Di Cerkntial evaluation of continual

[128] Sullivan, M. and Heybey, A. 1998. Tribeca: A system for
managing large databases of network tra [Lc_1In Proc. of the
USENIX Annual Technical Conference.

[89] Madden, S., et al. 2002. Continuously adaptive continuous
queries over streams. In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data.
Chandrasekaran, S. and Franklin, M. J. 2002.

queries over streaming data.

[30] Streaming

In Proc. of the International
Conference on Very Large Databases (VLDB).

[9] Avnur, R. and Hellerstein, J. M. 2000. Eddies: Continuously
adaptive query processing. In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data. ACM Press,
261-272.

[10] Babcock, B., et al. 2002. Models and issues in data stream

19

outlook on potential research issues is presented.
Based upon this work, [11] presents a general and flex-
ible architecture for continuous queries clearly identi-
fying the various components of a continuous query
system. Features of a traditional DBMS are also pro-
vided. Their architecture is flexible in the sense, that
it can support any combination of append-only and
update-able input and answer stream, whereas our
work assumes both streams to be append-only, in par-
ticular the answer stream is monotonic, as any ele-
ment of the input or answer stream that is update-able
has to be bu [Cerkd until it can no longer be updated,

e.g., until the end of the stream.

In [101], the STREAM system is further extended by
adding resource management and approximation, and
a formal semantics for continuous queries (with user-
specified sliding windows) over relational data is pro-
posed. Furthermore, the e [ecks of their resource man-
agement strategies on established multi-query opti-
mization techniques (considering common subexpres-
sions and subexpression containment) are addressed
together with a short discussion of issues on sharing
not only common subexpressions but also synopses
for approximation.

Due to the focus on monitoring applications the
Aurora project [24] dilers considerably from the
STREAM system, as it is tailored to real-time opera-
tion and does not provide traditional DBMS features.
By elaborate monitoring of the Quality of Service (QoS)
dynamic resource allocation and graceful degradation
strategies, such as load shedding during periods of
high load, are suggested. Apart of the dynamic re-
source allocation, the Aurora system can be seen as
a generalization of prior work on network monitoring
[128] and scalable trigger systems [62].

systems. In Proc. of the ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems (PODS).
[11] Babu, S. and Widom, J. 2001. Continuous queries over data
streams. SIGMOD (ACM Special Interest Group on Manage-
ment of Data) Record, 109-120.
[101] Motwani, R., et al. 2003. Query processing, approximation,
and resource management in a data stream management
system. In Proc. of the Conference on Innovative Data Sys-
tems Research (CIDR).
[24] Carney, D., et al. 2002. Monitoring streams: A new class of
data management applications. In Proc. of the International

Conference on Very Large Databases (VLDB).

20

3.2.2 Continuous Query Systems on Semi-
structured Streams

Aside of continuous query systems for relational data
streams, continuous queries against semi-structured
streams have received some interest from researchers,
though publish-subscribe architectures, as outlined in
the following section, support an even larger number
of queries, hence are better suited for the chief appli-
cation area of XML, the Internet.

In [32; 31] a scalable continuous query system for
XML data streams, called NiagaraCQ, is described.
The core approach in NiagaraCQ to achieve scalabil-
ity is based on the idea to group continuous queries
on predicates using their signature similar to the ap-
[62].

apply this technique to XML data streams, where in-

proach taken in The chief contribution is to
stead of attributes arbitrary path expression can be
the data source of a predicate. Furthermore, they
extend this approach to include join predicates, i.e.,
predicates on two data sources. Nevertheless, scalabil-
ity is severely limited in this approach: First, any data
source used in a predicate is bu Cerkd entirely during
the file scan thus providing random access to the data
for the remaining operators. As argued in Chapter 2,
this is not appropriate for large documents. Further-
more, though experiments in [32] show the expected
increase in performance by employing grouping tech-
niques, the scalability is still limited to thousands of
queries by the high expressiveness of the employed
query language (XML-QL).

Albeit focused on the integration of network-bound
data, the Tukwila system developed at the University
of Washington [72; 73] has a similar evaluation model.
Well-established techniques for query evaluation in re-

[32] Chen, J., et al. 2000.

query system for internet databases.

NiagaraCQ: A scalable continuous
In Proc. of the ACM
SIGMOD International Conference on Management of Data.
SIGMOD Record 29, 2, 379-390.

Chen, J., et al. 2002.
tive selection placement strategies in optimizing continu-

[31] Design and evaluation of alterna-

ous queries. In Proc. of the International Conference on
Data Engineering (ICDE).

[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In

Proc. of the International Conference on Data Engineering

(ICDE). IEEE Computer Society Press, 266-275.

Ives, Z. G,, et al. 2001. Integrating network-bound XML data.

IEEE Data Engineering Bulletin 24, 2, 20-26.

[72]
[73] Ives, Z. G, et al. 2002. An XML query engine for network-
bound data. VLDB Journal Special Issue on XML Data Man-
agement.

RELATED WORK

lational databases are extended by the x-scan opera-
tor, that provides pattern matching of incoming XML
data against simple tree expressions and generates in
essence tuples of bindings between variables and in-
put trees. Most selection or filter operators are ap-
plied to the tuples provided by the x-scan operator.
Again as discussed in Chapter 2, this is not feasible
in our context. In particular, the tuples generated by
the x-scan operator can be prohibitively large. For this
case, [73] suggests to swap the tuples to secondary
storage. As demonstrated by the various proposals
for publish-subscribe systems and our work the gen-
eration of these tuples can be avoided in most cases
by pushing the selection operators inside the docu-
ment scan. The adaption of a virtual memory man-
ager for XML tree fragments similar to the Tukwila
XML Tree Manager would allow queries over windows
larger than the available main memory and might be
considered for future work. Furthermore, the match-
ing operator x-scan treats XPath expressions as regu-
lar path expressions, creating an NFA for each query.
The NFA is then translated into a DFA using the stan-
dard construction. The disadvantage of this approach,
as discussed in the next section, is that the DFA can
grow exponentially in the size of the queries. Recent
work extends the x-scan operator to multiple queries,
allowing several queries to be processed in a single
pass, but does not provide considerable optimization
on the queries.

Based on the techniques employed in the publish-
subscribe system XFilter, as presented in more detail
in the following section, a continuous query system
for mobile clients (CQMC) has been proposed in [108].

3.3 Publish-Subscribe Architectures

With the advent of high-bandwidth communication at
low cost, the number of sources generating quickly
large amounts of data increases. The increasing num-
ber of sources (or publishers) combined with more
and more users or subscribers, make an e Lcieht deci-
sion which data shall be transfered (on what way) to
a subscriber imperative. This decision is at the heart
of publish-subscribe systems, that provide an e [cieht

way to deliver the desired (parts of) publications to

[108] Ozen, B., et al. 2001. Highly personalized information de-
livery to mobile clients. In Proc. of ACM International Work-

shop on Data Engineering for Wireless and Mobile Access.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS
subscribers. If this decision is based on the content
of the publications (rather than on fixed meta-data,
such as an address), a query processor is needed to
filter and route the data. Obviously the scalability re-
quirements for such an architecture are even higher
than in a continuous query system (e.g., hundreds of
thousands to millions of subscribers for a high rate
of publications). Hence, there is an inherent trade-
o [in the design of a publish-subscribe system: The
more expressive the subscription language, i.e., the
(query) language in which the subscriptions are for-
mulated, the less scalable the query processor. If on
the other hand the expressiveness of the subscription
language is too low, the selectivity of the subscriptions
might su [er] increasing the amount of (potentially
useless) data and diminishing the usefulness of the
subscription system. Based on this observation, the
expressiveness or flexibility of the subscription lan-
guage used for filtering of the publications can serve
as a characteristic trait of a publish-subscribe system:

— In the most basic case, a limited number of pre-
defined channels or groups is provided by the sys-
tem and a subscriber can only select among these.
A famous example for such a channel-based publish-
subscribe system is the USENET News based on the
Network News Transfer Protocol [76] with millions
of users and gigabytes of daily tra Cc_1The USENET
News system can also serve as an example for the
advantages and pitfalls of a channel-based publish-
subscribe system: Though it is able to support enor-
mous amounts of subscribers and publications (more
than 700 million publications since 1981), most users
receive large numbers of news messages they are not
interested in, as the selectivity of a group based ap-
proach is limited (even for the USENET News with
thousands of newsgroups). The communication over-
head induced by the transmission of messages unre-
lated to the users information interest is considerable.

— Therefore, content-based publish-subscribe sys-
tems allow subscriptions to be specified as predicates
over an information space, i.e., a finite number of pre-
defined attributes. In this case, publications are usu-
ally represented as attribute-value pairs and subscrip-
tions are conjunctions of predicates. The obvious ad-
vantage is increased flexibility (and hence selectivity)

[76] Kantor, B. and Lapsley, P., Eds. 1986. Network news trans-
fer protocol - a proposed standard for the stream-based

transmission of news. RFC 977, IETF.

21

for the subscriptions, as the subscriber can combine
arbitrary attributes, reducing the number of unwanted
publications. The disadvantage is, that a query proces-
sor is needed to match publications to subscriptions.
Most recent publish-subscribe systems fall into this
class.

Clear evidence of the demand for content-based sys-
tems is provided by the popularity of the PointCast
news distribution network (http://www.pointcast.
com), documented in [117], or the call for applica-
tions and techniques to e [ectively filter sensor, mon-
itor and tactical data on a battlefield in the context of
the DARPA “Battlefield Awareness and Data Dissemi-
nation (BADD)” [43] project.

— Though sometimes considered as a special case
of content-based publish-subscribe systems, the in-
troduction of structural matching of semi-structured
data (usually in XML) poses novel challenges. Most im-
portantly, the number of data sources, i.e., the number
of di Lerknt XML elements referenced in the query, is
in general no longer finite due to the hierarchical and
possibly recursive structure of XML. A system capable
of filtering XML data using an appropriate query lan-
guage (such as regular path expressions or XPath [34])
is here referred to as XML-based publish-subscribe
system.

— The most general class is based on methods
known from information retrieval considering a flat
data model for the message: A subscription speci-
fies some keywords that describe the subscribers in-
tent. Instead of indexing the publications as in tradi-
tional information retrieval systems, the subscriptions
are indexed. The main advantage of a retrieval-based
publish-subscribe system is that it allows the user to
specify a rather vague intent thus further decoupling
the publisher and the subscriber. Those publications
matching the intent of the subscriber to some pre-
defined extend are delivered to the subscriber. For
large-scale systems it is usually not feasible to use

retrieval-based methods for online selection of publi-

[117] Ramakrishnan, S. and Dayal, V. 1998. The pointcast net-
work. In Proc. of the ACM SIGMOD International Conference
on Management of Data. ACM Press, 520.

[43] Douglass, R., et al. 1997. Battlefield awareness and data
dissemination (BADD for the warfighter. In Proc. of the
SPIE, B. R. Suresh, Ed. Vol. 3080. SPIE — The International
Society for Optical Engineering, 18-24.

[34] Clark, J. and DeRose, S., Eds. 1999. XML path language

(XPath) version 1.0.
Consortium.

Recommendation, World Wide Web

http://www.pointcast.com
http://www.pointcast.com

22

cations, but rather for asynchronous delivery, where it
is acceptable that the delivery of a publication may be
considerably later than the publication time. The SIFT
Information Dissemination System [140] utilizes tradi-
tional Boolean and Vector Space Model querying, but
indexes the subscriptions instead of the documents.
As the documents stream in, those publications with
a similarity to a subscription above a specified thresh-
old are delivered to the respective subscriber. Load
distribution is considered, but not as detailed as in the
distributed content-based systems presented in Sec-
tion 3.3.1.

¢
The decision what kind of subscription language
to support, is only one of the issues in a publish-
subscribe system. In [12] two key issues with par-
ticular impact on the e [ciehcy and scalability of a

publish-subscribe system are identified:

(1) The problem of e Cciehtly matching a publica-
tion against a large number of subscriptions. Obvi-
ously, the selection of an appropriate subscription lan-
guage, as discussed above, is part of an answer to this
problem.

(2) The problem of when and where to perform this
matching. Essentially, there are three approaches, as

shown in Figure 3.1, where to perform the matching.

— The straightforward solution is to filter at the
end-points of the communication: Either as in Fig-
ure 3.1(a), all publications (often referred to as mes-
sages or events) are sent to each subscriber that can
decide which messages are relevant leading to large
amounts of unnecessary transmissions, if many sub-
scribers are interested only in few messages. On the
other hand, the filtering can take place at the pub-
lisher, cf. Figure 3.1(b).

interest for any user, this approach can lead to accept-

If most messages are of no

able behavior.

— The most common approach is to allow a sin-
gle centralized mediator, as shown in Figure 3.1(c).
All messages are transmitted to the mediator which

routes them to the subscribers according to the pre-

[140] Yan, T. W. and Garcia-Molina, H. 1999. The sift informa-
tion dissemination system. ACM Transactions on Database
Systems (TODS) 24, 4, 529-565.

[12] Banavar, G., et al. 1999. An e [cieht multicast protocol for

content-based publish-subscribe systems. In Proc. of the

International Conference on Distributed Computing Systems

(ICDCS). 262-272.

RELATED WORK

viously specified subscriptions. Obviously, the scala-
bility of a centralized solution is limited by the (com-
munication and processing) capabilities of the central
system.

— A distributed mediation promises the highest scal-
ability of all approaches at the cost of an increasingly
complex routing. A network of mediators or brokers
(cf. Figure 3.1(d)) is responsible for e Lcieht multicast-
ing of messages from publishers to subscribers. Novel
techniques, such as query merging [36], enable such
e [cieht multicasting. Distributed mediation can be
further distinguished by the topology of the mediator
network, in particular some approaches assume a hi-

erarchical division of the network into subnets.

Table 3.1 gives a classification of various publish-
subscribe systems according to the point of filter-
ing and the expressiveness of their subscription lan-
guage. Note, that research on distributed systems has
almost exclusively focused on channel- and content-
based publish-subscribe systems. Where these results
can be applied to XML-based systems, is an open issue.

Based on the characteristics established in this
section, the following two sections present a con-
cise overview over the most relevant proposals for
content- and XML-based publish-subscribe systems, as

these share some characteristics with our work.

3.3.1 Content-based

Where early systems, such as the Elvin notification ser-
vice [121; 122], have been based on end-point filtering
or centralized filtering [118], it is widely accepted that
a scalable publish-subscribe system requires apart of
an e [cieht matching algorithm a distributed media-
tion service, as pictured in Figure 3.1(d). Before some
of the proposed matching algorithms shall be dis-
cussed in greater detail, a short overview over the var-
ious approaches for a distributed mediation service is
presented.

Most of the recent research on content-based
publish-subscribe systems is focused on e [cieht ar-

chitectures and algorithms for a distributed system

[36] Crespo, A, et al. 2003. Query merging: Improving query
IEEE

Transactions on Knowledge and Data Engineering (TKDE).

subscription processing in a multicast environment.
[122] Segall, B., et al. 2000. Content based routing with elvin4. In
Proc. of AUUG2K (Australian Unix and Open Systems User
Group).
[118] Reiss, S. P. 1990. Connecting tools using message passing
in the field environment. |EEE Software 7, 4, 57-66.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

1:n matching engine:
‘ —subscriber: single query against multiple streams

@)

n:m matching engine:
—multiple queries against multiple streams ‘

—publisher: multiple queries against single stream
i n—
Publisher Subscriber pyplisher
- =] -
I > <3
Publisher Subscriber Publisher

(a) End-point Filtering at Subscriber

Publisher

Publisher

Subscriber

(1)
HO

Subscriber

=

Subscriber

(b) End-point Filtering at Publisher

Subscriber

23

n i
Publisher Publisher
. 1] __ =1
Tl i
v Subscriber v Subscriber
Publisher Publisher
(c) Centralized Mediator (d) Distributed Mediator
Figure 3.1: Topologies of Publish-subscribe Systems
Topology
End-point Mediator
Centralized Hierarchical client/server Peer-to-peer
Field [118]
CORBA Event Service [103] .
o . CORBA Event Service [103] IP multicast [39]
Channel JINI Distributed Event Specifica-))
. NNTP [76] SoftWired’s iBus
tion [129]
Java Message Service [130]
READY [57; 58]
Yeast [81] READY [57; 58]
. L . Gryphon [12; 2]
Content Elvin [121] CORBA Notification Service [104] Yu et al. [143] .
i . Siena [25; 26]
Le Subscribe [114; 115; 47] Siena [25; 26]
Rebeca [97]
Xyleme [102]
XFilter [4], YFilter [42; 41]
XML XTrie [28] Snoeren et al. [3]
MatchMaker [83]
WebFilter [113]
Retrieval SIFT [140]

Table 3.1: Classification of publish-subscribe systems (cf. [26]).

24

(cf. Table 3.1), where the publications are routed from
the publishers to the subscribers over several medi-
ators according to sophisticated routing algorithms.
In this field, publish-subscribe systems are sometimes
also referred to as event notification systems, where
publications are messages and subscriptions are noti-
fication request. With the advent of the CORBA Event
Service and the extended Notification Service [103;
104], providing notification channels with event fil-
tering, durable connections and delivery-guarantee se-
mantics (raising specific issues for designing such a
notification service, cf. [52]), the JINI [129] Platform
for dynamic distributed systems and the Java Message
Service [130] publish-subscribe systems are expected
to be deployed in increasing numbers as enterprise
messaging applications (e.g., iBus Message Server,
http://www.softwired-inc.com). Such messaging
middle-ware (referred to as Message Oriented Middle-
ware or MOM) provides a reliable architecture for mes-
saging between distributed, decoupled components
where publishers and subscribers require no knowl-
Though the CORBA Noti-

fication Service allows some content-based filtering,

edge about one another.

most current enterprise messaging applications are
channel-based publish-subscribe systems.

Building on the centralized event notification sys-
tem Yeast [81], READY [57; 58] provides a general ar-
chitecture for distributed mediation, where matching
starts at subscriber, but parts of the subscription are
placed upstream towards the suppliers on the media-
tors, if a part has a high selectivity. This hybrid ap-

proach is necessary in the READY system to reduce

[103] Object Management Group, Inc. 2001. Event Service Specifi-
cation, 1.1 ed. Object Management Group, Inc.

[104] Object Management Group, Inc. 2002. Notification Service

Specification, 1.0.1 ed. Object Management Group, Inc.

[52] Gore, P., et al. 2001. Designing and optimizing a scalable

CORBA notification service. ACM SIGPLAN Notices 36, 8,
196-204.

[129] Sun Microsystems, Inc. 2001. Jini™ Technology Core Plat-

form Specification, 1.2 ed. Sun Microsystems, Inc.

2002.

Specification, 1.1 ed. Sun Microsystems, Inc.

Krishnamurthy, B. and Rosenblum, D. S. 1995. Yeast: A

general purpose event-action system. IEEE Transactions on

Software Engineering (TSE) 21, 10, 845-857.

Gruber, R. E., et al. 1999. The architecture of the READY

In Proc. of the ICDCS Workshop

on Electronic Commerce and Web-Based Applications.

Gruber, R. E., et al. 2000. READY: A high performance event

notification service. In Proc. of the International Conference

on Data Engineering (ICDE). 668-669.

[130] Sun Microsystems, Inc. Java Message Service API

[81]

[57]
event notification service.

[58]

RELATED WORK

the load on the mediators. In the Gryphon [2; 12] and
the Siena system [25; 26] more elaborate routing al-
gorithms for multicast transmission of subscriptions
are employed. Where the Gryphon system focuses on
an e [cieht matching algorithm (discussed below) us-
ing global knowledge of all subscriptions, the Siena
system uses a clever promotion strategy for subscrip-
tions, only promoting the most general subscriptions
[26] is an

elaborate discussion of the design issues for a large-

from subscriber towards the publishers.

scale publish-subscribe system. The Rebeca [97] sys-
tem developed at the University of Darmstadt com-
bines improved multicasting techniques based on the
Siena system with a technique for incorporating more
general constraints than in previous approaches. Fi-
nally, Crespo et al. present in [36] a formalization
of the query merging problem, allowing several sub-
scriptions at intermediary systems (mediators) to be
merged into a single one that can be propagated to
the neighboring systems and used for routing, thus
limiting the publications send to a subscriber instead
of flooding every subscriber with all publications.
¢

Regardless of the topology used, all publish-
subscribe systems require an e [cieht algorithm
for matching subscriptions to incoming publications
(messages). In [27] two broad categories for matching

algorithms in content-based publish-subscribe sys-

[2] Aguilera, M. K., et al. 1999. Matching events in a content-
based subscription system. In Proc. of the ACM Symposium
on Principles of Distributed Computing. ACM Press, 53-61.
[12] Banavar, G., et al. 1999. An e [cieht multicast protocol for
content-based publish-subscribe systems. In Proc. of the
International Conference on Distributed Computing Systems
(ICDCS). 262-272.
Carzaniga, A., et al. 2000.

pressiveness in an internet-scale event notification service.

[25] Achieving scalability and ex-
In Proc. of the ACM Symposium on Principles of Distributed
Computing. ACM Press, 219-227.

[26] Carzaniga, A, et al. 2001. Design and evaluation of a wide-

area event notification service. ACM Transactions on Com-

puter Systems (TOCS) 19, 3, 332-383.

Mahl, G., et al. 2002.

publish/subscribe systems.

[97] Filter similarities in content-based
In Proc. of the International
Conference on Architecture of Computing Systems (ARCS).
Lecture Notes in Computer Science, vol. 2299. Springer
Verlag, 224-238.

[36] Crespo, A, et al. 2003. Query merging: Improving query
IEEE
Transactions on Knowledge and Data Engineering (TKDE).

Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding for
content-based networking. Tech. Rep. CU-CS-922-01, De-

partment of Computer Science, University of Colorado.

subscription processing in a multicast environment.

[27]

http://www.softwired-inc.com

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

tems are identified:

— The first approach is to start from the attribute
constraints derived from the full set of subscriptions
and move through them consulting the attributes ap-
pearing in the message. Gough and Smith [54] pro-
pose the adaption of automata-based string matching
methods by imposing some order on the attributes
and encoding an event as a string of attribute values in
that order. An NFA is constructed from the subscrip-
tions, accepting all string of attribute values matched
by a subscription.

A similar approach is detailed in [2], used as the
matching algorithm for the Gryphon system. Instead
of constructing an NFA and then translating to a DFA
as in the previous approach, a so-called matching tree
is created directly from the submissions. A careful
study of the average or expected matching time shows
that this approach has an average complexity sublin-
ear in the number of subscriptions N.

However, any approach starting with the attribute con-
straints from the subscriptions is in the worst-case
linear in the number of subscriptions, as in the worst-
case all subscriptions diCerlonly at the last possible
attribute in the matching tree or automaton. This dis-
advantage is obvious, if one considers sparse mes-
sages, i.e., messages using only a few attributes. As
long as there are possible matches among the submis-
sions, the presented approaches have to test every sin-
gle attribute occurring in one of the submissions, in-
stead of skipping all tests on attributes not occurring
in the message.

— The opposite approach is to start from the at-
tributes of the message and move through them con-
sulting the constraints. This is the approach used in
SIFT [140], if a new document is considered to be a
“message” whose “attributes” are formed from the set
of words appearing in the document. It is also the
approach used by Le Subscribe [114; 115; 47]. Le

25

Subscribe goes beyond the SIFT indexing scheme by
providing a main-memory matching algorithm that is
“processor cache conscious” and by providing heuris-
tic optimizations based on a clustering of subscrip-
tions that share the same constraints over the same
attributes, similar to the predicate index of [62], thus
creating a highly scalable system capable of filtering
for millions of subscriptions. The matching algorithm
first determines which predicates are matched by the
events and then matches the predicates to subscrip-
tions. To improve the matching of predicates to sub-
scriptions from a naive algorithm linear in the num-
ber of subscriptions simply counting for each sub-
scription the satisfied predicates, the subscriptions
are clustered by their size and a characteristic pred-
icate, that is the most selective predicate of every sub-
scription in the cluster. Only subscriptions in clusters
whose characteristic predicates have been matched by
the message are considered further. Moreover, in [47]
a dynamic clustering algorithm is proposed, adapting
to changes in the subscriptions, similar to adaptiv-
ity in continuous query systems, as discussed in Sec-
tion 3.2.1. Another variant of this approach is pre-
sented in [27] where a more powerful subscription lan-
guage supporting disjunction is employed. Further-
more, a selectivity table is employed to e [ciehtly de-
termine the predicates using a certain attribute, thus
allowing to filter out all predicates for attributes not
occurring in the message.

These approaches share the common characteristic
that their complexity is roughly bound to the num-
ber of attributes appearing in the message and not
to the number of subscriptions. Hence, for publish-
subscribe systems where large number or subscrip-
tions have to be matched at the same time, the sec-
ond approach is clearly more appropriate. Note, that
the second approach is not immediately applicable to
XML data, as an XML element (a data source of an XML

[54] Gough, J. and Smith, G. 1995. E Lcieht recognition of events

in a distributed system. In Proc. of the Australasian Com-
puter Science Conference.

Yan, T. W. and Garcia-Molina, H. 1999. The sift informa-
tion dissemination system. ACM Transactions on Database
Systems (TODS) 24, 4, 529-565.

Pereira, J., et al. 2000.
extreme speed. In Proc. of the International Conference on
Very Large Databases (VLDB). 627-630.

Pereira, J., et al. 2000. E Lcieht matching for web-based
publish/subscribe systems.

[140]

[114] Publish/subscribe on the web at

[115]
In Proc. of the International

Conference on Cooperative Information Systems. Lecture

Notes in Computer Science, vol. 1901. Springer Verlag, 162-
173.
[47] Fabret, F., et al. 2001. Filtering algorithms and implemen-
tation for very fast publish/subscribe systems. In Proc. of
the ACM SIGMOD International Conference on Management
of Data. ACM Press, 115-126.
[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In
Proc. of the International Conference on Data Engineering
(ICDE). IEEE Computer Society Press, 266-275.
Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding for
content-based networking. Tech. Rep. CU-CS-922-01, De-

partment of Computer Science, University of Colorado.

[27]

26

message) can be selected by an infinite number of dif-
ferent paths.

3.3.2 XML-based

Often based on ideas from content-based publish-
subscribe systems, XML-based publish-subscribe sys-
tems nevertheless pose some novel challenges, most
notably the unbounded number of data sources (cor-
responding to attributes in the content-based case and
to nodes of the XML tree for XML-based systems) and
the fact that the data sources of a message can not be
considered at the same time, thus allowing random ac-
cess, but are rather streamed itself (as a message can
be unbounded in length and depth of the XML tree).

As XML-based publish-subscribe systems dilerl
mainly in the subscription language and the message
model (arbitrary XML data instead of simple attribute-
value pairs) from content-based approaches, finding
an e [cieht and scalable matching algorithm for XML
messages has been the focus in research. All XML-
based publish-subscribe systems are based on two
assumptions clearly separating them from our work.
First, consistent with content-based publish-subscribe
systems, it is assumed that a user is only interested
whether a document matches or not, but not which
parts of a document matches. Thus, these systems
use an XPath query similar to a predicate on the doc-
ument element and are not required to track which
elements actually match the query. Furthermore, the
size of the publications (documents) is assumed to be
rather small, thus enabling certain optimizations on
predicate handling. Both assumptions are not valid
for a general XPath query processor.

¢

In [102] an XML-based publish-subscribe system,
called Xyleme, tailored to monitoring (HTML and) XML
documents in the web is described. This approach is
separated from traditional publish-subscribe systems
in that there is no flow of information from publish-
ers to subscribers that is mediated by the filtering en-
gine, but rather the publish-subscribe system pulls the
data from diverse sources. In contrast to our work,
this approach being focused on monitoring has a lim-
ited expressiveness in regard to structural constraints
for XML documents (only queries of the form “does a

[102] Nguyen, B., et al. 2001. Monitoring XML data on the Web.
SIGMOD (ACM Special Interest Group on Management of
Data) Record 30, 2, 437-448.

RELATED WORK

document contain an element with tag x containing
the string y” are supported). In particular, their algo-
rithm is depending on the average number of atomic
events that grows exponentially, if full path expres-
sions are allowed in the query language. Furthermore,
Xyleme is catered towards smaller documents (which
may be warehoused) and can not process data larger

than memory.

¢

Most approaches for XML publish-subscribe sys-
tems share many similarities to the NFA approach in
[54] and the matching tree algorithm in [2]. Based
on the XFilter system [4], several filtering engines for
the selective dissemination of information (SDI) rep-
resented in XML have been proposed recently. These
systems are focused on e [cieht filtering of (relatively
small) XML messages or documents according to sub-
The XFilter

system establishes the use of deterministic finite au-

scriptions expressed as XPath queries.

tomata for filtering of XML data, thus extending the
approach of [54] to XML data, and proposes a novel
query index optimizing state transitions of the DFAs:
An incoming element label is used as key in a hash
of all element labels occurring in any subscription. In
a hash bucket the states (representing a step in the
XPath expression) reachable from the current state by
the associated hash key are noted. For each such state
s in the hash bucket of the incoming element, all states
corresponding to steps following the associated step
of s in the subscription are added to the appropriate
hash bucket. For the average case this leads to a very
e Lcieht selection of the state transitions in the DFAs.
As with any hash table the proposed query index can
degenerate to linear complexity in the number of sub-
scriptions. As shown in [28] the worst-case complex-
ity of XFilter is O(N x 29) where N is the total number
of subscriptions and d is the maximum level of the

[54] Gough, J. and Smith, G. 1995. E Lcieht recognition of events

in a distributed system. In Proc. of the Australasian Com-
puter Science Conference.

[2] Aguilera, M. K., et al. 1999. Matching events in a content-
based subscription system. In Proc. of the ACM Symposium
on Principles of Distributed Computing. ACM Press, 53-61.

[4] Altinel, M. and Franklin, M. J. 2000. E [cieht filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

Chan, C.-Y., et al. 2002a.

ments with XPath expressions.

[28] E Ccieht filtering of XML docu-
The VLDB Journal (Special

Issue on XML Data Management).

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

document. This worst-case occurs for subscriptions
vil//xLy = vol//.. . //Xy
= Vvm], i.e., expressions of m steps with the same

of the form //x[y =

node test and a predicate between another element
and a distinct constant value. On a document con-
sisting of a single path of x elements, the number of
states in the hash bucket for x grows exponentially in
the depth of the document.

XFilter does not perform multi-query optimization
apart of the use of the above discussed query index.
In [108] support for the construction of results is pro-
vided. Due to the small size of the documents, se-
lection (predicate evaluation) and construction can be
separated from matching in this approach, thus allow-
ing a direct application of the techniques from XFilter
for the matching part. Simple multi-query optimiza-
tion is performed by evaluating identical queries only
once. The optimization of multiple queries by shar-
ing common prefixes is the principal contribution of
YFilter [42; 41]. To enable prefix sharing, an NFA is
used instead of multiple DFAs in XFilter. The gener-
ated NFA is e[eckively a trie over the strings repre-
senting the structural components similar to the NFA
used for matching the regular path expression corre-
sponding to the XPath expression. As expected, ex-
perimental evaluation shows a considerable lower pro-
cessing time compared to XFilter on large number of
subscriptions. Nevertheless, the worst-case (space and
time) complexity of YFilter is exponential in the num-
ber of subscriptions, as the DFA constructed from the
NFA has an number of states exponential in the num-
ber of states in the NFA and the number of states in
the NFA is in worst-case linear in the number of sub-
scriptions. Furthermore, two optimizations for the
handling of predicates and nested path expressions
(such as in Za[b/c]/d) are proposed: Selection post-
ponement delays the evaluation of value-based predi-
cates until a structural match is reached (thus avoid-
ing the evaluation of predicates where no structural

match is reached for the remaining expression). This

[108] Ozen, B., et al. 2001. Highly personalized information de-
livery to mobile clients. In Proc. of ACM International Work-
shop on Data Engineering for Wireless and Mobile Access.

[42] Diao, Y., et al. 2002. YFilter: E Ccieht and scalable filtering
of XML documents. In Proc. of the International Conference
on Data Engineering (ICDE).

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted for pub-
lication, ww.cs.berkeley.edu/~diaoyl/publications/
yfilter-public.ps.

27

approach closely resembles the handling of selections
in the Tukwila system [73]. To evaluate nested path
expressions the paths are separated (/a[b/c]/d into
/a/d and /a/b/c) and evaluated as separate queries,
recording for each match of one of the paths which
nodes in the document have been matched. These
records are consulted afterwards to find the matching
subscriptions. Both optimizations are based on the as-
sumption, that is a Cardable to store possibly all nodes
in a document for further processing, an assumption
invalid for unbounded streams as in our case. In [41]
the authors argue that their experimental evaluation
shows that the cost for matching a subscription is no
longer the dominant cost if compared to parsing and
further processing and thus no further optimizations
(e.g., to avoid the exponential complexity) is neces-
sary. In contrast we believe that their result strength-
ens that the expressive power of the query language
can be further improved without considerably harm-
ing the e [ciehcy of the evaluation. In contrast to our
work, XFilter and YFilter employ a rather weak query
language restricted to child and descendant axes and
to value-based and simple structural predicates.
¢
For the open-source “XML Toolkit for Scalable XML

Stream Processing” [8], another approach for e 1

ciently processing large numbers of XPath expressions
against streams has been proposed in [56]. Similar to
YFilter a single NFA for all XPath expressions is con-
structed. But instead of the construction of an ea-
ger DFA with possibly exponential number of states,
a lazy DFA is proposed. The main contribution is to
show, that under certain assumptions the space and
time complexity of the lazy DFA is independent of the
number of subscriptions. If one considers only simple
path expressions with child and descendant, the num-
ber of states in the lazy DFA is at most exponential in
the size of the schema, i.e., in the number of elements
declared in the schema, and the time for processing a
single element from the stream inside the DFA is lin-

ear in the size of the schema, as any state in the DFA

[73] ves, Z. G, et al. 2002. An XML query engine for network-
bound data. VLDB Journal Special Issue on XML Data Man-
agement.

[8] Avila-Campillo, 1., et al. 2002. XMLTK: An XML toolkit for
scalable XML stream processing. In Proc. of the Workshop
on Programming Language Technologies for XML (PLAN-X).

[56] Green, T.J, etal. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference

on Database Technology (ICDT). 173-189.

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

28

can have at most for each element in the schema a dif-
ferent outgoing transition and a hash is used for deter-
mining which transition is performed. Note however,
that naturally if each element is matched by each sub-
scription, the generation of output bindings requires
linear time in the number of subscriptions. This is,
of course, true for any XML-based publish-subscribe
system. Furthermore, for each state in the DFA a set
of corresponding NFA states with size N % | has to be
maintained.

It is important to emphasize, that these results only
hold for a rather limited query language, as similarly
stressed in YFilter [41]. Most notably, if constant val-
ues are used in the expressions (a very common occur-
rence in XPath expressions) time and space complexity
are linear in the number of subscriptions in the worst-
case. Moreover, predicate handling is not considered
thoroughly, only a naive sketch with complexity N x|
is considered. More elaborate treatment of predicates
is not discussed in [56]. As mentioned before, we be-
lieve that it is not desirable to reduce further the ex-
pressiveness of an XPath-based subscription language,
but propose e [cieht methods for handling a larger
subset of XPath. Indeed, recent work [60] extends this
approach to XPath expressions with predicates. Predi-
cates can be shared among queries, if they are identi-
cal, but there is no sharing between expressions inside
and outside predicates.

¢

Abutted to the matching tree described in [2], in
[29; 28] a novel index structure called XTrie is pro-
posed. The XTrie indexes substring of XPath expres-
sions rather than individual steps as in XFilter or YFil-
ter. A substring of an XPath expression e is defined to

be a sequence of element labels, such that there is a

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-
tion for high-performance XML filtering. Submitted for pub-
lication, ww.cs.berkeley.edu/~diaoyl/publications/
yfilter-public.ps.

[60] Gupta, A. K. and Suciu, D. 2003. Stream processing of XPath

In Proc. of the Proc. of the ACM
SIGMOD International Conference on Management of Data.

queries with predicates.

[2] Aguilera, M. K., et al. 1999. Matching events in a content-
based subscription system. In Proc. of the ACM Symposium
on Principles of Distributed Computing. ACM Press, 53-61.

[29] Chan, C.-Y,, et al. 2002b. E Lcieht filtering of XML docu-
ments with XPath expressions. In Proc. of the International
Conference on Data Engineering (ICDE). 235-244.

[28] Chan, C.-Y., et al. 2002a. E Lcieht filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special
Issue on XML Data Management).

RELATED WORK

path in e consisting in children steps with node-tests
corresponding to the element labels in order of there
occurrence in the sequence. Furthermore, a substring
decomposition of an XPath expression e is a set of sub-
strings of e, such that each step of e occurs in at least
one substring, and is said to be minimal, if each sub-
string s is of maximal length, i.e., there is no longer
substring containing s, e.g. the substrings ab and c
form a minimal decomposition of /as/b//c. Finally,
a “simple” decomposition of an XPath expression e is
a substring decomposition S of e, such that for each
branching step v (e.g., the /b step in /a/b[c]/d) ine
their is a maximal substring with last node v in S and
all other substrings in S are maximal. For each XPath
expression (representing a subscription) the “simple”
substring decomposition is determined and the result-
ing substrings are indexed in a traditional trie. Hence,
the space cost of an XTrie is dominated by the num-
ber of substrings in each XPath expression, while the
space cost of an approach similar to XFilter, indexing
individual steps, is dominated by the number of ele-
ment labels.

Furthermore, [28] provides sophisticated optimiza-
tions to reduce the number of unnecessary index
probes (e.g., by using a lazy XTrie) and to prune re-
dundant partial matchings. Experimental evaluation
indicate that this approach outperforms XFilter con-
sistently. A comparison between YFilter and XTrie has
not been performed. The query language is a simi-
lar subset of XPath as used in XFilter (only child and
descendant axes and simple predicates), but allows
ordered matching among siblings by support of the
following-sibling axes. Order between arbitrary nodes
in the document (i.e., following axes) is not considered
and the proposed technique for sibling order can not
trivially be extended to arbitrary nodes.

As stated above, by indexing substrings the space
and time complexity of XTrie are bounded by the num-
ber of substrings in each XPath expression rather than
bﬁ;—t_'?e number of elements. More precisely, let Ns =

i=1 S_1 be the number of substrings in all simple de-
compositions S of all N XPath expressions. Naturally,
the XTrie itself has a space complexity of O(Ns), but
the algorithm also requires several other data struc-
tures with O(Ns < d), where d is the maximum depth
of the document. As the algorithm considers all oc-
currences of a substring in an XPath expression, the
worst-case time complexity is O(max(1%2 < d x N, Ns))
with I maximum length of a subscription. Consider-

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

29

Approach Focus (Worst-case) Complexity
Space Time
XFilter N DFAs transition index N x 2 29xNxn
YFilter NFA prefix sharing max(n, 2N*") 24N xn
XTrie Trie substring indexing N xIxd 12xdxNxn
XMLTK single (lazy) DFA limited-size schema N x | x 28 min(S,N) xn
with selection on value: max(25,N) x N x | I <N xn
MatchMaker specific index structure max(n,N x max(d,l)) max(d,l) xN xn

Table 3.2: Comparison of matching engines for XML-based publish-subscribe systems. Let N be the number

of subscriptions, | the maximum length of a subscription, d the depth of the document, n the length of the

document, and S the size of the schema for the XML stream.

ing N XPath expressions with descendant axis only
and where no element label occurs twice, the number
of substrings Ns is bound to the number of steps of
all XPath expressions, i.e., to | x N. Thus, the over-
all worst-case complexity for processing a node is lin-
ear in the number of subscriptions and their length,
O(IZ x L x N).
¢

Based on a novel index structure, [83] presents a
system, called MatchMaker, for e [cieht matching of
large numbers of queries (subscriptions) against an
XML stream, where the size of the document is small
compared to the number of queries. Special con-
sideration is given to chain queries, i.e., single path
queries (without structural predicates). The matching
of (chain or tree) queries to a document is specified
as a labeling problem, where a node in the document
The
main contribution is a novel index structure, called

is labeled with all queries selecting that node.

dual index, that can e [Cciehtly support the following
three types of queries for labels 11 and I3, viz., which
queries start with 11, which queries contain 11/15, i.e.,
I1 and I, in a parent-child relation, and which queries
contain I,//15, i.e., I; and I, in an ancestor-descendant
relation (at any position). This index is implemented
using hash tables. Algorithms based on this index
for chain and tree queries are presented distinguished
from the above discussed systems in that all match-
ings of a query are determined, instead of only de-
ciding whether or not a query matches a document.
The main disadvantage is, that two passes over the

stream are required, i.e., the entire stream has to be

[83] Lakshmanan, L. V. and Parthasarathy, S. 2002. On e [cieht
matching of streaming XML documents and queries. In
Proc. of the International Conference on Extending Database

Technology (EDBT). 142-160.

bu [Cerkd in any case. Worst-case space and time com-
plexity are given in Table 3.2. Note, that the used
query language is similar in expressiveness to the one
used in, e.g., XFilter, only supporting child and descen-
dant axes and structural predicates.
¢

Apart of the aforementioned XML-based publish-
subscribe systems, summarized in Table 3.2, in [113]
a very fast XML-based publish-subscribe system called
WebFilter based on the ideas of Le Subscribe [47] (cf.
Section 3.3.1) is proposed, though no details on the
matching of event paths to subscriptions is presented.
The first XML-based distributed publish-subscribe sys-
tem is described in [3] with focus on reliable transmis-
sion. No consideration of e [cieht matching of XML
documents to subscriptions is provided, but a simple
XPath engine (based on the Gnome libxml library) is
used. Finally, in [77] an architecture called MDV for
distributed meta-data management is proposed. RDF
data is filtered using an approach similar to traditional
trigger systems.

In Table 3.2 important characteristics of various
XML-based publish-subscribe systems are summa-

rized. Note, that all of the systems have a limited ex-

[113] Pereira, J., et al. 2001. WebFilter: A high-throughput XML-
based publish and subscribe system. In Proc. of the Interna-
tional Conference on Very Large Databases (VLDB). 723-724.

[47] Fabret, F., et al. 2001. Filtering algorithms and implemen-

tation for very fast publish/subscribe systems. In Proc. of
the ACM SIGMOD International Conference on Management
of Data. ACM Press, 115-126.

[3] Alex C. Snoeren, Kenneth Conley, D. K. G. 2001. Mesh-based

content routing using XML. In Proc. of the ACM Symposium

on Operating Systems Principles (SOSP). 160-173.

Keidl, M., et al. 2002. A publish & subscribe architecture for

distributed metadata management. In Proc. of the Interna-

[77]

tional Conference on Data Engineering (ICDE). 309-320.

30

for $X in $R/a return
for $Y in $X/b return
<res>3$Y,$X</res>

Figure 3.2: Example query in [87].

pressiveness, restricting queries to child and descen-
dant axes and (if at all) to simple predicates. Further-
more, with the notable exception of XMLTK without
selections on value, all systems have space and time
complexity for matching at least linear in the number
of subscriptions. No comparison of the average per-
formance is given, as all of the more recent systems
(YFilter, XTrie, and XMLTK) provide experimental eval-
uation only in respect to XFilter.

3.4 Single Query Processors against

XML Streams

Recently, several query processors for single XPath or
XQuery expressions against XML streams have been
proposed. These proposals are set apart from the
publish-subscribe systems discussed in the previous
section by the fact, that no consideration to multi-
query optimization is given. Consequential, they are
usually tailored to support a larger subset of XPath
(or XQuery) than the previously discussed systems,
thus providing a higher expressiveness at the cost of
lower scalability. Furthermore, the material problem
is to allow an e [cieht evaluation over large, possibly
unbounded documents rather than a stream of small
documents. A subset of XPath that can be easily eval-
uated in a single run is identified in [40]. In [107] it
is shown, that the reverse axes of XPath can be imple-
mented using forward axes only. For an overview of
the discussed systems and their complexity refer to
Table 3.3.

In [87] an XQuery processor, called XML stream ma-
chine (XSM), based on finite state transducers com-
bined with bu Cerk is presented. As they focus on the
evaluation of joins enabled by the use of bu [Cerk, the
supported subset of XQuery regards joins and element

[40] Desai, A. 2001. Introduction to sequential XPath. In Proc.
of the IDEAIlliance XML Conference.
[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).
Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109-125.

RELATED WORK

creation, but is restricted to a descendant-like axis
(with limited expressiveness, as non-recursive data is
assumed, thus precluding nested occurrences of ele-
ments) and value-based predicates, cf. Query 3.2 for
an example. The support of joins and construction
immediately mandates the use of bu [Cerk for each vari-
able in the body (return or where clause) of an FLWR
expression, that is not the loop variable of that FLWR
expression, thus leading to a space complexity linear
in the size of the stream. Furthermore, as the result of
a query can be exponential in the size of the original
stream (e.g., Query 3.2), the worst-case time complex-
ity is O(n') where n is the size of the stream and | is
the length of the query. Experimental evaluation (with-
out nested queries) points to the expected linear time
complexity in the size of the data for queries with lin-
ear data complexity, i.e., for queries without join and
construction. We believe, that these results strengthen
our position, that (exact) joins and construction over
multiple dimensions are inappropriate for evaluation
against possibly unbounded streams.
¢
The xaog algorithm presented in [13; 14] is a
streaming algorithm for handling both forward and
reverse axes. Note however, that no horizontal axes,
such as following or preceding, are supported. Also
only simple structural predicates are considered. The
handling of the horizontal reverse axes (and the re-
sulting query tree, called X-Dag) resembles closely the
first approach presented in [107]: An expression like
/descendant::n/ancestor::m is treated by selecting the
n node by two paths, viz., /descendant::n and /de-
scendant::m/descendant::n. The presented algorithm
xooc finds all matchings of a query in O(Ixn?) space
and time for matching where n is the size of the doc-
ument and | the number of steps in the query. Ex-
perimental evaluation in [13] indicates that the xoo¢g
algorithm performs slightly better than a conventional
XPath engine such as Xalan.
¢
Based on hierarchical
(HPDT), the XSQ system [112; 111] has many simi-

pushdown transducers

[13] Barton, C., et al. 2002. An algorithm for streaming XPath
processing with forward and backward axes. In Proc. of the
Workshop on Programming Language Technologies for XML
(PLAN-X).

[14] Barton, C., et al. 2003. Streaming XPath processing with

forward and backward axes. In Proc. of the International
Conference on Data Engineering (ICDE).

[112] Peng, F. and Chawathe, S. S. 2003b. XSQ: Streaming XPath

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

31

Approach Focus (Worst-case) Complexity
Space Time
XSM FSM with bu [Cers joins, construction nxl| n!
X0Qog parent, ancestor I xn2 I x N2
XSQ HDPDT simple predicates, aggregation n+2 nxl
SPEX network of DPDTs RPQ: generic predicates, reverse axes Ixnxd nxdxI

Table 3.3: Comparison of single query processors. Always a single query is assumed. Let | be the length of the

query and n the size of the document.

larities with the fundamental approach of SPEX. The
evaluation model is based on a hierarchy of trans-
ducers similar to a network of transducers as in our
system. But there are two important di Cerences in
the evaluation models: Most importantly the number
of transducers in the XSQ system is exponential in
the length of the query (more precisely in the number
of the predicates occurring in the query), whereas a
SPEX network is always linear in the length of a query.
Furthermore, the various pushdown transducers
constituting a hierarchy are generated in the XSQ
system based on templates for certain predicates,
whereas SPEX provides a generic method for predicate
handling. Thus, the language supported by XSQ only
provides certain predicates, viz., value-based and
simple structural predicates, in particular no nested
predicates or multi-step predicates, and no support
for horizontal or reverse axes, such as following or
parent. Some consideration for aggregations is given,
that might also be considered in future versions of
SPEX. Experimental evaluation in [112; 111] points
to significant improvements compared to traditional
XPath engines such as Xalan, but also shows that a
system with a more restricted language, in particular
without predicate handling, such as XMLTK [56] can
outperform this approach. However, the time for
evaluation of a single query is consistently lower than
the time for parsing.
¢
The SPEX evaluation model this work is based upon

is discussed in Chapter 7. Here, only the complexity

queries. In Proc. of the International Conference on Data

Engineering (ICDE).

[111] Peng, F. and Chawathe, S. S. 2003a. XPath queries on
streaming data. In Proc. of the Proc. of the ACM SIGMOD
International Conference on Management of Data.

[56] Green, T.J, etal. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference
on Database Technology (ICDT). 173-189.

is considered for comparison. In [106], it is shown
that the SPEX evaluation model has time and space
complexity O(n < d x I) where n is the size, d the

depth of the stream, and | the size of the query.

This overview of related work establishes that none
of the previous approaches for the optimization of
multiple queries on XML streams has considered the
sharing of operators over the entire query graph in-
stead of prefixes only. Furthermore, no systematic de-
scription of the problem and its properties has been
given so far. In the next chapter, a formal description
of logical query plans is introduced as bases for the

problem description in Chapter 5.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed
and progressive evaluation of XPath. Research report, Uni-
versity of Munich, Institute for Computer Science.

32

RELATED WORK

Chapter 4

Concise Representation of XML Query Plans

As foundation for the discussion of the optimization methods proposed in the next chapters, a concise, yet pow-

erful formal representation for a (logical) query plan is established in this chapter together with its properties.

Contents

4.1 Formalization of a Query Plan

4.1.1 Evaluation Model

4.1.2 Query Plan

4.2

4.3 Use Case: Query Plans for XML Streams.. . .

Use Case: Traditional Relational Query Plans

4.1 Formalization of a Query Plan

To facilitate a formal description of our problem, how
to generate an optimal query plan for several queries
or query plans, a precise definition of a query plan and
its properties is required.

4.1.1 Evaluation Model

The concrete structure and generation of a query plan
depends naturally on the query language and logical
algebra employed in the targeted evaluation engine.
In the following, the properties of an evaluation en-
gine that have influence on the definition of a query
plan, are described by means of an evaluation model
E. An evaluation model specifies the (possibly infi-
nite) sets of queries Qg and query plans Pg that are
considered legal together with a translation tg from
queries to query plans that gives for each query a set
of query plans that can be used to evaluate that query
in this evaluation model. In general, there are (possi-
bly infinite) many query plans associated with a single
query, so that the optimizer can select among these
query plans the one with the lowest expected cost for

evaluation. The cost of a query plan is also specified

as part of the evaluation model by means of a function
ce that assigns to each query plan the expected cost
for evaluation.

In Section 2.3.2, query plans are introduced as
graphs with operators of the logical algebra as ver-
tices. An evaluation model E specifies the set of op-
erators Og that are valid in a query plan for that eval-
uation model. Furthermore, vertices in a query plan
can have several properties (such as the actual label
of a label operator in the query plans shown in Sec-
tion 2.3.2). Therefore, the evaluation model E deter-
mines not only the set Rg of valid properties under
this evaluation model, but also which properties can
be associated with an operator, and provides means
to determine, whether and how two properties can be
merged into a single one: “merging” here indicates
that the resulting property entails both original prop-
erties in such a way, that both properties can still be
evaluated (cf. Chapter 7 for a discussion of multi-
properties in SPEX).

Formally, an evaluation model E is a octuple
(Qe,Pe, te, ce, O, Rg, re, Hg) Where

—QE is the set of valid queries for E,
—FPe is the set of valid query plans for E,

33

34

—te : Qe - p(PE) associates each query with the set
of query plans that evaluate the query,

—cg : PE - IR is the cost function assigning to each
query plan a cost under that evaluation model, it is
required that the cost of a query plan can be com-
puted in polynomial time,

—Ok is the set of operators in query plans from Pg,

—RE is the set of properties in query plans from Pg,

—reg : Og - p(RE) maps each operator to the set of
properties that are allowed for that operator, and

—HEe
signs to pairs of properties the property resulting

Re x Re - Rg is a partial function that as-

from merging the two if they can be merged. It is

assumed, that for all p CRE pe(p,p) =p.

In this section, we concentrate on the properties
of an evaluation model that define the operators and
properties of vertices in a query plan. The characteri-
zation of valid queries and query plans, as well as their
relation is not detailed in this work, except exemplar-
ily in Chapter 7 on the SPEX evaluation model, but it
is assumed, that there is some way to determine the
valid queries and query plans, in particular whether a
query plan can be used to evaluate a given query.

4.1.2 Query Plan

Based on such an evaluation model, it is now easy to
formally define a query plan: A query plan P for an

evaluation model E is a quadruple (G, T, 1T, q) where

—G = (V,E) is a directed graph with vertices V and
edges E,

—T :V - Og assigns to each vertex in G an operator,

—Tt : V - Rg is a partial function, that associates to
some vertices in G a property, such that, for all ver-
tices v, if there is a property r "[CRE with r 7= 11 (V)
then rY [CCFE(T(V)), i.e., each vertex can have at
most one property assigned to it and that property
must be allowed for the operator the vertex repre-
sents (for ease of notation, we understand in the
following, for all vertices v,w [X] 1t(Vv) = 11(W) as
(ACREr = i(v) =C X PCRErP= ni(w) =
r’ COEICREr = ni(v) =CIEPCREr = m(w)),
otherwise 1T (Vv) Z 11(W)),

—q:E > p(QE)\ [Cmhps each edge in G to a non-

empty set of queries this edge is part of,

Each vertex has an operator type, but not all ver-
tices have a property assigned to it. Only edges are
assigned to queries as the incident vertices of an edge

CONCISE REPRESENTATION OF XML QUERY PLANS

are naturally relevant for all queries that edge is part
of. Therefore, it is su [cieht to assign queries to edges
(with the slight exception of isolated vertices, which,
for reasons of conciseness, are not considered here).
For convenience, we extend q to vertices in the follow-
ing way: Let edges(v M) ={e CEl: I [\V: e =
(x,y) CeF (v, %)} be the incident edges of a vertex
V), then

= Vv CEl- (Qe):

1
=)

x MICER

x [E1
elElges(x)q(e) x V]

Unless mentioned otherwise, this extension of q is
used in the following.

To ease the discussion of query plans for multi-
ple queries, two further definitions are helpful: First,
we naturally extend the notion of isomorphism from
graphs to query plans, i.e., two query plans P; =
(G1,T1,1M1,q1) and P2 = (G2, T2, T2, q2) for the same

evaluation model E are isomorphic, denoted by P; [1

P2, if there is a bijection ¢ : Vg, - Vg, such that for
all x andy [V,

—(x,y) [Ek, is equivalent to (¢(x), ®(y)) [Ek,,
(the images of vertices adjacent in G; are adjacent
in Gy),

—T(X) = T(p(X)) (the operator assigned to a vertex
and its image are identical),

—either t(x) and 1t (p(x)) are both undefined or
11(X) = 1t((X)) (the property assigned to a vertex
and its image are coherent),

—if (X, y) LEk;, q((x,y)) = a((@(x), ®(y))) (the
queries assigned to corresponding edges in the two

graphs are identical).

Second, the restriction of a query plan P =
(G, T, mM,q) to a query Q is defined as a query plan

Plo = (Gp|o. Trlq: TIP|o. OpP|o) Where

—Gplo = (VEEY with EP= {e [E& | Q [gle)} and
vBP={v G| | Q [Cq(v)} (the graph G restricted
to those edges that are assigned to Q and their ad-

jacent vertices),
—Tp|p = T|vo(ordinary restriction on functions),
—Tip|, = Tt]yo(ordinary restriction on functions),

—q:EMS p(QE)\ [Cisthow a constant function map-
ping all edges e CEto the singleton set {Q}.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Figure 4.1: Query plan for SELECT S.b FROM S, R
WHERE S.b = R.a AND R.c = "v"

¢

It is crucial to observe that the definitions of eval-
uation model and query plan given above do not re-
strict the shape and properties of a query plan in any
way except that they require that a query plan can
be represented as a digraph. Since any undirected
graph can be represented as a directed graph (with
double the number of edges), this requirement is actu-
ally no restriction. The information about the kind of
graphs that are valid as query plans for a specific eval-
uation model is contained in the translation function
te that associates queries with valid query plans for
evaluating them. When discussing the problem, how
to find an optimal query plans for multiple queries,
and heuristics for solving it, more specific knowledge
about the characteristics of a valid query plan under a
certain evaluation model will prove very beneficial, cf.
Chapter 6.

For this reason and for illustrating the just intro-
duced formal notions of evaluation model and query
plan, a closer look at two concrete examples for eval-
uation models and the kind of query plans they allow

is indicated.

4.2 Use Case:

Traditional Relational Query Plans

Figure 4.2 shows the initial query plan for the re-
lational query Tts p(Os.p=r.a(Or.c==v"(R %< S))) as dis-
cussed in Section 2.1.1.

Formally, this query plan P is defined as the quadru-
(V,E) is the graph de-
picted, with six vertices V = {v1, ... Vg} and five edges
E = {(v1,V3),(v2,V3), (V3,V4), (V4,Vs), (Vs,Ve)}. For

the definition of T, 1T, and g the evaluation model this

ple (G, t,m,q), where G =

query plan is based on is required: Informally, a pos-

35

sible evaluation model for relational queries R uses
the set of operators of the relational algebra plus an
access operator for accessing relations. Each opera-
tor has di [erknt properties, e.g., projection operators
have the property on which set of attributes to project,
selection operators carry the selection expression, and
access operators the relation accessed by them. Using
the textual representation of an operator or property
as identifier, T : {v1 B acccess,vo O access,vz O
x,vqg 8 o,vs 8 o,vg @ mm}and 1T : {v1 B R,v2 B
S,v4 B Rc="“v",vs B Sb=R.a,ve B S.b}. q maps
each edge to the singleton set containing only the
query shown above. The graphical representation
used for relational query plans so far can therefore
easily be mapped to a more formal specification as in-
dicated here.

One might observe, that the query plans under this
evaluation model R can be characterized by the prop-
erties of the underlying graph: Actually, any graph is
a valid query plan for some relational query, if it ad-

heres to the following four restrictions:
—the graph is acyclic,

—the graph is connected, if the query plan as in the

examples evaluates a single query only,

—its vertices can be assigned to operators and prop-

erties in a way consistent with R, and

—all sources of the graph (i.e., vertices without incom-
ing edge) are access operators and access operators

are assigned to sources only,

These conditions are su [cieht and required for any
graph to be a query plan under R for some relational
query (to which the edges of the query plan can be

assigned).

4.3 Use Case:
Query Plans for XML Streams

In Section 2.3.2 the notion of query plans for query-
ing XML streams has been introduced. Here, a formal
interpretation of the graphical representation in that
section is presented.

First, an evaluation model has to be specified. As
in Section 2.3.2, the RPQ semantics is used as basis
for that evaluation model X: The set of operators for
query plans in X is the set of operators in RPQ, i.e.,

36

Figure 4.2: Query plan for query from Figure 2.4

all relation and property operators (label and text op-
erator), enhanced with the structural operators: the
input, output, predicate, intersection, and union op-
erator. The set of properties is the (infinite) set of
restrictions on label and text of an element allowed by
RPQ, partitioned by rx into properties assignable to
label and text operators.

Based on this evaluation model X, the query plan

CONCISE REPRESENTATION OF XML QUERY PLANS

These properties hold for query plans evaluating
single queries such as the one discussed above, as well
as for query plans covering multiple queries, cf. Fig-
ure 2.15(a).

Any graph that respects these three properties, is
a query plan for some RPQ query in X (to which
the edges can be assigned to). Note, in particular,
that a query plan does not have to be connected, al-
though one might observe that all connected compo-
nents in the query plan have as source the same op-
erator, viz. the input operator, that has no properties
(we consider a single data source, the stream of XML
data, only), thus can be merged for all connected com-

ponents, leading to a connected graph with a single

for the query Q(v4) :- v0 < v1 [aqvl) /1 < v2 [kource.

b(v2) W’ (v2) Ml C"¥3 VB <* v4 [Cclv4)
shown in Figure 4.2, can be formally interpreted as a

quadruple P = (G, T, 11, q), where

—G = (V,E) is the graph as depicted, i.e., the graph
with 11 vertices V = {v1,..
{(v1,Vv2), (v2,V3), (V3,Va), (V4,Vs), (Vs, Ve), (V6, V7),

(v7,Vs), (V4,V9), (Vg, V10), (V10, V11)},

.,Vi1} and 10 edges E =

—T maps each vertex to the operator shown, i.e.,
T={v1 B in,vo B<,v3z B label,v4 B [],vs B 1
Ve Bt vy B
label,vi; O text},

label,vg B out,vg B<,vio B

—Tt maps vertices to the properties they carry, i.e.,

nm={vzd a vy cviB b,vi; B “v’} and

—q maps each edge to the original query.

Again, it is most revealing to note some of the prop-
erties of such a query plan:

—These query plans are by definition once more
acyclic as the underlying query language RPQ does
not entail recursive expressions.

—As in the previous case, their input operator must
be a source of the graph and any input operator oc-
curring in the graph must be a source. Furthermore,
there has to be exactly one output operator for each
query evaluated by the query plan, although the
same output operator can be part of several queries.

—Of course, there must be a way, to assign all vertices
of the graph to operators and properties in a way
consistent with X.

Based on the formal representation of an evalua-
tion model established in this chapter, the problem of
multi-query optimization by operator sharing as intro-
duced in Section 2.3.4 is formalized in the following

chapter.

Chapter 5

The Minimum Common Super-Plan Problem

This chapter finally formalizes the problem of finding an optimal query plan for the simultaneous evaluation

of multiple queries. The problem is formalized as an optimization problem and its properties with respect to

complexity and approximability are investigated by comparison and reduction from similar problems mostly

form graph theory.

Contents

5.1 Complexity and Approximability of Optimization Problems

5.1.1 Optimization Problems
512 NPOProblems

5.1.3 Approximability of NP-hard Problems .
5.2 Minimum Common Super-Plan.

5.3 Related Problems

In Section 2.3.4, the core objective of this work is
established: optimize multiple queries by computing
a query plan that evaluates all queries and can be eval-
uated e LCciehtly. Extending previous work using some
form of prefix compaction for tree-shaped query plans
[4; 28], we concentrate on finding an optimal way to
share operators among the queries. Figure 2.15(a) il-
lustrates this approach with a possible common query
plan for the queries from Figure 2.4 and 2.13 based
on the query plans from Figure 2.8 and 2.14(b). Recall,
that the edges are labeled with the queries (abbrevi-
ated by 1 and 2) and that operators belonging to the
first query only are colored in blue, those part of the
second query only in red, and shared operators remain
black.

[4] Altinel, M. and Franklin, M. J. 2000. E Lcieht filtering
of XML documents for selective dissemination of informa-
tion. In Proc. of the International Conference on Very Large
Databases (VLDB).

Chan, C.-Y,, et al. 2002a. E Lcieht filtering of XML docu-
ments with XPath expressions. The VLDB Journal (Special

[28]

Issue on XML Data Management).

37

In this chapter, the proposed approach to optimiza-
tion of multiple queries is elaborated and formalized
as an optimization problem. The following section
provides a short reexamination of relevant definitions
and notations concerning optimization problems and

their properties.

38

5.1 Complexity and Approximability

of Optimization Problems

5.1.1 Optimization Problems

Following [35; 75; 7] finding a feasible solution for
any valid input instance of a certain problem is con-
sidered an optimization problem, if the sought-after
solution is optimal with respect to some measure of
quality associated with a solution and the optimiza-
tion objective. Formally, an optimization problem
M over an alphabet X is described by a quadruple

(In, Sn, mn, goaly), where

(1) Ip X8 the space of input instances.

(2) Sn:lIn - =dssociates with each input instance
X [Id the space of feasible solutions for x.

(8 mp :Inx ™1 RR§ is the measure or objective
function specifying for each pair (X, y) such that
X [T and y [CSh(x) a positive number indi-
cating the quality of the solution y under input
instance X.

(4) goalny Chin, max} indicates whether M is a max-

imization or a minimization problem.

For an input instance X, the set of optimal solutions
of x is denoted b Sr']-%'() ={y CSH(X): mp(x,y) =
goaly{ n CIRR CSh(x) : n = mp(x,z)}. Obvi-
ously, all optimal solutions have the same quality that
will be denoted as optn(X), i.e., optn(X) = mnp(X,y)
forany y CSHEX).

One should observe, that for each optimization
problem 1M there is a corresponding decision problem
Mp: The decision problem asks whether there exists
a feasible solution y of an instance x with a qual-
ity bounded by some K > 0 for a maximization or
K < 0 for a minimization problem. Furthermore, if
the optimization problem can be solved in polynomial
time by a deterministic algorithm, so can the decision
problem. In other words, if the decision problem is

already NP-complete, the optimization problem can as

[35] Crescenzi, P. and Panconesi, A. 1991. Completeness in ap-
proximation classes. Information and Computation 93, 2,
241-262.

[75] Kann, V. 1992. On the approximability of the maximum

common subgraph problem. In Proc. 9th Symp. Theoretical
Aspects of Computer Science. Number 577 in Lecture Notes
in Computer Science. Springer Verlag, 377-388.

[7] Ausiello, G., et al. 1999.
Combinatorial Optimization Problems and their Approxima-

Complexity and Approximation:

bility Properties. Springer Verlag, Berlin.

THE MINIMUM COMMON SUPER-PLAN PROBLEM

well not be solved in polynomial time by a determinis-
tic algorithm unless P = NP.

5.1.2 NPO Problems

Following this observation, optimization problems
can be divided into two classes by their inherent
complexity: the class PO for which a deterministic
polynomial-time algorithm exists and the class NPO
for which a non-deterministic polynomial-time algo-
rithm is known. These classes strictly correspond to
the classes for decision problems P and NP, in par-
ticular the notion of hardness can be extended from
a decision problem to its corresponding optimization
problem. Hence, P # NP implies PO # NPO and vice
versa.

More formally, an optimization problem M =
(1,S, m,goal) belongs to the class NPO and is called
an NPO problem if it is short and easy-to-recognize,

ie,if

(1) the space of instances | can be recognized in
polynomial time,

(2) the solutions are short, i.e., the size of a solu-
tion is reasonable close to the size of the input
instance. Formally, it is required, that there ex-
ists a polynomial p such that, for any x [Tlnd
y C5(x), ly| < p(Ix),

(3) the solutions are easy to recognize, i.e., for any y
such that |y | = p(Jx]) it is decidable in polyno-
mial time whether y is a solution for x, and

(4) the objective function is computable in polyno-

mial time.

It is easy to see, that the corresponding decision
problem of an NPO problem is in NP.

An optimization problem IM is called NP-hard, if ev-
ery decision problem NMYLCNP can be solved in polyno-
mial time by an algorithm which uses an oracle that,
for any instance x [Id, returns an optimal solution
vy ESH%‘() together with its value optn(x). Therefore,
if the corresponding decision problem MNMp of an NPO
problem I is NP-complete, I is NP-hard, since Np can
be solved in the above described manner and all other
NP problems can be solved by an algorithm that solves
Mp.

An NPO problem I is said to be polynomially
bounded if a polynomial p exists such that, for any in-
stance x and for any solution y [CId(x), mp(X,y) <
pdy|). The class NPO PB is the set of polynomially
bounded NPO problems.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

5.1.3 Approximability of NP-hard Problems

Since the optimization problems discussed later in
this chapter prove to be NP-hard, a closer look at this
class of problems is indicated. As there is no deter-
ministic polynomial-time algorithm known for solving
problems from this class, we sacrifice optimality and
start looking for approximate solutions computable in
polynomial time. Of particular interest is the ques-
tion, how well such a problem can be approximated,
i.e., whether an approximate solution can be guaran-
teed to be still reasonably close to an optimal solution.
The following notations are based on [67; 6; 7].

To measure the quality of an approximation algo-
rithm, several notions can be used (e.g., absolute or
relative error). Following [6; 7], the performance ra-
tio of an approximation algorithm is employed here
for determining the quality of the approximation pro-
vided.

For an optimization problem I, the performance
ratio R(x,y) of a solution y under an input instance
x for I is the ratio of the quality of the solution to the

quality of the optimal solution for X, i.e.,

1
mn(x.y) optn(x)
optn(x) " mn(x,y)

R(X,y) = max

By definition, the performance ratio of a solution
is always = 1. Furthermore, this definition allows a
unified treatment of minimization and maximization
problems with regard to the performance ratio of a
solution.

Based on the performance ratio of the solution
an approximation algorithm computes, the quality of
that algorithm can now be judged: An approximation
algorithm A\ for an optimization problem I is called
r (n)-approximate algorithm for P where r : Ny -
Rg is a function, if, for any instance x such that
Sn(x) # L[1he performance ratio of the feasible so-
lution A(X) with respect to X is bounded by r (|x]),
ie,

RO ARQ) = r(IxD.

If an optimization problem admits an r(n)-
approximate deterministic polynomial-time algorithm
we say that it is approximable within r (n).

[67] Hochbaum, D., Ed. 1996. Approximation Algorithms for

NP-hard Problems, 1st ed. Brooks Cole.

[6] Arora, S. 1998. The approximability of NP-hard problems.
In Proc. of the ACM Symposium on Theory of Computing.
337-348.

39

Finally, an algorithm A for an optimization prob-
lem I is said to be an approximation scheme for 1, if
it returns, for any instance x [Ig and for any rational
= 1, feasible solution of x whose performance ratio
is at most [

¢

These definitions can be used to classify optimiza-
tion problems based on their approximability, i.e.,
on whether there is a (deterministic) approximation
scheme or an r (n)-approximate algorithm with poly-
nomial complexity for that problem (all the subset re-
lations are strict if P = NP):

(1) APX [INPO is the class of NPO problems,
such that there exists a deterministic r(n)-
approximate algorithm for some constant func-
tion r (naturally, r(n) = 1 for all n [_N.
Similarly,
poly-APX [CeXp-APX [CNPO where r is a logarith-
mic, polynomial, or exponential function.

(2) PTAS [CAPX is the class of NPO problems that ad-
here to an deterministic approximation scheme
with polynomial complexity in the size of the in-
put instance, i.e., an deterministic approximation
scheme with time complexity bounded by p(|x]|)
for some polynomial p and all input instances X.
Note, that the approximation scheme can still be
exponential in the approximation bound [d.e., it
can be 2/(EMp(|x|) or |x| V(=)

(3) FPTAS [HTAS is the class of NPO problems
with a fully polynomial deterministic approxi-
mation scheme, i.e., an deterministic approxima-
tion scheme with time complexity bounded by
p(x|,1/(= 1)) for some polynomial p.

Even more interesting, than the mere inclusion of a
problem in some of these classes, is naturally the neg-
ative result, that a problem can not be approximated
better than any problem in a certain class. This leads
to the notion of completeness in the di Cerknt approx-
imability classes. To that end, a reduction of one opti-
mization problem to another is needed that preserves
the approximability features. Several such reductions
are proposed in the literature (gap-preserving reduc-
tion [67], AP- or PTAS-reduction [7], E-reduction [78],
F- and P-reduction [35]), here the L-reduction [110] is

[78] Khanna, S., et al. 1999. On syntactic versus computational
views of approximability. SIAM Journal on Computing 28, 1,
164-191.

[35] Crescenzi, P. and Panconesi, A. 1991. Completeness in ap-

one can define classes log-APX [1

40

employed, that represents essentially the strictest no-
tion of reduction, since it requires that the relative er-
ror of an approximated solution in comparison to an
optimal solution for one problem is linearly related to
the relative error for the other problem:

Let A and B be two optimization problems in NPO.
A is said to be L-reducible to B, in symbols A <_ B, if
two functions ¥ and g and two positive constants a

and (3 exist such that,

(1) F :1a - Iz maps instances of A to instances of
B, such that for any x L[4, if Sa(x) # [fhken
Sg(F(x)) = L1

(2) g :la>xSg - Sa maps instances of A and solu-
tions for B to solutions from A, i.e., for any x 14
and any y [S3(F(x)), g(X,y) CSA(X).

(3) f and g are computable in polynomial time in the
size of their input parameters.

(4) For any x L[Ih, optg(F(X)) = aopta(x), ie,
the quality of the optimal solutions is linearly re-
lated.

(5) For any x [IA and for any y [Sg(f (%)), the
relative error of the solutions is linearly related:

[opta(X) —ma(X, g(x, ¥ =
Bloptg (F(x)) — ms(F(x),y¥)I|.

It follows from the definition, that if A <. B and
B [CAPX (respectively, B [CPTAS), then A [CAPX (re-
spectively, A [PTAS).

Based on this notion of reducibility, we can now de-
fine the classes of problems that are in one of the
approximation classes and can not be approximated
better: Given a class C of NPO problems (where C
can be the entire class of NPO problems, the class of
polynomial-bounded NPO problems NPO PB, or one of
the approximation classes defined above), a problem
M is C-hard (with respect to the L-reducibility) if, for
any MYCC) N™< M. A C-hard problem is C-complete
(with respect to the L-reducibility) if it belongs to C.

In [7] it is shown that an NPO-complete problem (an
NPO PB-complete problem) can not be approximated
within 2" (n5or any = 0 unless P = NP.

proximation classes.
241-262.

Information and Computation 93, 2,

[110] Papadimitriou, C. H. and Yannakakis, M. 1991. Optimiza-

tion, approximation, and complexity classes. Journal of
Computer and System Sciences 43, 425-440.

[7] Ausiello, G., et al. 1999.
Combinatorial Optimization Problems and their Approxima-

Complexity and Approximation:

bility Properties. Springer Verlag, Berlin.

THE MINIMUM COMMON SUPER-PLAN PROBLEM

5.2 Minimum Common Super-Plan

The previous section establishes a framework in which
the problem how to find an optimal query plan for
the simultaneous evaluation of multiple queries can
be formalized and investigated:

The problem to find the optimal query plan for the
simultaneous evaluation of multiple queries under a
given evaluation model E, referred to as minimum
common super-plan for a set of queries, is formally
defined as an optimization problem MCSP = (I =

p(QE), S, ce, min) comprised by

(1) the input instances | = ZQ(QE) for the problem,
i.e., all sets of valid queries x [E]

(2) the function S associating with each input set of
queries X I:@(QE) the set of feasible solutions
of the MCSP problem under that input, i.e., the set
of query plans that evaluate exactly all queries
from x, formally, for all x [CT1S(x) [Pg and for
each p [SI{x) and for all g <1 p [fd(q) and
there exists no g~ CQk\x such that p [Id(gD),

(3) the objective function cg assigns to each query
plan (and thus to each solution) a cost used to
judge the quality of several query plans evaluat-
ing the same queries, and,

(4) the optimization objective min indicating that the
optimal solution has minimal cost with respect to
the objective function ce among all solutions for

a certain input.

A solution for the MCSP is a query plan that allows
the simultaneous evaluation of all queries in the in-
put set with a cost optimal under the cost function
cg of the evaluation model E. Although this defini-
tion seems very natural, the use of queries as input
instances has severe consequences: Each query in the
input instance can be evaluated in multiple ways, re-
flected by the query plans that are associated to it
via the translation function tg of the corresponding
evaluation model E. The number of query plans per
query (representing di Lerknt strategies for the evalu-
ation of a query) can be in general very large (possibly
even infinite), e.g., for relational queries the number
of (logical) query plans is roughly exponential in the
size of the query as any reasonable order of operators

has to be considered. [120] expands a conventional

[120] Roy, P., et al. 2000. E Lcieht and extensible algorithms for
multi query optimization. SIGMOD (ACM Special Interest
Group on Management of Data) Record 29, 2, 249-260.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Figure 5.1: Expanded query plan (cf. [120])

query plan for a relational query to contain all possi-
ble orders of operators as shown in Figure 5.1. This
expanded query plan is exponential in the size of the
original query plan (and therefore in the size of the
query). Based on this expanded query plan a simple
but e [Ceckive greedy heuristic is proposed to compute
those prefixes of the query plans that are common in
the query set and therefore should be materialized.

Since we are not only interested in common pre-
fixes, but rather in any commonalities among the
queries, the complexity of the problem further in-
creases. As discussed in the following section, for
the evaluation models of interest as proposed in Chap-
ter 4, the complexity of detecting these commonalities
is exponential in the size of the input, hence increas-
ing the complexity of the problem exponentially in the
number of queries, if we assume that there are roughly
exponentially many query plans per query.

Therefore, we believe that it is preferable to con-
sider not all evaluation strategies for a query, but
rather to restrict oneself to a single such strategy rep-
resented by a query plan per query. Although this al-
lows local optimization on the query plans, it is ob-
vious that it precludes certain global optimizations:
Consider e.g., the case where A [CBs very common
among the queries, but without global knowledge an
optimizer can not know whether to join A and B or B
and C first in a query such as A [B1[CCHepicted in
Figure 5.1. Even in this simple case, global knowledge
would clearly be helpful. Nevertheless, considering
the inherent complexity of the problem (and in face
of the experimental results shown in Chapter 9) the
restriction to a single evaluation strategy per query is
considered essential in all practical cases.

In the following, we will therefore only consider
this simplified problem, the stable minimum com-
mon super-plan SMCSP problem: The problem to find
the optimal query plan for the simultaneous evalua-
tion of multiple queries according to some evaluation
strategies specified as query plans under a given eval-
uation model E, is formally defined as an optimization

41

problem SMCSP = (I = §(Qg x Pg), S, ce, min) com-
prised by

(1) the input instances | for the problem, ie., | =
p(QE x Pg), i.e.,, an input instance is a set of
queries together with their query plan (for rea-
sons of clarity, it is assumed that the query plans
are evaluating the corresponding query only, i.e.,
that for all instances x [Tland for all queries
g,q"and query plans p with (q,p) X, p [
te(q" implies g"= q).

(2) the function S associating with each input in-
stance x [Tlthe set of feasible solutions of the
MCSP problem under that input, i.e., the set of
query plans that evaluate exactly all queries from
X according to the specified query plan for that
query. Formally, for all instances x = (p,q) [11
and all solutions o [CSI(xX) [Pk, o [TE(q),
olq A, and there exists no g~ CQg\x such
that p CTd(qY.

(3) the objective function cg assigns to each query
plan (and thus to each solution) a cost used to
judge the quality of several query plans evaluat-
ing the same queries,

(4) the optimization objective min indicating that the
optimal solution has minimal cost with respect to
the objective function ce among all solutions for

a certain input.

It is worth noting, that the di Cculky of finding a so-
lution for the SMCSP depends noticeably on two ques-
tions:

—How hard is it, to find feasible solutions? The an-
swer to this question depends on the properties of
the underlying graphs of valid query plans. One

can roughly say, the more restricted the structure of

these graphs is, the easier to find feasible solutions.

—How hard is it, to find among these feasible solu-
tions an optimal solution, i.e., what properties does
the cost function adhere to? Under trivial cost func-
tion (e.g., a cost function assigning to all query plans
the same cost) the optimization problem is trivial
once a feasible solution has been found. Interest-

ing cost functions on the other hand, such as a cost
function that assigns cost based on the number of
vertices in the underlying graph of a query plan, lead
to considerable complexity for finding the optimal
solution.

42

Based on these observations, the following section
provides a classification of problem instances based
on the properties of the underlying graphs allowed in
query plans by the evaluation model and shows well-
studied problems mostly from graph theory that pro-
vide insight in the di Cerknt complexities of the prob-
lem instances.

5.3 Related Problems

Finding a maximum common substructure of a set
of structures (be it a graph, tree, string, etc.) and
the dual problem of finding a minimum common su-
perstructure, i.e., a structure entailing all the input
structures as substructures, has been investigated for
some time now: Starting from the famous problems of
graph and subgraph isomorphism (e.g., [134; 93]), the
problem of finding the maximum common subgraph
(mcs) of two graphs has received considerable atten-
tion and is proven not only to be NP-hard but also to
be hard to approximate. [75] shows several variants
of this problem together with their approximability
properties. In particular, the general maximum com-
mon subgraph problem is shown to be as hard to ap-
proximate as the maximum clique problem, i.e., APX-
hard. The best known approximation algorithm for
mcs is O(n/ log n?)-approximate. Restricting the fea-
sible solutions to connected subgraphs, the problem
becomes even harder to approximate [142]: In [75] it
is shown that the maximum connected common sub-
graph (mccs) is NPO PB-complete, i.e., cannot be ap-
proximated within n™for any 3 0 (unless P = NP).
[22] introduces the notion of the minimum common
super-graph (MCS) of two graphs, i.e., a graph that con-
tains both graphs as subgraphs and is minimal among
such graphs. It is shown that the general MCS problem

[134] Ullmann, J. R. 1976. An algorithm for subgraph isomor-
phism. Journal of the ACM 23, 1, 31-42.

[93] McGregor, J. J. 1982. Backtrack search algorithms and the

maximal common subgraph problem. Software-Practice

and Experience 12, 23-34.

Kann, V. 1992.

common subgraph problem. In Proc. 9th Symp. Theoretical

[75] On the approximability of the maximum
Aspects of Computer Science. Number 577 in Lecture Notes
in Computer Science. Springer Verlag, 377-388.

[142] Yannakakis, M. 1979. The e [eck of a connectivity require-

ment on the complexity of maximum subgraph problems.

Journal of the ACM 26, 4, 618-630.

[22] Bunke, H., et al. 2000. On the minimum common super-

graph of two graphs. Springer Computing 65, 1, 13-25.

THE MINIMUM COMMON SUPER-PLAN PROBLEM

can be reduced to the mcs problem and is therefore
at least as di [culk to approximate as the mcs prob-
lem. Being already NP-hard for two graphs, it is obvi-
ous that finding a minimum common super-graph is
also NP-hard for a set of graphs.

Since finding a minimum common subgraph has
proven to be intractable and even hard to approx-
imate, more restricted structures, such as trees or
graphs, have been investigated: The problem of find-
ing a shortest common super-string of a set of strings
is known to be NP-complete [90] and APX-complete
[16], but several approximation algorithms have been
proposed [132; 133; 5], the best of which achieves a
2.5 performance guarantee. While the smallest super-
tree problem for two trees can be computed in poly-
nomial time [139; 59], the problem for more than two
trees is NP- and APX-complete [7].

Table 5.1 summarizes the related problems to-
gether with their complexity if the size of an input in-
stance is 2 or unbounded respectively. Note, that even
for rather simple structures, the problem of finding a
common substructure becomes NP-hard when the in-
put size is not bounded.

In the following, it will be shown that the mccs prob-
lem can be reduced to a certain instance of the SMCSP
with a specific cost function. Therefore, the SMCSP is
NP-hard and NPO PB-complete as well, if the evalua-
tion model does not restrict the structure of the query
plans. The same results hold also if only acyclic query

[90] Maier, D. and Storer, J. A. 1977. A note on the complexity

of the superstring problem. Tech. Rep. 233, Princeton
University. Oct.
Blum, A., et al. 1994. Linear approximation of shortest

superstrings. Journal of the ACM 41, 630-647.

[16]

[132] Turner, J. S. 1989. Approximation algorithms for the short-

est common superstring problem. Information and Compu-

tation 83, 1 (Oct.), 1-20.

[133] Ukkonen, E. 1990. A linear-time algorithm for finding ap-

proximate shortest common superstrings. Algorithmica 5,

313-323.

[5] Armen, C. and Stein, C. 1994. A Zg-approximation algo-
rithm for the shortest superstring problem. Tech. Rep. PCS-
TR94-214, Department of Computer Science, Dartmouth
College, Hannover (NH).

[139] Yamaguchi, A, et al. 1997. An approximation algorithm for

the minimum common supertree problem. Nordic Journal

of Computing 4, 3, 303-316.

[59] Gupta, A. and Nishimura, N. 1998. Finding largest subtrees

and smallest supertrees. Algorithmica 21, 2, 183-210.

[7] Ausiello, G., et al. 1999.
Combinatorial Optimization Problems and their Approxima-

Complexity and Approximation:

bility Properties. Springer Verlag, Berlin.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

43

x| =2 |x| unbounded
problem complexity = complexity approximability
shortest common super-string [90; 132; 133; 16; 5] linear NP-hard APX-hard
minimum common super-tree [139; 59] polynomial NP-hard APX-hard
minimum common super-graph [22] reducible to maximum common subgraph
maximum common subgraph [75] NP-hard NP-hard APX-hard
maximum common connected subgraph [142; 75] NP-hard NP-hard NPO PB-hard

Table 5.1: Related problems (let | x| be the size of an input instance)

plans are allowed, as in the relational and the SPEX
evaluation model. It is important to stress, however,
that these reductions are based on choosing the cost
function in a particular way and therefore do not ap-
It
remains an open issue, whether interesting non-trivial

ply, if the cost function used is of another kind.

classes of cost functions can be identified, that allow
to approximate the SMCSP problem within a bounded
performance guarantee.

As stated above, to reduce the mccs to the SMCSP
problem, the evaluation model must be chosen care-
fully. First, it is required that arbitrary graphs are al-
lowed as query plans. The graphs may be restricted to
be acyclic (since the acyclicity does neither harm the
reduction, nor the complexity and approximability of
the mccs, as shown in [141]) or connected, but may
not be restricted to, e.g., planar graphs, trees, or path
graphs. Both evaluation models described in Chap-
ter 4 fall into this class, since the only substantial re-
striction on the kind of graphs allowed is in both cases
the acyclicity.

Second, the cost function of the evaluation model
has to ensure that the maximum common connected
subgraph of the set of input graphs is always included
in an optimal solution (we understand “G; includes
G2” in the following as: there is a subgraph in G; that
is isomorphic to Gy), i.e., any solution not containing
it must be of penalized. In the case, where arbitrary
graphs are allowed as query plans, it can be guaran-
teed, e.g., by a cost function Kyertices that assigns to
each query plan the number of vertices it contains as
cost, that an optimal solution is a solution containing
the mcs. For acyclic graphs, such a cost function is
not guaranteed to include the mcs in an optimal solu-
tion: Figure 5.2 shows such a case: Both query plans
P; and P2 include the connected graphs A, B, and C
with 3, 2, and 2 vertices respectively, but in P; there

is an edge from a vertex in A to one in B and another

[141] Yannakakis, M. 1978. The node-deletion problem for hered-
itary properties. Tech. Rep. 240, Computer Science Labora-
tory, Princeton University.

(@) P1

Figure 5.2: Example for a SMCSP not entailing the mccs

of two graphs

edge from a vertex in A to one in C, whereas in P, the
edges run in opposite direction. Therefore, either A
or B and C can be part of a feasible solution of SMCSP
of P, and P, since including both A and B or A and
C leads to a cyclic graph. The optimal solution under
Kvertices 1S depicted in Figure 5.2(c): since including A
precludes including both B and C it is preferable un-
der such a cost function to include B and C but not A,
although A is clearly the mccs of the two graphs (since
it is connected).

To insure for acylic as well as for cyclic graphs,
that the mccs is always included in the solution of the
SMCSP requires a slightly di [Cerent cost function: Kmccs
assigns to each query plan a cost based on the inverse
of the number of vertices in the largest subgraph that
is connected and shared by all queries that evaluate
the query plan. Formally, under an evaluation model
E let C(G) be the largest connected component of the
graph G, edges(v M) ={e CH: D [M: e =
(x,y) ek (y,x)} the incident edges of a vertex v,
and Q = . eg0ax(e) then

Kmees ((Gx = (Vx, Ex), Tx, TIx, Ox) (B2 B
1/(1+ %(({v [V | [edCedges(v) LG T QL
p CId(q) =Cgllgk(e))},
{e CEX| gTQ:
p Cid(q) =Cq Ij;l(e)}))%

This cost function guarantees that the mccs of a set

44

of graphs is always included in an optimal solution
of the SMCSP under Kmces: the graph constructed by
sharing the mccs and adding all remaining edges and
vertices from the original query plans without sharing
is acyclic and therefore a query plan (if the query map-
pings of the edges are adapted accordingly) and has
the lowest possible cost, since there can be no larger
connected component shared among all query plans.

Under these cost functions guaranteeing that an op-
timal solution for the SMCSP always includes the mccs
shared among all queries, i.e., in such a way that all
edges of the mccs are assigned to all queries from
the input, it is possible to extract the mccs from an
optimal solution of the SMCSP in polynomial time: it
is the largest connected component in the SMCSP of
the subgraph of an optimal solution of the SMCSP that
is obtained if only edges in the solution are retained,
that are assigned to all queries from the input. Note,
that the largest connected component of a graph can
be obtained in time quadratic in the graph size and
constructing the subgraph containing only edges as-
signed to all input queries is quadratic in the size of
the graph and the input.

This reduction provides that the SMCSP in general
(i.e., for non-restricted evaluation models) is as hard
to solve as the mccs, i.e., NP-hard. Moreover, under
the cost function Kmccs, it should be fairly clear that
this reduction is the basis for an L-reduction from
the mccs to the SMCSP. Since a maximization prob-
lem is reduced to a minimization problem, either the
cost function has to be inverted as part of the reduc-
tion or the corresponding maximization problem of
the SMCSP under the inverted cost function has to be
considered. It is easy to convince oneself, that any al-
gorithm providing a solution of the SMCSP with a per-
formance guarantee [Cdan be used to solve the mccs
within [al for some rational a. Therefore, under the
Kmees the SMCSP also inherits the approximability re-
sults of the mccs problem, i.e., is NPO PB-complete or
not approximable by a (deterministic) polynomial al-
gorithm within n™for any = 0 unless P = NP.

Summing up, the comparison with related prob-
lems in the field of graph theory shows that the gen-
eral SMCSP problem is NP-hard and NPO PB-complete.
But theses results depend on choosing an evaluation
model with very specific properties, in particular with
a special purpose cost function. Under more reason-
able cost function, such as Kyertices the problem can
only be shown to be NP- and APX-hard, as the mcs

THE MINIMUM COMMON SUPER-PLAN PROBLEM
problem can be reduced to it. Whether there are
classes of cost functions, that allow a better approx-
imation or restrictions is an open issue. Further im-
provements might be achieved if one restricts the kind
of query graphs that are valid under a certain eval-
uation model, although this might severely limit the
expressiveness of the corresponding queries. There-
fore, neither of the two evaluation models discussed
in Chapter 4 restricts the query graphs beyond the
acyclicity requirement, that does not a [eck the com-
plexity or approximability results presented in this
chapter.

Based on these results and the definition of the
problem above, the next chapter proposes several
heuristics for solving the SMCSP. The quality of these
approximation algorithms is evaluated experimentally
in Chapter 9, since no reasonable theoretical bounds
for the approximation of the SMCSP can be estab-
lished.

Chapter 6

Heuristics for the Stable Minimum Common

Super-Plan Problem

In this chapter, heuristics for the stable minimum common super-plan problem as defined in the previous

chapter are described and compared with respect to their complexity. In particular, two sets of heuristics are

investigated each based on di Cerknt assumptions about the evaluation model and therefore the query plans to

be optimized.

Contents
6.1 Strategies for the SMCSP 45
6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans 47
6.2.1 Incremental Pair MErgers 47
6.2.2 Local Search Pair Mergers i i e e 56
6.3 Set Mergers: Algorithms for Merging Sets of Query Plans 60
6.3.1 Pairwise Set Merger: Example for the Clustered Strategy 61

Founded on the definition of the stable minimum
common super-plan SMCSP problem presented in the
previous chapter, the following illustrates several
heuristics for finding a solution for the SMCSP that is
hopefully near the optimal one. Recall, that the SMCSP
can not be approximated within n™for any 3 O,
therefore no performance guarantees for the quality
of the heuristics discussed here are given. In Chap-
ter 9 the heuristics are however extensively evaluated
under a realistic evaluation model, in particular for re-
alistic cost functions as established in Chapter 8.

Before the actual heuristics can be discussed, the
steps of the optimization process are sketched in the
following section.

6.1 Strategies for the SMCSP

Given a set of queries, we apply the following steps to
optimize them into a single query plan that allows the

45

e [cieht evaluation of all the input queries simultane-

ously:

(1) First the queries are translated into a (local)
query plan and optimized. As discussed in the pre-
vious chapter, a solution to the SMCSP will be sta-
ble in respect to the original query plan for a query,
i.e., the order and type of operators in a query will
not be changed. Although, this precludes certain opti-
mizations on the queries based on global knowledge,
it makes the problem far more feasible for practical
cases. Consequentially, one might often be better of,
not to perform optimizations on the queries that are
based on local heuristics. For the SMCSP problem, it
is often more important that the initial query plans
provide retain as much as possible any similarities in
the queries. Therefore, a good choice proves to be
a rather canonical form of a query plan, that might
not be the optimal query plan for a query based on
isolated knowledge about the query, but increases the

46 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

chance that similarities in the queries are reflected in
the query plan. Such a canonical form can, e.g., elim-
inate syntactical variants of the same semantic con-
struct. Constructing a canonical form does not, how-
ever, preclude all local optimizations, e.g., the com-
paction of common prefixes of branches shown in Fig-
ure 2.14 can be applied safely, since it applies in all
cases.

(2) To lower the number of query plans that have to
be merged with each other, one can reduce the number
of query plans or cluster the query plans in such a way
that only query plans that are su Lciehtly similar will
be merged with each other:

In particular, if it is known that the query plans are
likely to be very similar, identical query plans or query
plans that are subgraphs of another one should be de-
tected a priori. Note, that detection of identical query
plans is based on graph isomorphism, for which no
polynomial time algorithm is known, but can be ap-
proximated e [ciehtly. The detection of query plans
that are subgraphs of another one is even NP-hard,
since it is based on subgraph isomorphism. Never-
theless, this duplicate merging becomes even more
promising, if one realizes, that many query plans
might di Cerlonly in certain properties of some ver-
tices, but not in the operators assigned to the vertices.
E.g., query plans often di Lerlonly in the constant value
within a selection or label operator. In such a case,
if the evaluation model allows the merging of these
properties, even such query plans can be merged a pri-
ori.

Clustering the query plans into sets of su [ciehtly sim-
ilar query plans and solving the SMCSP for the entire
set of query plans, by constructing a solution from so-
lutions on the clusters without sharing among these
solutions can reduce the processing time by the num-
ber of clusters obtained. This is especially promising,
if the input queries are known to adhere to a clus-
tered distribution. Clustering of graphs in general, has
been received some attention in recent years, in partic-
ular in the context of biological data and non-standard
databases, cf. [21].

(3) This reduced set of canonical query plans can
now be merged. There are essentially three di Cerent

strategies to merge a set of query plans:

Sequential strategy. All query plans are considered

[21] Bunke, H. 2000. Recent developments in graph matching. In
Proc. of the International Conference on Pattern Recognition

(ICPR). Vol. 2.

sequentially and merged one after another into an
ever growing (multi-) query plan. For each query
plan, all operators originating from one of the already

merged queries are considered.

Clustered strategy. Instead of considering for all

query plans all other (already merged) query plans,

query plans are merged only with query plans of su 1

cient similarity. The extreme case is that a query plan
is only merged with the query plan where the expected
gain (measured by means of the objective function of
the SMCSP) is the highest.

Global strategy. Instead of considering the query
plans isolated from each other as in the previous
cases, it might be more e [cieht to detect subgraphs
that are frequently occurring among the query plans.
Based on these frequent subgraphs, an (approximate)
solution of the SMCSP can be constructed. Frequent
subgraph or substructure discovery has been investi-
gated quite extensively [82; 70; 69; 68], in particular
in the context of biological data and semi-structured
data [135].

In this work, we concentrate on the sequential strat-
egy, although an algorithm based on the clustered
strategy is discussed shortly in the following section.
To define the strategy for merging a set of query plans
sequentially in an increasing multi-query plan, two
questions have to be answered: In which order will
the query plans be considered and how is a query plan
merged into the query plan resulting from the merg-
ings of the previous query plans. An exact solution
based on the sequential strategy would therefore re-
quire to merge the n query plans of average size | in
all possible n! permutations, where for each permuta-
tion the merging requires roughly O(nx(nx1)") steps.

[82] Kuramochi, M. and Karypis, G. 2002. An e Lcieht algorithm
Tech. Rep. 02-026,

Computer Science Departement, University of Minnesota.

for discovering frequent subgraphs.
[70] Inokuchi, A, et al. 2002. General framework for mining fre-
quent patterns from structures. In Proc. of the International
Workshop on Active Mining (AM 2002). 23-30.
Inokuchi, A., et al. 2003.
patterns from graphs: Mining graph data. Machine Learn-
ing 50, 3, 321-354.

[69] Complete mining of frequent

[68] Inokuchi, A., et al. 2000. An apriori-based algorithm for

mining frequent substructures from graph data. In Proc.
of the European Conference on Principles and Practice of
Knowledge Discovery and Data Mining (PKDD2000). 13-23.
[135] Wang, K. and Liu, H. 1999. Discovering structural associ-
ation of semistructured data. IEEE Transactions on Knowl-

edge and Data Engineering (TKDE).

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Clearly, such an exact solution is feasible only for very
small numbers of query plans and very small query
plans. Therefore, in the following several approxima-
tion algorithms for both problems are proposed and
discussed based on their complexity and properties.
In Chapter 9 an experimental evaluation of these ap-
proximation algorithms based on the SPEX evaluation
engine discussed in Chapter 7 shows that in practical
cases at least some of the heuristics can give good so-
lutions in reasonable time, in particular if compared
to a tree prefix merger as used in previous work.

The following discussion is grouped into algorithms
that are used to determine the order in which the
query plans from the input are considered and algo-
rithms that merge a query plan into another query
plan (that might be already a query plan for evaluat-
ing multiple queries). The first group of algorithms is
referred to as set mergers, the second as pair mergers
corresponding to the number of query plans they op-
erate on. Since each set merger uses an (arbitrary) pair
merger to perform the actual merging of the query
plans, once the order is determined, the pair mergers

are presented first.

6.2 Pair Mergers: Algorithms for

Merging Pairs of Query Plans

As stated above, a pair merger is an algorithm A that
takes as input two query plans N and M evaluating
disjunct sets of queries Qn and Qum and constructs
a new query plan P that is a feasible solution for the
SMCSP with input { (q, p) CON Q) (P [NI|q
p [M|g)}. If both Qn and Qu are singleton sets,
the algorithm constructs a solution of the SMCSP with
input N and M. In the following, we assume without
loss of generality that [N| < |[M].

In the following, two classes of pair mergers are pre-
sented di Cerlng in what operations must be supported

by the evaluation model the input plans are part of:

—Pair merger that construct a solution by merging
vertices from the input plans step-by-step are called
incremental pair mergers. There are two assump-
tions underlying these heuristics: First, during the
sequential processing of the vertices, it must at any
time be possible, to decide, whether a partial solu-
tion can be completed to a full solution by consid-
ering the remaining vertices only. In other words, it
must be decidable in polynomial time in the size of

47

the input, given a partial solution, whether there is
some valid query plan that is a full solution and that
this partial solution can be completed to. Further-
more, the cost function used as objective function
of the SMCSP must provide means to compute the

cost of a partial solution.

—The other class of pair mergers proposed here is
based on the idea to start from a random solution
searching in the “neighborhood” of that solution for
a better one. The “neighborhood” of a solution are
all solutions that can be constructed from the orig-
inal one by applying some transformation function.
Following common notation [99], these algorithms
are called local search pair mergers. The main ad-
vantage of this strategy is that at any time only
full solutions are considered overcoming the restric-
tions discussed for incremental pair merger. How-
ever, there must be some meaningful way to trans-
form a solution into another one. If either the eval-
uation model used does not adhere to the require-
ments of the incremental pair mergers or construct-
ing a random solution is clearly easier than con-
structing a good solution by means of an incremen-
tal pair merger, a local search pair merger is prefer-

able to an incremental one.

In Chapter 9 one other pair merger is used for rea-
sons of comparisons: the trivial or plain pair merger
that constructs the solution P by simply copying all
vertices and edges together with their respective map-
pings for T, 11, and g from P; and P; into P. The result-

ing query plan obviously evaluates all queries from Q3

1

and Q», but there is no sharing of operators between
queries from the two sets.
Table 6.1 gives an overview over all pair mergers

with a short characterization and their complexity.

6.2.1 Incremental Pair Mergers

As discussed above, an incremental pair merger
merges vertices from the input plans N and M incre-
mentally into a solution P. The general idea of these
algorithms is to consider for each vertex v from N
“interesting” vertices w in M that can be merged with
V.

The variants proposed in the following mostly dif-
fer with respect to the following two questions: in

[99] Michalewicz, Z. and Fogel, D. B. 2000. How to Solve It: Mod-

ern Heuristics, 1st ed. Springer Verlag.

48

HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

pair merger principle complexity

exhaustive computes all solutions OX(N,M)INIx< (T (cost) +T (merge) +
T (validCandidates)))

tree prefix tree-shaped plans, prefixes only O(N x (max(deg(M), |S|) + T (cost) +

graph prefix

initial greedy

progressive greedy

random

acyclic plans, prefixes only

best gain heuristic, considers ver-
tices from N and candidates sepa-
rately

best gain heuristic, considers pairs
of vertices from N and candidates
selects random vertex from N and
random candidate

T (merge)))

O(max(deg(M), [SPINI < (T (cost) +
T%erge)))

ON x (X(N,M) x (T(cost) EI
T (merge)) + T (validCandidates))

O% x (X(N,M) x (T(cost) El
T (merge)) + T (validCandidates))

O N x (T(cost) +I:IT (merge) +
T (validCandidates))

deterministic hill-climber

stochastic hill-climber

simulated annealer

local search, deterministic neigh-
bor selection

local search, probabilistic neighbor
selection

local search, probabilistic neighbor
selection with decreasing probabil-

ity

OI;IX 1% (Trandom +V(N, M) * (Ttrans +
T %)St)))

O T x> (Trandom +V(N, M) < (Tirans +
T %?St)))

O T % rmax % (Trandom + V(N,M) x
(Ttrans + T (cost)))

Table 6.1: Comparison of pair mergers (for the notations, refer to the specific sections)

what order are the vertices of N considered and what
are “interesting” vertices for merging with a vertex
from N and how are these vertices ordered? Aside
of these di Cerknces, all incremental pair merger have
a very similar structure shown in Figure 6.1: The
pair-smcsp function takes as input two query plans
N and M and returns a query plan P that is a fea-
sible solution for the SMCSP with input { (q, p)

On Q4 (P [NJ|g Cp1CMIg) } as stated above. The
actual search is performed by findCommonP lan which
takes as input two query plans N and M and a list of
vertices R V). It returns a query plan M™obtained
by merging all vertices from R with “interesting” ver-

tices from M according to the specific heuristic.

In the following, we denote a sequence similar
to a set but with angle brackets and enhanced by
the order in which the elements are ordered, e.g.,
v | v VY, [is the sequence of all vertices in N
topologically sorted by some partial order <. If no
order is given for the sequence, the elements are ar-
bitrarily ordered. [IIdenotes the empty sequence.
To access the first element (respectively the remain-
ing elements) of a sequence S, head(S) (respectively

tail(S)) is used.

cost denotes some implementation of the cost
function cg part of the evaluation model E used. It is
assumed that cost can compute not only the cost of
full solutions but also the cost of partial solutions, as
discussed above. Chapter 8 details several cost func-

tions with di Cerknt complexities.

Finally, the merge function describes how a vertex
v [N is merged with a vertex w [CM [{¥}. For
ease of presentation, the case where v is not merged
with any vertex in M but rather added as a new ver-
tex is represented by merging v with v. Figure 6.2
shows an outline of the actual merging algorithm: The
query plan M tontaining the merging from v to w is
constructed by adding all edges between v and a ver-
tex z [Nlthat is already merged as edges between w
and Z updating also the queries that edge is part of.
Only if the v = w a new vertex with the same opera-
tor and properties as Vv is inserted into the resulting
query plan at the beginning of the construction. In
that case, also the edges are added to the new vertex.
Given constant access to Z for any vertex z and an ef-
ficient representation of the graph structure of a query
plan with linear-time iteration over the incident edges
of a vertex and constant or amortized constant test

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

funct pair-smcsp(N, M)
[-FindCommonPlan(L¥ | v [V N, M) |.

funct findCommonPlan(R,N,M) =
[if (R = 1
then M
else Mpest « N Ml
Vv < head(R)

49

while (not all “interesting” vertices in M for merging with v have been considered) do

w « next “interesting” vertex in M for merging with v

ME< merge(v,w,N, M)

MY< FindCommonPlan(tail(R),N, MDY

if (cost(MY < cost(Mpest))
then Mpest — Mfi
od

Mpest

Figure 6.1: Skeleton of an

whether two given vertices are adjacent as described
in Chapter 10, this function can be implemented in
O(deg(N) = IN]) where, for a query plan P, deg(P) is
the degree of underlying graph.

For convenience, we abbreviate the test whether two
vertices v and w can be merged by a boolean function
mergeable that returns true if the same operators are
assigned to v and w and their properties, if they exist,

can be merged into a new one:

funct mergeable(v,w) =
Fr(v)D: T(w) CIE(v) = 1t (w) 1
[CCRE: r =11(v) =1
CEPCRE © rC= pe(m(v), mw)) -
Assuming merging two properties is a constant op-
eration, this test can be performed in constant time.

Based on the skeleton from Figure 6.1, the follow-
ing sections detail the four incremental pair mergers
that are each using di [Cerent answers to the questions
discussed above: (1) the exhaustive pair merger, that
considers all possible mergings from N into M, the
prefix pair merger for which only common prefixes
are interesting for merging, (2) the greedy pair merger
who tries to approximate a good solution by merging
always those vertices next that deliver the best gain
if merged, and, for comparison, (4) the random pair
merger choosing mergings arbitrarily.

The
are

di Cerknces
described by means

between the algorithms

of two functions,

incremental pair merger

that
of vertices from N ordered according to the

sortVertices(N,M) returns a sequence
specific heuristic of the specific algorithm and
interestingCandidates(v,N,M) that returns a
sequence of vertices from M that are “interesting” for
merging with v [V\. Note, that any vertex that is
“interesting” for merging with v must be allowed for

merging with v.

As detailed above, it is required that there is some
means specific to the evaluation model, to determine
whether the incomplete query plan resulting from a
merging of v with some vertex in M can still be
completed to a full solution. This is facilitated here
by means of a function validCandidates(v,N, M)
that returns all vertices in M that can be merged
with v such that the result can be completed to a
X(N, M) max{n CN| O [N
n = |validCandidates(v,N,M)|} < |[M| denotes the

maximum number of vertices in M valid for merging

full solution.

with a vertex in N and is bounded by |M|.

To illustrate this function, recall the query plans for
the XML streams proposed in Section 2.3.2 and 4.3 to-
gether with their evaluation model X. Only acyclic
graphs can constitute a valid query plan for X. For a
query plan P whose underlying graph is acyclic, let <p
be a partial order on the vertices of P, such that, for

all vertices v,w [}, v <p w = [MICIN,V1,...,Vn :

Vv =v; W = v QL V2), (V2,VE), ..., (Vn-1,Vvn) [

50 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

funct merge(v,w, N = ((Vn,En), Tn, TIN, ON), M)
(M= (VMG EMD, TMg Tt gue) « M
ifv=w
then let vEbe a new vertex
Vmo e« Vyo Cr3
Tvo- Tvo LD Tn(v)}
if (CCJERE v =1in(V))
then iyo - Tivo LSS r}fi
VvV « vH
fi

for each z [l [V %\/,y) [CEQ } do
if (A OYo: Z =y)
then if (w, Z) CEWo

_Fp,i.e., v <p w, if there is a path from v to w.

For this evaluation model validCandidates is
shown in Figure 6.3: The valid vertices w for merg-
ing with v are initialized to all vertices that have the
same type as v and the property assigned to w can be
merged with the one assigned to v, if there are prop-
erties assigned to them at all. Among these vertices
only those vertices w are retained such that a merg-
ing of v with w does not create a cycle in the graph.
This can be ensured, if all ancestors of vertices w [MI
that are merged to an ancestor w [N of v and all
descendants of vertices Z [CM that are merged to an
descendant z [N of v are removed from the initial
set as illustrated in Figure 6.4, where black indicates

then que((w, 7)) am=((W, Z)) Cthe initial setup, blue possible mergings for v, and

an(v,z)
else Eyo Evo L{w, Z)}
am((w, 2)) - an(v,z)

for each z Ly [V %y,V) [CE4 } do
if (Ao Z =y)
then if (Z,w) CEyo

red the consequential cyclic additions. The lines end-
ing in dots indicate mergings and the gray triangles
the descendants resp. ancestors of z and w. Neither
V1 nor V, in Figure 6.4 are valid for merging with v,
since either of the two mergings results eventually in
a cycle. It is important to notice, that conventional
cycle detection algorithms, such as [125], can not be
applied since the cycle might be created only later in
the processing. In the example, only once the vertex

x [Nl is also merged to a vertex in M a cycle occurs

then gu((Z,wW)) ~ gu((Z,w)) Crdgardless of how x is added to M (even if it is added

an(z,v)
else Epyo— EMHIZ-{I?,W)}
am((Z,w)) - an(z,v)

fi
od

NED

Figure 6.2: Algorithm for merging two vertices

funct validCandidatesx(v,N,M) =
[C « {w M| mergeable(v,w)}
foreachw [{x [NI| (¥I[M:y = X} do
ifw<pv
thenC - C\{y EMI%SMW}ﬂ
ifv<pw
thenC - C\{y EM]%SMy}ﬂ
od

C - C [}

Figure 6.3: Finding vertices in M valid for merging
with v under the evaluation model X

without sharing). This cycle avoidance algorithm can
be implemented linear in the number of vertices in M
(by tagging all vertices in M that have been considered
once as descendant or ancestor of some merged ver-
tex) and is therefore as e [cieht as the best dynamic
cycle detection algorithms [125], i.e., cycle detection
algorithms in face of changing graphs as in this case.
Nevertheless, it is rather costly, since it is linear in
M and M increases with the number of query plans
merged as discussed in Section 6.3.

It should be emphasized again, that this method
of determining a valid pair of vertices for merging is
specific to the case, where the only restriction on the
structure of a query plan is, that it is acyclic. For evalu-
ation models, that use other means to determine what
a valid query plan is, di Cerent methods for determin-

ing these pairs are required, if there are any.

[125] Shmueli, O. 1983. Dynamic cycle detection. Information
Processing Letters 17, 4, 185-188.
[125] Shmueli, O. 1983. Dynamic cycle detection. Information

Processing Letters 17, 4, 185-188.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

N M

Figure 6.4: Avoiding cycles

Exhaustive Pair Merger

The only pair merger that computes the optimal so-
lution, is the exhaustive pair merger. Following chap-
ter 5, the SMCSP is NP-hard, therefore any determin-
istic algorithm returning an optimal solution for the
SMCSP is exponential. As the name indicates, this pair
merger exhaustively computes all possible mergings
from N into M and selects the best.

Since all mergings are computed, the order in which
the vertices are considered is not relevant. Therefore,
the exhaustive variant of sortVerticesen(N,M) =
[OW | w [V Clireturns the vertices in no particular
order.
the the
of interestingCandidates,,,(v,N, M) =
[CW | w [CvalidCandidates(v,N,M) (]l is

larly trivial returning an arbitrary-ordered sequence

For same reason, implementation

simi-

of those vertices that can be merged with v.

With these implementations for sortVerticesSexn
and interestingCandidates,,,, the skeleton algo-
rithm from Figure 6.1 computes an optimal solution
in time

O(X(N, M)NI ¢ Tpage)

where Tpase = T(validCandidates) + T(cost) +
T (merge) and, for an algorithm A, T(A) is the time
complexity of A. In practical cases, one can observe
that the number of valid merge candidates for most
vertices from N is clearly smaller than |[M|, since only
vertices assigned to the same operator and a property
that can be merged with the property of the vertex
from N are valid. Assuming an equal distribution of

51

the types and no properties assigned to the vertices,
the complexity shrinks to roughly
—1

|:|IM| IN]
X Thase

|0kl

where Og is the set of operators in the evaluation
model E. If only acyclic query plans are considered
valid (as in the evaluation models shown in Chapter 4),
this number shrinks even more, as some vertices are
not any more valid candidates for merging, since such
mergings would result in cycles.

One of the more important optimizations on ex-
haustive algorithms is the branch-and-bound tech-
nique, where branches of the search tree for which
a partial solution has already higher cost than the
best known full solution are skipped. But branch-and-
bound optimization can only be applied if the cost
function used is monotonic in the sense, that adding
additional mergings to a partial solution can not re-
sult in lowering the cost, but either leaves the cost
unchanged or increases it. If the cost function ad-
mits to this criteria, a simple branch-and-bound test
can be inserted before line 13 of findCommonPlan:
if cost(MY = cost(Mpest) then continue fi. Such
a branch-and-bound optimization can be further im-
proved, if one considers both the vertices from N and
the candidates for merging in such an order that solu-
tions that are likely to have a low cost are generated
early. The same heuristics for ordering the vertices in
a promising way can be used as for the greedy pair
merger discussed below.

Prefix Pair Merger

In contrast to the exhaustive pair merger discussed
previously, the prefix pair merger is very e [Cieht but
produces in most cases equally poor solutions. As the
name suggests, the prefix merger merges only com-
mon prefixes of the input plans. There are two vari-
ants of this merger di [erlng in the assumptions they
make about the structure of the query plans:

The first variant, similar to previous optimization

techniques for multiple XML queries [4; 28], is referred

[4] Altinel, M. and Franklin, M. J. 2000. E [cieht filtering
of XML documents for selective dissemination of informa-
tion. In Proc. of the International Conference on Very Large
Databases (VLDB).

Chan, C.-Y., et al. 2002a.
ments with XPath expressions.

[28] E Lcieht filtering of XML docu-
The VLDB Journal (Special

Issue on XML Data Management).

52 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

to as tree prefix pair merger and assumes that a query
plan is tree-shaped and at any branch it is assumed
that for each child vertex in the first query plan N
there is either no or a unique child vertex in M that can
be merged with it. Whether there is such a child ver-
tex and which it is, can be determined in time at most
linear in the number of children, in particular without
descending into the branches beyond the level of the
children. Furthermore, it is assumed that a query plan
constructed by using these kind of mergings only is
always valid.

Figure 6.5 shows how these assumptions trans-
late into an algorithm for selecting the vertex
from M to be merged with a vertex v. [N.
interestingCandidates;,e. prefix returns always a
singleton sequence that is the only vertex that v will
be merged to. This reflects the determinism in the se-
lection of the vertex w, that v is to be merged into. w
is determined by testing whether the first parent p (it
is assumed there is only one parent, since the query
plans are assumed to be tree shaped, so P should
always either be empty or a singleton set) is already

=

merged into a p. If that is the case, the prefixes of

N and M ending in p respectively p are merged and
v can be merged with a child of g that is mergeable
to v if there exists such a child. If either the parent
is not merged or there is no such child, the singleton
sequence D[ds returned, indicating that v is to be
merged into a new vertex in M. There is one special
case, that needs to be treated: a source of the graph
(i.e., the root of the tree). A source vertex of N is
merged with the first source vertex of M found that
is mergeable with it. Again, if the query plans are
tree shaped, there is only one source vertex in M that
is mergeable with a given source vertex in N.

This algorithm is only correct, if the vertices of N
are considered in a topological order, guaranteeing
that a parent is always merged before its children. So
(v v Cv g,

orders the vertices in the topological order <y as de-

sortVerticesiee preix(N, M) =

scribed above.

Observe, that the tree prefix pair merger as de-
scribed above can not be applied to cyclic graphs,
since it relies on the existence of a topological order
on the vertices. But on acyclic query plans the algo-
rithm actually succeeds, but generates solutions that
are in general not optimal, even if one restricts sharing
among query plans to sharing of prefixes. This is due
to the fact that this algorithm assumes that for each

vertex v [N, child of a vertex p [Nl that is merged
to p [CM, there is only a single children of p that is
mergeable with v (the same applies for the case of the
source vertex).

Better solutions can be produced, if all such chil-
dren are considered. This is the strategy implemented
by the graph prefix pair merger shown in Figure 6.6.
Once again the vertices from N are assumed to be pro-
cessed in topological order (precluding cyclic graphs),
but now all vertices c that are children of a vertex p
that is merged to a parent p of v are considered can-
didates for merging with v, if mergeable(c,v). The
special case of the source vertices is handled analo-
gously. Clearly, this algorithm leads to exponential
complexity. On the same lines as the exhaustive pair
merger, the graph prefix pair merger can be improved
by adding a branch-and-bound test and considering
the candidates for a vertex from N in an order such
that promising solutions are generated first, if the un-
derlying cost functions is monotonic with respect to
adding new mergings.

More precisely, let S = {v M| —-[pl CM
(p,v) [CHy} be the set of sources of M, then the
complexity of the graph prefix pair merger is

O(max(deg(M), |SD!N! x (T (cost) + T (merge)))

in contrast to the quadratic complexity of the tree pre-

fix pair merger
O(N x (max(deg(M), |S|) + T (cost) + T (merge)))

Note, that in contrast to all other pair mergers, nei-
ther of the prefix mergers uses validCandidates,
since they assume that the prefix mergings performed
always generate valid query plans, as stated above.
If this restriction does not hold, the selected candi-
date has furthermore to be tested for validity using
validCandidates increasing the complexity accord-
ingly.

As discussed, the main restriction of the tree prefix
pair merger is the poor quality of the solutions it gen-
erates once the query plans do not adhere closely to
the requirements posed by the algorithm. The graph
prefix pair merger on the other hand provides only a
slight improvement over the exhaustive pair merger
with respect to complexity but constructs far infe-
rior solutions. But, if the evaluation model used ad-
mits to the requirements posed by the tree prefix pair
merger, in particular if all query plans that use only

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

funct interestingCandidates; e prerix(V, N, M) =
[C « D]
P=0w OV} | (w,v) CEL T
ifP= [1
then p - head(P)
if (00 OV : w = B)
then for each ¢ [{W [V | (B, w)} do
if mergeable(c,v) then C ~ [cl]
break fi
od

|[=h

else for each ¢ v [V | =PI, : (p,w) CEY } do
if mergeable(c,v) then C ~ [cl]
break fi

‘ (e}
Q

fi

Figure 6.5: Finding interestingCandidates in the tree prefix pair merger

funct interestingCandidatesgy pn prefix(V, N, M) =

[C - {v}

P=0v VY | (w,v) LR T
ifP= 1

then for each p [Pldo
if (OM OV, : w = B)
then for each ¢ LW [V | (§,w)}do
if mergeable(c,v) then C - C (4} fi

od
fi
od
else for each ¢ CLv LV} | = Cpl V4, @ (p,w) CEL } do
if mergeable(c,v) then C - C [{d} fi
od
fi
LV | v CCICh.

Figure 6.6: Finding interestingCandidates in the graph prefix pair merger

53

54

prefix merging are valid, the tree prefix merger can of-
ten produce reasonable solution in an extremely short
time compared to other heuristics.

Greedy Pair Merger

Implementing a simple greedy heuristic, the greedy
pair merger proves in practical cases to provide a rea-
sonable compromise between the quality of the con-
structed solution and the time for the construction,
cf. Chapter 9.

The greedy pair merger chooses for a vertex v [Nl
the vertex w from M that is to be merged with v based
on greedy heuristic: Only that w [CM, where the cost
of M increases the least, if v and w are merged, is
actually merged with v.

6.7, an the
interestingCandidates function for the greedy

In Figure implementation of

pair merger is shown: It returns the singleton se-
quence containing a valid candidate for merging with
v that has minimal cost among all such candidates.
But in which order should the vertices of N be
considered in such a case? Di Lerlng in their answer to
this question, we propose two variants of the greedy
pair merger: The first variant, called initial greedy
pair merger, computes an order among the vertices
of N initially. Therefore, it is assumed that there is
some way to measure the cost of a vertex v and
that cost is used as an indication of the expected
gain when v is merged with some vertex in M. In
other words, this variant requires that there is some
function cost(v,N, M), such that cost(v,N,M) =
max{ n [CINly | Om [alidCandidates(v,N,M) :
|cost(M) — n}.
cost(v,N,M) is not required to compute the
exact maximum, just to give an estimation of the best

cost(merge(v,w,N,M))| =

expected gain for merging v with any vertex from
M. The initial greedy pair merger orders by the value
returned by cost(v,N, M) in descending order, i.e.,
the vertex with the highest value first.

This variant can however not ensure that always the
next best pair of vertices is considered, since the or-
der of the vertices is based on the valid candidates in
the initial graph M only. So if due to some prior merg-
ings, certain vertices are no longer candidates this is
not reflected in the order: E.g, if there are two vertices
vEWVI M that can be merged in the initial graph M
with a vertex v [N, such that the gain when merg-
ing with vHis y and the gain when merging with v™is

HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

d <y, the position of v is determined by y. Assume
that there are vertices X, y, such that cost(x,N,M) >
cost(v,N,M) = y > cost(y,N,M) > 3. Then first
X, then v and finally y is merged by the initial greedy
pair merger. If the merging of x now invalidates v as
a candidate for merging with v (e.g., as the resulting
query plan could not anymore be complete to a full so-
lution), v is still considered before y and merged with
vWSince that is the best merging candidate that is still
valid. Merging v and v™in turn might invalidate the
best merging of y which would have provided a gain
higher than &.

Therefore, a more elaborate version of the greedy
pair merger, referred to as progressive greedy pair
merger, is provided in Figure 6.8: It does not com-
pute the order how the vertices in N are to be merged
initially, but rather after each merging the next best
merging is determined by considering all remaining
vertices N with their respective candidates from M.
Note, that this algorithm as well as all the other pair
mergers with the exception of the exhaustive pair
merger can be as easily formulated using iteration in-
stead of recursion but are given in a recursive variant

for ease of presentation.

The disadvantage of the progressive greedy pair
merger is naturally the increased complexity. Whereas
the initial greedy pair merger has the quadratic com-

plexity

(o) Iﬁlx (X(N, M) x (T (cost) + T (merge))+
T (validCandidates)) D

where x and T are used as above, for the progressive

variant the complexity increases by a factor |[N| to

(e} % x< (X(N, M) x (T (cost) + T (merge))+

1
T (validCandidates)) ,

since in all [N| steps all remaining vertices from N are

considered.

The initial variant has a similar complexity as the
tree prefix pair merger except that in each step the
valid candidates have to be computed. Experimental
evaluation (cf. Chapter 9) points to the fact that with
reasonable cost functions under the evaluation model
from Section 4.3, the initial variant provides the better
trade-o [Chetween construction time and result of the
constructed solution.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

funct interestingCandidatesgreedy(v, N,M) =
F@ best candidate best, cost of best candidate coStpest « o
for each w [CvalidCandidates(v,N, M) do
MY merge(v,w,N, M)
if cost(MD < costpest then
COStpest — cost(MD
best — w
fi
od
(best [{l.

Figure 6.7: Finding interestingCandidates in the greedy pair merger

funct findCommonPlan(R,N,M) =
[if (R =)]
then M
elﬁ Mpest « N Ml
Npest —« head(R)
for each v [Rldo
for each w [validCandidates(v,N,M) do
MYC merge(v,w,P, M)
if (cost(M"Y < cost(Mpest))
then Mpest ~ M-

Npest < V

od
od
Mpest « FindCommonPlan(R\{Npest}, N, M)

Mpest

Figure 6.8: Progressive greedy pair merger

55

56 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

Random Pair Merger

The final pair merger proposed in this section is for
comparison only: the order of the vertices as well
as the selection of a candidate among the valid can-
didates for a vertex is randomized. More precisely,
orderVertices(N) returns random sequence of the
vertices in N and interestingCandidate(v,N, M)
returns a singleton sequence containing a random ver-
tex from validCandidates(v,N, M).

The complexity of the random merger di Lers from
the complexity of the initial greedy pair merger in the
fact that the random choice is assumed to be constant,
therefore the maximum number of valid candidates

X(N, M) is not influencing the complexity:

1 1
O Nx (T (cost)+T(merge)+T (validCandidates))

Interestingly, for an evaluation model such as X,
presented in Section 4.3, the random pair merger
has the same worst-case complexity as the tree pre-
fix merger, as both T (val idCandidates) and deg(M)
are bounded by M, but in most cases the tree prefix
merger actually performs better, as deg(M) is usually
clearly smaller than M whereas T (val idCandidates)

is often very near to M for the evaluation model X.

6.2.2 Local Search Pair Mergers

As mentioned above, the incremental pair mergers
(with the exception of the exhaustive merger) require a
way to determine the cost and the validity of a partial
solution, i.e., if a partial solution can be completed to
a full solution. In contrast, the pair mergers discussed
in this section operate on full solutions only, but re-
quire a means to find solutions that are similar to a
given solution.

Basically, these pair mergers are local search algo-
rithms [99], i.e., algorithms that start from several ran-

domly generated solutions and improve these random

funct pair-smcsp(N,M) =
[FindCommonPlan(N, M) |.

funct findCommonPlan(N, M) =
[Spest « N [CMI
r -0
while r < MAX-TRIES do
S « random solution
t-0
while t < MAX-1TERATIONS-PER-TRY do
SY. interestingNeighbour(S, M, N)
if SE=S then break
else S - S™fi
t-t+1
od
if cost(S) < cost(Spest)
m Shest <« S ﬂ
r «r+1
od
SbestJ .

Figure 6.9: Skeleton of a local search pair merger

the search from ST This process is repeated until
no further “interesting” neighbor can be found (i.e.,
st= S), but at most MAX-1TERATIONS-PER-TRY times

for a single randomly generated solution.

The diLCerknce in the local search algorithms pre-
sented in the following, is the definition of an “in-
teresting” neighbor: the deterministic hill-climber se-
lects among all neighbors of a solution the one with
the lowest cost, the stochastic hill-climber selects the
first neighbor that is acceptable with respect to some
acceptance probability based on the relative merit of
the solution, i.e., the diCerknce between the cost of
the neighbor and the base solution. The simulated

annealing algorithm further improves the stochastic

solutions by considering other solutions that are su =hill-climber by decreasing the acceptance probability

ciently similar. Two similar solutions are also referred
to as “neighbors” and the set of similar solutions for
a solution as “neighborhood” of that solution.

Figure 6.9 sketches the skeleton of the local search
pair merger: A common query plan for N and M
is computed by generating MAX-TRIES random solu-
tions. Each such solution S is improved by select-

ing an “interesting” neighbor SYof S and continuing

[99] Michalewicz, Z. and Fogel, D. B. 2000. How to Solve It: Mod-

ern Heuristics, 1st ed. Springer Verlag.

the longer the search takes.

The definition an “interesting” neighbor for a solu-
tion S under input M and N, specified by means of
interestingNeighbour(S, M, N), is clearly depend-
ing on the question how to compute a neighbor. As
discussed above, there must be some way in the
evaluation model to compute, for a given solution,
all solutions that are similar with respect to some
transformation between solutions. In the following,

this transformation is used to provide a function

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

funct neighbours(S,M,N) =
[N - 1
for each v [V}, do
X « V.
SY. unmerge(v,x,S,N)
for each w [
validCandidates(v, N, SH\{x} do
S™_ merge(v,w,N,SYH
N - N 3%
od

Figure 6.10: Computing the neighbors of a solution
using validCandidates

neighbours(S, M, N) that computes the set of neigh-
bors of the solution S for the input N and M.

To illustrate this function, we give a definition
based on validCandidates from the previous sec-
tion. This definition has the virtue of being applicable,
whenever it is possible to test the validity of partial so-
lutions, i.e., if a partial solution can still be completed
to a full one and therefore can be applied to each eval-
uation model that adheres to the requirements posed
by the incremental pair mergers. In Figure 6.10 this
implementation is detailed: Each vertex v from N is
un-merged in S, which is the reverse operation of the
merge function specified in Figure 6.2, so that S"is

=

identical to S except for V. In SHall candidates for
merging with v except the vertex originally merged
with v are considered and merged with v resulting in
new solutions that are added to the set of neighbors.

In the following, we denote the maximum size of
the set of neighbors of a solution with input N and
M as V(N,M) and Tians as the time for computing
a single neighbor of a solution. Using this notation,
T (neighbours) = O(V(N,M) X Tyans) and, for the
implementation of neighbours from in Figure 6.10,
O(T(merge) + T(validCandidates) +
T (unmerge)).

Ttrans =

Deterministic Hill-Climber

The basic local search algorithm, referred to as deter-
ministic hill-climber, uses a non-probabilistic accep-
tance criteria for selecting the “interesting” neighbor:
As Figure 6.11 shows, a solution S™among all neigh-
bors of S (generated by neighbours) is selected, if it

57

funct interestingNeighbourgy, (S,M,N) =
[Sbest = S
for each SHn@ighbours(S,M,N) do
if cost(SY < cost(Spest)
then Spest ~ S"fi
od
Shest | -

Figure 6.11: Finding the “interesting” neighbor for the
deterministic hill-climber

has the lowest cost among all neighbors including S
itself.

The worst-case complexity for a single improve-
ment iteration of the inner loop of the deterministic
hill-climber is the maximum number of solutions in
the neighborhood for a solution under input N and M
times the time Tyans for constructing a neighbor for
a given solution times T (cost). The inner loop is ex-
ecuted for each of the T = MAX-TRIALS independent
trials at most 1 = MAX- ITERATIONS-PER-TRIAL times.
For each independent trial also a random solution is
generated in time Tyandom- If One uses the random pair
merger to generate these random solutions, Trandom =
O(Nx (T (cost)+T(merge)+T (validCandidates))).
Therefore, the overall complexity of the deterministic
hill-climber is

]]
O T x 1% (Trandom + V(N, M) X% (Tgrans + T (COST))) .

The advantage of the algorithm is that it improves
a given solution very quickly, if possible. The down-
side of this quick improvement is that this algorithm
is prune to become stuck inside local optima. Since
never a neighbor with higher or same cost as S is se-
lected, even if the di Cerkence in cost is very low, there
is no chance to escape from a local optima in the cost

function.

Stochastic Hill-Climber

This disadvantage is addressed by the remaining two
local search mergers. The stochastic hill-climber im-
proves the deterministic one, by accepting a solution
as “interesting” even if the cost of that solution is
somewhat higher than the cost of the initial solution.
6.12, the

interestingNeighbour is shown.

In Figure stochastic variant of
It has an ad-
ditional parameter, here assumed to be a constant,

that is used to determine how much influence the

58

funct interestingNeighbourg, (S,M,N,T) =

[Spest — S
for each SPIngighbours(S,M,N) do

if random[0, 1) < m

1+e T
then Spest « S™
break

fi
od
Sbest | -

Figure 6.12: Finding the “interesting” neighbor for the
stochastic hill-climber

relative merit of a solution SPwith respect to the
original solution S has on the acceptance of SMas
“interesting”: The higher T is the less influence the
relative merit cost(SY — cost(S) has, for very high
values of T the stochastic hill-climber degenerates to
a random search. On the other hand, a very low T,
e.g., T = 1, a neighbor SUis only accepted if it has a
lower cost than S as in the deterministic hill-climber.
[99] provides a more detailed discussion of the
influence of T. It should be noted, that the choice
of T is clearly not independent of the cost function
used.

The stochastic hill-climber has the same worst-case

complexity as the deterministic hill-climber, i.e.,
[[
O T x 1% (Trandom + V(N, M) X< (Ttrans + T (COST))) .

But in contrast to the deterministic hill-climber it will
in most practical cases not consider all neighbors of
a solution but only a smaller number, whereas the de-
terministic hill-climber always traverses all neighbors.

A serious problem of the stochastic hill-climber is
often that the acceptance probability remains con-
stant over the entire run of the algorithm. Even at last
step it can happen, that a solution is accepted that is
clearly worse than the current one.

Simulated Annealing

In [80] a technique borrowed from observations on
statistical mechanics, called simulated annealing has
been proposed. The derived local search algorithm im-
proves the stochastic hill-climber by reducing T and

HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

funct findCommonPlan(N,M) =
[Sbest « N M
r -0
T « Tmax
while r < MAX-TRIES do
S < random solution
t-0
repeat
T « Tmax - € 4C
SU. interestingNeighbour(S,M,N,T)
if SE=S then break
else S - stfi
t-t+1
until T < Trin
if cost(S) < cost(Spest)
m Shest « S ﬂ
r-r+1
od
SbestJ .

Figure 6.13: Skeleton of a simulated annealing

thereby the acceptance ratio over the run of the al-
gorithm. In analogy to statistical mechanics, T is re-
ferred to as temperature of the algorithm and there
are three more parameters, the initial T, and the end
temperature Tmax together specifying the temperature
range considered in the algorithm and the cooling ra-
tio c that influences, as the name indicates, the way T
is lowered during runtime.

The general skeleton for a local search merger has
to be slightly adapted as shown in Figure 6.13: The ter-
mination condition of the inner loop is not any more
based on the constant MAX- I TERAT IONS-PER-TRY, but
rather on the current temperature in comparison to
the minimal temperature. Furthermore, the tempera-
ture is cooled down after each iteration using a cool-
down formula depending on the number of the itera-
tion t and the cooling ratio c, proposed in [127]

T = Tmax - €.

For interestingNeighbour the same implementa-

tion as for the stochastic hill-climber can be employed.

[80] Kirkpatrick, S., et al. 1983. Optimization by simulated an-

nealing. Science 220, 4598, 671-680.

[127] Spears, W. M. 1996. Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. DIMACS Series
in Discrete Mathematics and Theoretical Computer Science,
vol. 26. American Mathematical Society, Chapter Simulated
Annealing for Hard Satisfiability Problems, 533-558.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Again, selecting the parameters Tmax, Tmin and c
is far from trivial. Quoting [127] “these choices in
parameters will entail certain tradeo [S1 For a given
setting of MAX-TRIES, reducing Tmin and/or increasing
Tmax Will allow more ... [iterations] to be made per
independent attempt, thus decreasing the number ...
[of independent tries]. A similar situation occurs if we
decrease or increase the decay rate. Thus, by increas-
ing the temperature range (or decreasing the decay
rate) we reduce the number of independent attempts,
but search more thoroughly during each attempt. The
situation is reverse if one decreases the temperature
range (or increases the decay rate). Unfortunately it is
not at all clear whether it is generally better to make
more independent attempts, or to search more thor-
oughly during each attempt.”

The complexity of the simulated annealer depends
therefore on these three parameters. More precisely,
the inner loop of the algorithm shown in Figure 6.13

is executed

59

no easy way to combine the solutions produced for
smaller problem instances into a solution of the larger
problem. More precisely, note that even an optimal
solution of the SMCSP for a set of n query plans of
size m has in worst case a size of n x m. Further-
more, solving the SMCSP problem for a set of n query
plans of size m is almost as hard as solving the SMCSP
problem for a set of I query plans of size (n/1) x m.
Therefore, combining the solutions obtained for sub-
sets of the input is in this case almost as hard as
solving the problem directly. Due to this reason, no
heuristics based on the divide-and-conquer technique

are presented here.

Another obvious area of optimization techniques
not covered in this work, are genetic algorithms and
evolutionary programs [98]. In particular, genetic al-
gorithms for structural matching [37] might provide
a good starting point for deriving evolutionary pro-
grams that solve the SMCSP problem. However, any

L1 L Jgenetic algorithm is based on mutation, crossover and

Tmin
_ T
rmax = Max{ N CIN| Tmin < Tmax - € "¢} = %;—”%

times for each independent trial.
This leads to a complexity for the simulated anneal-
ing algorithm presented here of

(| (|
O T % rmax X (Trandom ¥ V(N, M) X (Tgrans + T (cost))) .

Again, the simulated annealer seldomly actually tra-
verses all neighbors of a solution, in contrast to the
deterministic hill climber.
¢
The above described algorithms could be further
improved, e.g., adapting research on problems from
graph theory, where improved versions of the sim-
ulated annealing approach are considered [138] to
SMCSP problem. This remains for future work.
¢
Recalling the traditional set of techniques for solv-
ing hard problems, one might notice that one of the
more prominent techniques has not been considered
here: solving a problem by solving smaller instances
of the problem first and combining the results to solve
a larger instance, core strategy of divide-and-conquer
or dynamic programming algorithms. Actually, there
happens to be a reason for this omission: There is

[138] Xu, L. and Oja, E. 1990.
ing, boltzmann machine, and attributed graph matching.
L. Almeida, Ed. LNCS 412. Springer Verlag, 151-161.

Improved simulated anneal-

selection. While we have given a transformation func-
tion between solutions, that could be extended for mu-
tation, and selection can be based on the cost of a so-
lution, a crossover operation between solutions that
are general graphs seems to be hard to find. Finding
such a crossover operation, has to be left for future

work.

Table 6.1 sums up the various pair mergers together
with their complexities. Note, that for the evaluation
models that this work is primarily concerned about,
such as the ones presented in Chapter 4, the assump-
tions the incremental pair mergers are based on are
fulfilled and the local search pair merger are generally
more expensive than the heuristics incremental pair
merger, such as the variants of the greedy pair merger,
as the maximum size of a neighborhood of a solution
V(N, M) is in this case |N| < [M]. The experimental
evaluation presented in Chapter 9 confirms these the-

oretical observations.

[98] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures
= Evolution Programs, 2nd ed. Springer Verlag.
[37] Cross, A. D. J., et al. 1996. Genetic search for structural

matching. In Computer Vision - ECCV '96, R. C. B. Buxton,
Ed. LNCS 1064. Springer Verlag, 514-525.

60 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

funct set-smcsp(P,A) =
[M < empty query plan
O — orderQueries(P,A)
for each P [QOldo
M < A(P,M)
od

M.
Figure 6.14: General skeleton for a set merger

6.3 Set Mergers: Algorithms for

Merging Sets of Query Plans

Based on the pair mergers proposed in the previous
section, we can now define how a set of query plans
can be merged into a large plan. The essential idea
is that the query plans are merged incrementally, i.e.,
a set of query plans {P1,...,Pn} is merged by using
a pair merger A to merge P; and P, into A(P1,P2)
that in turn is merged with P3 and so on. At the end,
we obtain A(A(A(P1,P2),P3),...,Pn) which is a so-
lution for the SMCSP with input {P3,...,Pr} and their
corresponding queries.

The obvious questions raised are (1) whether the or-
der in which the query plans are considered a [eclts the
outcome and, if so, (2) how to determine the best or-
der. The answer to the first question is positive. In
general, the order of mergings can a [eck the result, in
particular if the pair merger used computes only an
approximate solution.

Since finding the best order in which to consider
the query plans is exponential in the number of
query plans, we propose four heuristics for determin-
ing a su Lciehtly good order among the query plans.
These heuristics follow mostly the skeleton for a set
merger shown in Figure 6.14 di Cerlng only in the way
the query plans are ordered.
P = {P1,..
ered, M the pair merger employed with complexity

Let in the following
.,Pn} be the set of query plans consid-

T (M, n,m) for merging two query plans with size n
and m, and | = max{ |P|| P [CPI} the maximum size

of a query plan:

(1) The arbitrary order set merger processes the
The ad-
vantage is the low overhead over the complex-

query plans in no particular order.

ity of M, resulting in an overall complexity of
O(n x<xT(M,n x 1,1)). This is paid for by a poor
quality of the solution in the many cases. Note,

that the complexity of A might depend on the
size of its input which here is n < I.

(2) The initial separate order set merger orders the
query plans initially by their cost in descending
order based on the assumption that the query
plans with the highest cost have the highest po-
tential for a large gain from merging. The com-
plexity of this merger is O(n < (T(M,LLn < 1) +
T (cost))).

(3) The second set merger that determines the or-
der of the query plans initially, is the initial pair-
wise order set merger. Instead of using the

cost of a query plan, for each query plan P

the highest relative gain g(P) if merged with

any other query plan is used to determine its
priority for merging. More precisely, g(P) =
max{ r CRI| [Q [{R,..

Q) —cost(M(P, Q))) } is used to order the query

plans in descending order. The initial pairwise

order merge has therefore a complexity at least
quadratic in the number of query plans, viz.

O(N% < (T(M, 1,1 +T(cost)) + nx (T(M,I,nx

1) + T (cost))).

(4) Finally, the progressive pairwise order merger
implements another greedy heuristic, di[Cering
from the previous two ones: Before each merg-
ing, the next query plan to merge into the re-
sult of the previous mergings is determined by
actually merging all query plans into that result
and retaining the best such merging as shown
in Figure 6.15. This results in a complexity of
O(N?xT(M,I,nx1)+T(cost)). Whether this or
the previous algorithm is faster, depends on the
influence the size of the input has on the perfor-

mance of A.

The experimental evaluation in Chapter 9 actually
shows that for the setup considered there, the order
in which the query plans are considered has almost no
influence on the quality of the result, allowing the fast
arbitrary order optimizer to be employed.

This short discussion of extending the pair merg-
ers proposed in the previous section to merging sets
of query plans is concluded by an outlook on an algo-
rithm based on the clustered strategy discussed at the
begin of this chapter.

., Pn}: r =(cost(P 1

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

funct set-smcsp(P,A) =
[M < empty query plan
while P #
Ppest — empty query plan
COStpest «
for each P CA do
MO- AP, M)
if cost(MY < costpest
then costpest — cost(MY

M - MU
Pbest — P
fi
od
P« P\{Pbest}

od

M.

Figure 6.15: Progressive pairwise order set merger

6.3.1 Pairwise Set Merger:
Example for the Clustered Strategy

The pairwise set merger is based on the assumption,
that the query plans are clustered with respect to their
similarity. In other words, it is assumed that there are
sets of very similar query plans such that the query
plans inside of one of these sets are rather similar but
the similarities among query plans in di Cerent such
sets is very small.

This intuition can be translated into an algorithm
as shown in Figure 6.16: For each query plan P, the
query plan Q # P is computed where the relative gain,
i.e., the gain compared to the case where Q and P are
not merged, viz. cost(P Q) — cost(A(P,Q)). Q
is considered the query plan that is most rewarding
to merge P with. Together with Q also the mapping
from vertices in P to vertices in Q is determined from
AP, Q).

Based on this information, the common super-plan
M is constructed in the following manner: For each
query plan P the just computed best partner for merg-
ing Q is considered. If Q has not yet been processed,
it is added without merging into M, and P is merged
into M using the mapping computed above, i.e., each
vertex v [V} is mapped to the vertex z Ml mapped
to the vertex w [CQ that v has been assigned by the
mapping computed in the first step. Q will not be pro-
cessed any more, if encountered later.

Consider,

as an example, four query plans

61
{P1,...,P4}. Assume that the first step (line 6-16
in Figure 6.16) results in partners : P; B P,,P, O
P3,P3 B P3,P4 B P3. Such a result can occur, e.g.,
if cost(A(P,Q)) = cost(A(Q,P)) does not hold in
general. The second step (line 19-29 in Figure 6.16)
constructs M based on these assignments for partners
by adding P, without merging into the empty query
plan and mapping P; into the result as specified
by maps. Since P, has already been processed, it
is skipped and P3 is merged into M according to
the mapping to vertices from P; (which are already

mapped into M) computed in the first step. P4 is
merged analogously.
To further illustrate this example, assume Pq,...,P4

as in Figure 6.17(a). Then the following can be ob-
served if we assume a simple cost function based on

the operators the vertices use (cf. Chapter 8):

—Both P, and P3 have three vertices with P; in com-

mon. If we assume that the cost for <* is higher
than the cost for b, P, becomes the most promising

query plan for merging with P;.

—With P, again both P; and P3 have the same num-
ber of vertices in common, but if we assume [has
higher cost than <, P3 is the most promising query

plan for merging with Ps.

—P3 has as discussed three vertices in common with
P, and P;. Is the cost of b higher than the cost of b,
P, is preferable to P, for merging with P3.

—Finally, P4 has only two vertices in common with Py
and with P3. Again we assume a higher cost for 1
than for <1 and select P3 as the best query plan for
merging with P4.

Based on these mappings, the query plan shown in
Figure 6.17(b) is constructed, that is a solution for the
SMCSP with input {P1,...,Pa}.

The disadvantage of this algorithm can also be de-
rived from Figure 6.17: The constructed shares con-
siderably less vertices than the optimal query plan
shown in Figure 6.17(c) under a cost function that as-
signs to a query plan a cost based on the number of its
vertices. This is due to the fact, that vertices from one
query plan are only shared with vertices from a single
other query plan, but not from multiple query plans.
Therefore, e.g., the [“_from P3 is not shared with the
[—from P, as vertices from P3 are only shared with
vertices from P;.

62 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

funct set-smcsp(P, A) =
[partners: P - P

maps : P - mapping from vertices of one query plan to vertices of another one

for each P [Pldo
gaiNpeg « ©°
for each Q CP\{P} do
ME- AP, Q)
if cost(P [Q) — cost(MY > gain.
then gaing.y ~ cost(P Q) —cost(MY
partners(P) « Q
maps(P) - getmapv V3 O Vv [V OV from MY

od

M < empty query plan
processed : P - {true, false}
for each P [Pldo
processed(P) ~ false
od
for each P [Pldo
if processed(P) then continue fi
Q - partners(P)
if # processed(Q)
then processed(Q) - true
MM LCQ
fi
M ~ merge all vertices v from P with vertices in M that are merged with the
vertex from Q that v is mapped to v by maps(P)

processed(P) ~ true

Figure 6.16: Pairwise set merger

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

A R AN S AN S AP ST
S B AN \NEN G S NIV S

Py: i °°®

(a) Input plans Py

63

(b) Result of pairwise merger

(c) More compact query plan

Figure 6.17: Example for pairwise merger

The clear advantage of this algorithm is that it uses
A only with input of size I, where | is the maximum
size of a query plan in the input, whereas all other set
mergers proposed above use A with input up to n x|
where n is the number of query plans from the input.
The construction phase of the pairwise set merger can
be implemented linear in n and I, so that the overall
complexity is roughly

OMMZ<xT(A, LD +nxl).

¢

The discussion of the pairwise set merger concludes
our set of algorithms proposed for merging sets or
pairs of query plans into a solution of the SMCSP. The
last remaining corner stone in solving the SMCSP is
a consideration of the cost functions used to evaluate
the cost of a query plan. Such a consideration requires
some knowledge about the underlying evaluation en-
gine. Therefore, the next chapter presents a concise
overview of the SPEX evaluation engine and how it can
be adapted to process multiple queries. Based on the
SPEX engine, Chapter 8 specifies several classes of cost
functions together with concrete examples tailored in
most parts to the SPEX engine. Using these cost func-
tions, the algorithms proposed in this chapter can fi-
nally be evaluated in Chapter 9.

64

HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

Chapter 7

Use Case: SPEX

In this chapter, it is shown how to extend the SPEX evaluation engine to support the evaluation of query

plans for evaluating multiple queries as constructed by the algorithms in the previous chapter. After a short

introduction into SPEX, the evaluation of a query plan for multiple queries is detailed, in particular for query

plans with shared operators that are not part of a prefix of the query plan.

Contents

7.1 SPEXinaNutshell

7.2 Evaluating Query Plans for Multiple Queries

To facilitate the definition and analysis of reason-
able cost functions in Chapter 8 and as basis for the
experimental evaluation presented in Chapter 9, we
give here a short introduction to the SPEX engine re-
ferring to [105; 106] for a more detailed description.

7.1 SPEX in a Nutshell

In [79; 105], a novel evaluation engine for streamed
and progressive evaluation of XML queries against
streams, called SPEX, has been introduced: A query
is translated into a network of transducers closely re-
sembling a query plan as presented in Section 2.3.2.
The presented network of transducers combines a

worst-case complexity close to the optimal complex-

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-
pressions with qualifiers against XML streams. In Proc. of
the International Conference on Data Engineering (ICDE).

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.
M.S. thesis, University of Munich, Institute of Computer Sci-
ence.

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

ity for evaluating queries against XML data in main-
memory shown in [53] with several strong advan-
tages over conventional approaches for querying XML

streams

— The main feature aside from the good complex-
ity is the high extensibility and flexibility of the ap-
proach. As emphasized by the ease of extending
SPEX to multiple queries presented in Section 7.2, the
network-based approach combined with highly inde-
pendent transducers provides a framework that can
be easily extended with new transducers implement-
ing additional operations or with new methods for
combining existing components. This enables the (log-
ical) optimizer as discussed in Chapter 2.3 to freely
choose from a large number of di[erknt evaluation
strategies the preferred way of evaluating a query
based, e.g., on estimations about the expected eval-
uation time.

— Furthermore, [106] proposes a layered approach

[53] Gottlob, G., et al. 2003. The complexity of XPath query
evaluation. In Proc. of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS). 179-
190.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-
versity of Munich, Institute for Computer Science.

65

66

to querying XML streams based on the expressive-
ness of the queries supported: Several classes of
queries are identified, di Cerentiated by the manner in
which they relate diCerknt constraints expressed in
the query into path, tree, and graph queries (cf. Sec-
tion 2.2), or by the operators allowed in such a query.
For graph queries, the worst-case complexity of evalu-
ating a query containing only <t and <I* together with
the corresponding inverse relations is better than if
also horizontal relations among elements, such as 1
are used.

— Finally, the SPEX components of the SPEX net-
work are simple deterministic push-down transducers
with very low computational requirements that can
be implemented on simple devices with low CPU uti-
lization. The communication among these transduc-
ers is similarly well suited for low-end devices as a
transducer only annotates certain elements in the XML
stream, resulting in at most a constant overhead over
the original input stream.

For further details on the features and properties of
SPEX, please refer to [79; 105; 106] and to the graphi-
cal front-end [126] that allows to observe a prototype
implementation in detail.

To facilitate the description, how query plans for
multiple queries can be evaluated by the SPEX engine,
a closer look at certain concepts and components of
the SPEX network is required.
present a slightly simplified view of a SPEX network

In the following, we

closely resembling the query plans used in this work
leaving out certain technical details of no concern to
the issue at hand that are discussed in [106].

The essential idea of the SPEX engine is that each
operator of a query plan is implemented by a spe-
cific transducer. These transducers are connected
as specified by the query plan, so that an element
from the stream flows through the transducers in the
same order as the query plan dictates. Consider, e.g.,
the query plan from Figure 2.9 for the path query
Q(v2) :-a(vl) [< v2 [DBI(v2). Starting from

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.
M.S. thesis, University of Munich, Institute of Computer Sci-
ence.

[126] Spannagel, M. 2003. SPEX Viewer: A graphical user interface
for SPEX. Project thesis, University of Munich, Institute for
Computer Science.

[106] Olteanu, D, et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-
versity of Munich, Institute for Computer Science.

USE CASE: SPEX

Figure 7.1: Query plan with simple predicate extended

by determination network

the stream access operator in, an element is first pro-
cessed by the a label operator, then by the < relation
operator, the b label operator, and finally the output
operator out. When the element passes an operator it
is determined, whether the element is selected by that
operator. If that is the case, the element is annotated
as selected. In the sample query plan from Figure 2.9,
the in operator selects all elements encountered in the
stream, the (transducer corresponding to the) a label
operator retains from these only the elements with la-
bel a as selected, all other elements are not any more
selected. The < operator selects for each such a its
children. So after the <1 operator only the children
of an a are selected and then restricted by the b la-
bel operator. The out operator does not change the
selected elements but rather considers all selected el-
ements encountered as part of the result of the query.

So far the evaluation can only handle path queries.
To support tree queries resulting in tree-shaped query
plans, a means for connecting results of separate
parts of the network is needed. Recall, that a tree
query results in a predicate operator labeled with [].
Figure 7.1 shows a query plan that is extended by a so-
called determination network depicted in gray. This
determination network closely resembles the struc-
ture of the query plan, but is inverted. For each predi-
cate operator in the query plan there is a correspond-
ing determination operator, here depicted by a box la-
beled with ?.

To see, why this determination network is intro-
duced, recall the semantic of the query plan shown:
It selects all following-siblings with label a of an ele-
ment if that has also a descendant b. When evaluating
such a query plan the problem arises that when an
a element is encountered that is a following-sibling of
some element, it must be determined, whether there is
also a b descendant of the same element. This test is
performed by the determination operator that corre-
sponds to the predicate operator: Whenever a selected
element passes the predicate operator, it is annotated
with a (unique) condition. This condition is retained

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Figure 7.3: Query plan with intersection extended by
determination network

o>

' > B\ﬁ out
2 2 LY 2N\

Figure 7.4: Query plan for two queries 1 and 2

when other operators change the selected elements
until the element passes the corresponding determi-
nation operator. When the determination operator en-
counters selected elements from both branches that
are annotated with the same condition, that condition
is determined to be fulfilled and the corresponding re-

sult can be generated.

If there are nested predicates in a query plan, the
picture gets slightly more complex as shown in Fig-
ure 7.2: At the second predicate the conditions for the
first predicate are replaced, but a mapping between
the conditions for the two predicates is retained, so
that after the determination operator for the second
predicate, the conditions for the outer first predicate
can be obtained by a new operator labeled with map.
[106] shows how these mappings can be created and
that they have no impact on the complexity for evalu-
ating a query with a SPEX network.

Finally, graph queries can as well be handled by this
approach. Consider, e.g., the query plan and deter-
mination network shown in Figure 7.3. At the inter-
section operator, elements from both incoming edges
carry conditions. To keep the annotation of elements
in the stream constant, the intersection operator cre-
ates a new condition if from both incoming edges a
selected element is encountered. This condition has
to be mapped back to the original conditions in the

determination network as shown in Figure 7.3.

Figure 7.5: Query plan for two queries 1 and 2

7.2 Evaluating Query Plans for Multi-

ple Queries

The extension to multi-query plans proves to be
very natural and easy: Consider the multi-query plan
shown in Figure 7.4. In this query plan the two queries
1 and 2 share a common path in the middle of the
query plan.

In such a query plan, a new operator, referred to as
shared path begin operator and depicted as a box la-
beled S, is introduced at the point where the shared
path starts. When a selected element flows through
this operator from one of the incoming edges it is an-
notated with a condition. It is furthermore recorded
for which of the incoming edges (or queries), a se-
lected element is encountered, since it is very possible
(in the case of Figure 7.5 actually guaranteed) that the
element is selected only on one of the incoming edges.
Here, an element is selected either by query 1, if it is
a a element, or by query 2, if it is an b element, or by
none of them.

In the determination network at the end of the
query plan, shown in Figure 7.5 the queries are sep-
arated again if they are not already as in this case and
for each query a determination operator is used that
determines a condition only, if a selected element has
been encountered for that query by the corresponding
shared path begin operator when the condition was
created.

Interestingly, this extension to the SPEX network
proves to be very e [cieht: The overhead introduced
by sharing a path is not larger than the cost of a pred-
icate operator and occurs only at the beginning of the
path. The more costly the shared path is (e.g., if it
is long or entails expensive operators), the lower is
the overhead of sharing per operator. To reflect this
overhead, a cost function Kmerging is defined in the fol-
lowing section that penalizes vertices with incoming
edges that are assigned to di[Cerknt sets of queries,
i.e., the cost of vertex at the begin of a shared path is

increased roughly by the cost of a predicate operator.

68

Figure 7.2: Query plan with nested predicate extended by determination network

USE CASE: SPEX

Chapter 8

Cost Estimation in a Streamed Environment

As the final part of the optimization framework, this chapter discusses the cost estimation of query plans. Cost

functions are classified by their complexity with respect to the size of a query plan and for each of the classes

a generic cost function as well as a cost function specific to SPEX is proposed.

Contents

8.1 Classes of Cost Functions
8.1.1 Independent Cost Functions
8.1.2 Local Cost Functions

8.1.3 Global Cost Functions

Recall, that part of an evaluation model as defined
in Chapter 4 is a cost function that assigns a cost to
each valid query plan. In this chapter, a natural class
of cost functions, called vertex-based cost functions,
is investigated characterized by the assumption, that
a cost function can be extended to the vertices of a
query plan such that the cost of that query plan can
be computed from the costs of the vertices in linear
time. In other words, we assume that for an evaluation
model E with a cost function cg, there is a function
Cvertex . Vp -]R5r where P is a query plan from E, such
thatcg(P) = a+p3
a,p CRE.

In the following, we extend cg to vertices such that

v [va Cvertex (V) for some constants

for all vertices v in a valid query plan of E, i.e., for all
V oo Ve, (V) = Cuertex(V).

The advantage of such cost functions is that they
are easy to define, allow to compare vertices based
on their cost (as required, e.g., by the initial greedy
merger discussed in Section 6.2.1), and can naturally
be broadened to partial solutions (as demanded, e.g.,
by the incremental pair mergers proposed in Sec-
tion 6.2.1.

In the following sections, this class of cost functions
is further investigated.

69

8.1 Classes of Cost Functions

In Section 6.2 several pair mergers for merging two
query plans have been proposed. The complexity of
all mergers depends among other factors also on the
time required for computing the cost of a query plan,
denoted there as T (cost). Based on this observation,
we distinguished here the vertex-based cost functions
further by the manner in which they compute the cost
of a vertex:

Independent vertex-based cost function. A vertex-
based cost function is called independent, if the cost
of a vertex is depending on properties of that vertex
only and is independent of the rest of the graph.
Furthermore, the cost of the vertex is unalecked if
other vertices or edges in the graph are changed. The
time for computing the cost of a vertex with a such a
cost function is constant with respect to the number

of vertices in a query plan.

Local vertex-based cost function. If at most the local
neighborhood of a vertex in the query plan, e.g., inci-
dent edges or adjacent vertices, can a[ect the cost of
a vertex, the cost function is referred to as local cost

function. The time for computing the cost of a ver-

70

tex with a local cost function is, with respect to the
number of vertices in the query plan, bounded by the
degree of the query plan.

Global vertex-based cost function. Finally, a global
cost functions does not restrict the number of vertices
that the cost of a single vertex might depend on. The
time for computing the cost of a vetex with a global
cost function is linear in the number of vertices in the
query plan. Under such a cost function, any change in

the graph can a[eck the cost of any vertex.

In the following, each of the classes is detailed with
concrete examples for cost functions used in the ex-
perimental evaluation presented in Chapter 9. The
di [erknt cost functions are motivated with examples
based on the query plans introduced in Section 2.3.2.
Recall, that the corresponding evaluation model X, cf.

Section 4.3, allows only acyclic query plans.

8.1.1 Independent Cost Functions

The most basic independent cost function, denoted as
Kvertices, 25Signs to each vertex the same constant cost
a, i.e, for all vertices Vv, Kyeriices(V) = . Note, that a
solution of the SMCSP under this cost function is the
valid query plan with the smallest number of vertices.
Under an evaluation model E, such that for any graph
G there are 11,7T,q such (G, 1, T,q) is a valid query
plan for E, the SMCSP with Kyertices @S Objective func-
tion resumes to the minimum common super-graph

problem.

But in most practical cases, such a cost function
does not provide a good estimate for the expected cost
of evaluating a query plan. Consider, e.g., for evalu-
ation model X the two query plans P; and P, from
Figure 8.1(a). Recall, that only acyclic query plans are
valid in X. Therefore, either the two < or the two
<* vertex from P4 and P, can be shared but not both,
since the resulting query plan is acyclic. Kyertices gives
no indication which of the two query plans from Fig-
ure 8.1(b) and 8.1(c) is preferable, they are assigned
the same cost. For the SPEX engine, the evaluation of
a <I* operator however proves to be more expensive
than a <1 operator, therefore a cost function should be
able to express that the alternative solution is prefer-

able.

For a query plan P = ((V,E), T, 11, q) under an eval-

COST ESTIMATION IN A STREAMED ENVIRONMENT

P in (AN @
P in B>

(a) Input plans P1, P2

(c) Alternative solution

Figure 8.1: Relevance of edge count

uation model E, let

TV - Re T
1
Edv) if mirre: t(v)=r

B

where [IIRE represents the case where no property

AVAN VA st
otherwise

is assigned to a vertex.

Using this definition, we define a new cost function
Koperators that is based on a characterization of the op-
erators and properties of the corresponding evalua-
tion model. Let ¥ : Og x Rg [CIId Ry be a func-
tion specific to the evaluation model E that assigns to
each pair of operator and property a cost for evaluat-
ing such an operation. Then the cost of a vertex v is
Koperators (V) = F(TT(V), ™).

Table 8.1 shows a part of an exemplary mapping
T based on analytical and experimental evaluation of
the SPEX evaluation engine. Note, that the costs are
relative, i.e., for comparing operator-property pairs
among each other.

8.1.2 Local Cost Functions

Local cost functions allow to take the neighborhood
of a vertex, i.e., the incident edges and adjacent ver-

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

operator o property r f(o,r)

< 1 5
<* 1 5+ 10
1 1 5+2
M 1 5+2+10
label string s s/8+ 10
in 1 0

Table 8.1: Relative cost for evaluating operator-
property pairs in SPEX

tices, into consideration when computing its cost. As
discussed in the previous section, whenever the in-
coming edges of a vertex are shared among di [erent
sets of queries, certain costly measures must be taken
in SPEX to ensure the correct evaluation of the query
plan. This is likely to be true for many other evalua-
tion engines. Therefore, cost functions that are con-
cerned about the vertices only can in many cases not
reflect the expected cost for evaluation of a query plan
accurately enough.

Consider, e.g., the two identical query plans P; and
P, from Figure 8.2(a). Cost functions such as Kyertices O
Koperators assign the same cost to the two query plans
shown in Figure 8.2(b) and 8.2(c) although for SPEX the
second alternative is clearly preferable.

A first attempt, to address this issue, is Kedges that
assigns to each vertex a cost based on the number of
incident edges, i.e., Kedges(V) = a + Bledges(v)| where
edges is defined as in Section 4.3 and o, 3 are some
constants. If a = 3 = 1, the query plan from Fig-
ure 8.2(b) has a cost of 23, whereas the alternative so-
lution has only a cost of 21.

Kedges allows to aleck the cost of a vertex by the
number of incident edges, but is still not able to cope
with the initial problem that the cost of vertex with in-
coming edges shared among di Lerent sets of queries
must be clearly higher than for a vertex where the
edges are shared among the same set of queries. For
illustration, consider the query plans P; and P, to-
gether with two possible common super-plans shown
in Figure 8.3. The first solution has actually better
cost under Kedges for a = 3 = 1. But for the SPEX
engine, the alternative solution performs often better
since the shared vertices (the < and the out operator)
are rather cheap, so that sharing them does not jus-
tify the cost introduced by the fact that they have now
both incoming edges shared among di Cerkent sets of
queries.

, s in @ N

(a) Input plans P1, P2

(c) Alternative solution

Figure 8.2: Relevance of edge count

R in DO
B in (D)D)

(a) Input plans P1, P2

(c) Alternative solution

Figure 8.3: Relevance of continuity

71

72

< < <
| .
A B

Figure 8.4: Relevance of selectivity

Therefore, we introduce a second local cost func-
tion, Kmerging that penalizes vertices with incoming
edges assigned to dilerknt sets of queries. More
precisely, for a vertex v in a query plan P =
(V,B),Tt,m,q), lety = {Q| ledCH: Dad [\ :
(w,Vv) = e [ql{e) = Q}| be the number of di Cerknt
sets of queries assigned to an incoming edge of v and
a, 3 some constants, then

1

Eel
% B -y otherwise .

ify=1
Kmerging (V) = Koperators(V) +

8.1.3 Global Cost Functions

The final class of vertex-based cost function may con-
sider the entire graph for computing the cost of a ver-
tex. Here, we present only one example for this class
of cost functions, the selectivity based cost function
Kselectivity that is based on Kmerging but introduces an
additional bias based on the estimated selectivity of a
vertex based on the operator-property pair assigned to
it. Figure 8.4 shows three query plans P1,P5, and P3. A
common super-plan of P; and P3 or P, and P3 can con-
tain the <J-a subgraph from P; respectively P, shared
with position A or B in Pz assuming the two <1* op-
erators are not shared. Under Kmerging both positions
yield the same cost for the common super-plan. Ob-
serve, that the di Cerénce between P, and P, lies in the
second vertex, where P; uses a <{* operator and P, a
<. Furthermore, note that in P3 there is << before B.
Therefore, the <1-a subgraph in P; and B process both
a far large number of a elements in the stream, than
the subgraph in P, or A. Sharing the subgraph from P,
with B therefore will a [eck the processing time more
than sharing with A.

The selectivity of an operator-property pair is es-
timated similar to the cost estimation for relation

queries without statistics on the data, cf. [51]. Such

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-
plete book, 1st ed. Prentice Hall, Upper Saddle River, New

Jersey.

COST ESTIMATION IN A STREAMED ENVIRONMENT

an estimation can approximate the selectivity of many
operators only very poorly, but has the advantage that
it does not require knowledge about the stream and its
characteristics during optimization.

Using statistics about the stream is not considered
here and left for future work. Based on statistical data
collected either a-priori or during the processing, the
cost estimation could be further refined as shown in
[109; 1; 84; 116; 137].

Based on the cost functions proposed in this chap-
ter, Chapter 9 finally provides an experimental evalu-
ation of the techniques and algorithms proposed.

[109] Ozkan, C., et al. 1995. A heuristic approach for optimiza-
tion of path expressions. In Proc. of the International Con-
ference on Database and Expert Systems Applications. 522—
534.

[1] Aboulnaga, A, et al. Estimating the selectivity of XML path
expressions for internet scale applications. In Proc. of the

International Conference on Very Large Databases (VLDB).

2001.

Lim, L., et al. 2002.

tuning markov histogram for XML path selectivity estima-

[84] XPathLearner: An on-line self-
tion. In Proc. of the International Conference on Very Large
Databases (VLDB).

[116] Polyzotis, N. and Garofalakis, M. 2002. Statistical synopses

In Proc. of the ACM

SIGMOD International Conference on Management of Data.

Wu, Y., et al. 2002.

queries. In Proc. of the International Conference on Extend-

ing Database Technology (EDBT). 590-608.

for graph-structured XML databases.

[137] Estimating answer sizes for XML

Chapter 9

Experimental Evaluation

Based on the evaluation model of the SPEX engine and the cost functions defined in previous chapters, the

algorithms can now be evaluated thoroughly. In this chapter, it is shown that there are several pair mergers

that if combined with a set merger produce good solutions in an acceptable amount of time. In particular,

the initial greedy merger proves to construct solutions that are at least as good as the solutions of most of the

more expensive pair mergers for the kind of queries considered here. Finally, the results on the complexity of

the pair and set mergers discussed in Chapter 6 are confirmed by the presented experiments.

Contents

9.1
9.2 Assessing the Feasibility of the Approach
9.2.1 Comparing the Cost
9.2.2 Comparing the Time
9.2.3 Comparing the Results
9.3
9.4

Comparison of Local Search Pair Mergers

Comparison of Set Mergers

In this chapter, the algorithms presented in Chap-
ter 6 are finally evaluated for a large set of RPQ query
plans, cf. Section 2.2. Extensive test have been per-
formed for most of the proposed pair and set mergers
against several query workloads with varying charac-
teristics. To illustrate the results, the following sec-
tion introduces the setup of the experiments, in partic-
ular the di Cerent query workloads together with their
properties.

9.1 Setup

A prototype implementation of the proposed query
plans and algorithms for solving the SMCSP in Java

[74] is described in Chapter 10: Based on a graph li-

[74] Joy, B., et al. 2000. The Java Language Specification, 2nd

ed. Addison-Wesley.

73

brary specifically optimized for e [cieht iteration over
the incident edges of a vertex, e [cieht implementa-
tions of the most important graph operations for a
query plan are provided. The cost functions proposed
in the previous chapter are implemented using mem-
orization, allowing an incremental update of the cost
of a graph upon change.

The following tests have all been performed using
Sun Hotspot JRE 1.4.1 under Linux 2.2 running on a
AMD Athlon with 1,3 GHz and 500 MB of main mem-
ory.

The basis for all tests is the SPEX evaluation engine
reviewed in Chapter 7. Therefore the evaluation model
X, defined in Section 4.3, is employed: Recall, that
X restricts query plans to acyclic graphs. In Chap-
ter 6, an implementation of validCandidates for X
is given, that allows, given a valid partial solution, to
determine pairs of vertices such that merging one of

74

these pairs does not violate the validity of the partial
solution. Combined with one of the vertex-based cost
functions in Chapter 8 that all naturally extend to par-
tial solutions, the two requirements for incremental
pair mergers are fulfilled by X.

Actually, the initial greedy pair merger, an incre-
mental pair merger, proves to give the best trade-
o [Cbktween solution quality and time for computing
a good solution outperforming the more costly local
search pair merger. Note, that this result can not
be generalized to arbitrary evaluation models, that do
not admit to the above requirements for incremental

pair mergers.

9.1.1 Workloads

As input for the test, we use five di Lerent workloads
each consisting in 10.000 query plans based on X.
When testing algorithms with high complexity, only
smaller subsets of these workloads are considered.
The five workloads di Lerlwith respect to the charac-
teristics of the contained query plans.

The query plans contained in the workloads have
been generated by a query generator based on a DTD.
The query generator ensures that all the generated
query plans confirm with a given DTD, i.e., contain
only structural and label constraints allowed by the
DTD. It can be configured with a large number of pa-
rameters alecting the structure of the query plans
constructed from the generated query plans. In par-
ticular, the number and distribution of relation oper-
ators and the shape of the query plans can be deter-
mined by appropriate parameter settings. If no DTD
is provided, random query plans are generated where
the label constraints are random strings and the rela-
tion operators are chosen according to the specified
distribution. In these tests, we have configured the
generator to generate tree-shaped query plans with a
low (5) maximum degree for a vertex. The relation op-
erators are distributed equally, where possible (i.e., if
the DTD allows a choice among several relations, each
of these relations is selected with the same probabil-
ity). Since the generator is based on DTDs only, no

text operators are created.

NITF-workload. The first workload is based on the
NITF-DTD [71], defining a commonly used format

[71] International Press Telecommunications Council. News in-

dustry text format (NITF). http://www.nitf.org.

EXPERIMENTAL EVALUATION

for encoding and exchange of news related informa-
tion. This DTD is rather large (roughly 200 elements
defined), richly structured, highly recursive, and al-
lows very heterogenous instances, with a high de-
gree of freedom similar to the HTML-DTD. Figure 9.1
shows several exemplary query plans from the NITF-
workload. In general, these query plans are rather di-
verse just like the NITF documents they are to be eval-
uated against. Therefore, the NITF-workload provides
a good approximation of querying document-centric
XML.

COURSES-workload. In
workload,

NITF-
referred to as

contrast to the
the second workload,
COURSES-workload, is meant to mimic applications
involving data-centric XML. The base DTD of this
workload is designed for encoding information about
university courses (cf. [100]). It is very small (only 16
elements defined), slightly recursive, and very rigid
with respect to the allowed structure of an instance.
This is reflected in the query plans, cf. Figure 9.2, by
a higher similarity within the workload compared to
the NITF-workload. Whereas the distribution of the
relation operators is comparable to the NITF case,
the query plans di[Cerl considerably with respect to
the label operators. Most of the query plans in this
workload contain, for example, several courses label
operators.

RANDOM-workload. Where the NITF-
COURSES-workload should provide sets of query plans

and the

similar to practical cases, the RANDOM-workload and
the following REPEATED-workload represent extreme
cases. The query plans in the RANDOM-workload are
not based on a DTD but rather generated entirely ran-
dom based only on the specified distribution of the
relation operators, here an equal distribution among
<, <*, [-and [C—1The resulting query plans shown
exemplary in Figure 9.3, are extremely diverse and
contain almost no label operators with the same la-
bel.

these query plans is expected to be extremely low.

Therefore, the gain by sharing operators among

REPEATED-workload. The converse case is repre-
sented by the REPEATED-workload, that exists in two
The first variant, REPEATED-1x10000, re-
peats the same query plan 10,000 times, the second

variants.

[100] Miklau, G. http://www.cs.
washington.edu/research/xmldatasets/, University of

XML data repository.

Washington.

http://www.nitf.org
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

DESCENDANT
CHILD
(E

DESCENDANT

ll

DESCENDANT
DESCENDANT

FOLLOWIN

in4%EE::>

FOLLOWING-SIBLING
DESCENDANT

alt-code

a il]

DESCENDANT

n

3
<
)

Y
@

DESCENDANT |

DESCENDANT

[rouomasane | [rouomosanas |
FOLLOWING-SIBLING | ‘

alt-code alt-code

DESCENDANT

HEAD

FOLLOWING-SIBLING

Ros

rouomnseuncs |

rouomncsngs |

alt-code ‘llIII'

HEAD

FOLLOWING-SIBLING

~(0

alt-code

(|H|HHH"

Figure 9.1: Sample query plans from NITF-workload

HEAD

76

DESCENDANT

FOLLOWING-SIBLING CHILD

DESCENDANT

DESCENDANT

| DESCENDANT FOLLOWING-SIBLING

FOLLOWING-SIBLINGS

FOLLOWING-SIBLING

FOLLOWING-SIBLING

FOLLOWING-SIBLING

HEAD

EXPERIMENTAL EVALUATION

DESCENDANT

FOLLOWING SIBLING.

DESCENDANT

CHILD FOLLOWING-SIBLING
DESCENDANT
CHILD DESCENDANT @
/
CHILD
FOLLOWING-SIBLING FOLLOWING-SIBLINGS
HEAD HEAD l

Figure 9.2: Sample query plans from COURSES-workload

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 77

CHILD

CHILD

DESCENDANT

DESCENDANT

FOLLOWING-SIBLINGS

©

FOLLOWING-SIBLING

L

FOLLOWING-SIBLINGS DESCENDANT FOLLOWING-SIBLINGS

FOLLOWING-SIBLING |

DESCENDANT

FOLLOWING-SIBLINGS

O—O—]

DESCENDANT

FOLLOWING-SIBLINGS

@ | DESCENDANT
@ CHILD e DESCENDANT
CHILD HEAD

HEAD

—®

—0—{|-0

e e

Figure 9.3: Sample query plans from RANDOM-workload (.rnd. indicates a random label)

78

variant, REPEATED-100x100, contains for each of one
hundred original query plans one hundred duplicates
of that original. In both cases, the original query plans
are from the NITF-workload. The REPEATED-workload
is therefore used to test how good the di Lerent heuris-

tic algorithms recognize identical query plans.

DEVIATED-workload. The final workload is similar
to the REPEATED-workload in that it contains repe-
titions of the same query plans. But this time, the
query plans are not repeated exactly, but rather each
time slightly deviated. Such a deviation can entail that
a relation operator is changed to another relation op-
erator or a label is changed to a random string. The
number of deviation from the base query is, for each
deviated query, random in the range of [0,5]. Fig-
ure 9.4 shows a base query and two deviations. As in
the repeated case, there are two variants, DEVIATED-
1x10000 and DEVIATED-100x100, with 10,000 query
plans based on the same query and 100 query plans

based on 100 di Cerknt base queries, respectively.

As mentioned above, all workloads have in common
that the query plans are tree-shaped and do not con-
tain vertices where two children of that vertex have
operator-property pairs that can be merged. There-
fore, the queries adhere to all requirements of the
tree prefix pair merger. Despite the favorable work-
load, the experiments show that the initial greedy pair
merger, although outperformed by the tree prefix pair
merger, can produce clearly superior solutions except
on the REPEATED-workload (see Section 9.2) in reason-
able time compared to the tree prefix pair merger.

Another commonality among the workloads is that
the query plans within a single workload di Lerlonly
in a limited range. E.g., the queries in all workloads
have at most 30 vertices and very seldom less than
10. Furthermore, the maximum degree of the vertices
is by choice rather low.

Further studies with more diverse workloads, in
particular with graph-shaped queries, where the tree
prefix pair merger is presumed to perform far worse,
are left for future work.

EXPERIMENTAL EVALUATION

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

DESCENDANT DESCENDANT DESCENDANT
5 £
SIBLING

z

79

DESCENDANT FOLLOWING-SIBLINGS DESCENDANT DESCENDANT FOLLOWING-SIBLINGS

alt-code sublocation function alt-code sublocation sublocation Gcmn

FOLLOWING-SIBLING

FOLLOWING-SIBLING FOLLOWING-SIBLING DESCENDANT FOLLOWING-SIBLING FOLLOWING-SIBLING DESCENDANT DESCENDANT DESCENDANT

A

FOLLOWING-SIBLINGS

FOLLOWING-SIBLINGS FOLLOWING-SIBLINGS FOLLOWING-SIBLINGS

CHILD

FOLLOWING-SIBLINGS

alt-code

alt-code. alt-code alt-code. alt-code. alt-code. G—coﬁe

HEAD HEAD HEAD

Figure 9.4: Sample deviated queries (first query is base)

CHILD FOLLOWING-SIBLINGS

80

9.2 Assessing the Feasibility of the
Approach

Based on the experimental setup presented in the pre-
vious section, we present here the results of compar-
ing four pair mergers, the plain, the random, the tree
prefix, and the initial greedy pair merger, under the
arbitrary order set merger and two di Lerknt local cost
B =1 The
arbitrary order set merger has been chosen, as exper-

functions, Kmergings aNd Kedges With a =

imental evaluation on the query workloads presented
here indicates that the order in which the query plans
are considered does not have a large aleck on the
quality of the result, cf. Section 9.4. The choice of
the cost functions is based on the observation that
the independent cost functions fail to provide an ac-
ceptable approximation of the actual evaluation time
for the SPEX engine and that the global cost function
Kselectivity IS Often too expensive to be used, since it
has quadratic complexity for computing the cost of
the entire query plan in contrast to the (almost) lin-
ear complexity for the local cost functions (recall, that
the maximum degree of the vertices in all workloads
is very low).

Only the above mentioned four pair mergers are
considered since the tree prefix and the initial greedy
pair merger prove to provide the best time-quality
trade-o [Cah the setup considered here. The plain and
random pair merger are used for comparison only:
The plain pair merger illustrate the cost if there is no
sharing at all among the query plans, whereas the ran-
dom pair merger is used to gauge the other incremen-
tal pair mergers, in particular the initial greedy pair
merger. In Section 9.3 the remaining pair mergers are

evaluated on subsets of the workloads.

9.2.1 Comparing the Cost

Figure 9.5 (9.6) and 9.7 (9.8) show the absolute cost
of the solution (the average estimated cost for evalu-
ation per query) computed by the four pair mergers
versus the number of queries considered for Kmerging
and Keqges respectively. In both cases, the initial greedy
pair merger delivers are very good solutions over all
workloads except for the entirely random queries.
There, the delivered solution is still better than for the
remaining pair mergers tested, but very near in cost
to the solution provided by the plain merger where no
operators are shared among the query plans.

EXPERIMENTAL EVALUATION

Interestingly, the relative distance of the quality of
the solutions for the initial greedy and the plain pair
merger is more than twice under Keqges than under
Kmerging- This can be explained by the observation, that
the query plans in the RANDOM-workload use random
strings as label constraints. Therefore, almost only
relation operators can be shared among two query
plans. Since in most query plans relation and label op-
erators are intertwined, sharing the relation operators
leads to the case where one vertex is shared, its child
(or children) are not shared, but their children might
again be shared. Recall from Chapter 8, that this case
is penalized by Kmerging. The same reason explains to
the anomaly shown in Figure 9.5(c), where the solution
produced by the random pair merger is worse than the
solution where nothing is shared.

Another expected, but important observation is that
the tree prefix pair merger can only outperform the
initial greedy pair merger for the two REPEATED-
workloads and there only by a small margin. In all
other cases, the simple heuristic of the tree prefix pair
merger fails to produce solutions that have a com-
parable quality to the ones constructed by the initial
greedy pair merger. The less diverse the query plans,
the more likely the tree prefix pair merger can pro-
duce a good solution, e.g., it produces solutions that
are closer to the solution of the initial greedy pair
merger for the COURSES- than for the NITF-workload
and similarly for the DEVIATED-1x10000- than for the
DEVIATED-100x100-workload.

Note, finally, the performance of the random pair
merger: it is consistently outperformed by the initial
greedy pair merger with respect to the quality of the
solution but can provide solutions almost as good or
even better than the prefix pair merger on many work-
loads, in particular for Keqges. This results from the
fact, that the random pair merger, although choosing
randomly among the validCandidates still consid-
ers for all vertices all valid candidates for merging,
whereas the tree prefix pair merger only considers the

corresponding prefix vertex, cf. Chapter 6.

Peeking at Vertices and Edges

These results on the cost of the produced solution
are further illustrated by considering the vertices and
edges of these solutions, as depicted in Figure 9.9 and
9.10 for Kmerging-

Interestingly, the number of vertices in a solution

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

estimated cost

estimated cost

estimated cost

4.0M T T T T 3.0M T T T T
— plain —— plain
3.5M [~ ——-m-—- tree prefix b o5M | = tree prefix o
3.0M L ¥ random ’ %o random
: &-- initial greedy ? 2.0M | &-- initial greedy i
2.5M <] .
o
L 5] L
2.0M g 1.5M
1.5M - T toMf
1.0M
500.0k 500.0k -
0.0 = ! ! ! ! 0.0
2k 4k 6k 8k 10k 0
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
5.0M | T T
[—— plain A
ASMI o tree prefix
4.0M | ---x--- random
*g 35M F &~ initial greedy
% 3.0M A
£ 25M 1
E 20Mf 1
8 15M | E
1.0M | 4
500.0k [4
00 1 1 1
2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
3.5M T T T T 4.0M T T T T
—>— plain —>— plain
3.0M [---m-—- treedprefix 35M [—m- treeapretix 1
---%--- random ---%--- random £
2.5M F 8-~ initial greedy B @ 3OM - o initial greedy b
8 25M 4
2.0M o
£ 20Mr 1
1.5M
£ ismp J
1.0M |- ® 1Mt &
500.0k 500.0k |- 7
00 1 1 1 1 00
2k 4k 6k 8k 10k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
4.5M . . . 4.0M o T T T
—<— plain
4.0M + 7 3.5M - ---m—- tree prefix 1
S TR e greed 1 5 3oME I e]
3.0M - al greedy B] o initial greedy L
8 5M]
2.5M - 9
L 20M | B
2.0M - B g
15M | i § 1.5M e B
1OMF T i 1.0M B
500.0k - e - 500.0k =i}
a a
0.0 - 1 1 g i ! 0.0 - 1 | | |
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k

number of queries

(f) REPEATED-1x10000-workload

number of queries

(g) REPEATED-100x100-workload

Figure 9.5: Cost of the generated solutions under Kmerging

81

82

average cost

average cost

average cost

600.0
500.0
400.0
300.0
200.0
100.0

0.0

350.0
300.0
250.0
200.0
150.0
100.0
50.0
0.0

500.0
450.0
400.0
350.0
300.0
250.0
200.0
150.0
100.0
50.0
0.0

EXPERIMENTAL EVALUATION

number of queries

(f) REPEATED-1x10000-workload

T T T i - 450.0 T T T i -
plain —<— plain —<— |
tree prefix —--®--—- | 400.0 E tree prefix ---m---
. random ---x--- 350.0 ., random ------ o
initial greedy & g 300.0 initial greedy &
o 250.0
o
< 200.0
o
E B 3 150.0
! 100.0
o
50.0
1 1 1 1 0.0 1 1 1 1
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
600.0 T T
500.0 . K
g 400.0 WE-Tee mitial gregdy =)
o =g
S 3000 4
o
o
& 200.0 b
100.0 B
00 1 1 1 1
2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T T 600.0
plain —<—
—— tree-préfix—m— 500.0
. random ------)
initial greedy -8 o ,g 400.0
m o
& 3000
©
)
3 200.0
L e 100.0
1 1 1 1 00
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T i - 500.0 T T i n
plain —<— plain —<— |
Tree prefix —=— 450.0 1 tree prefix -———m-—-
3 random ---%---] 400.0 § random ---%--- -
L initial greedy & 4 % 350.0 initiat-greedy —=-— 3
K 4 8 3000 % 1
g S 2500 R E
T B g 2000 § 4
. e] T 150.0 4
P B 100.0 A
B I 4 50.0 1
I I Il Il 0.0 L I I
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k

number of queries

(9) REPEATED-100x100-workload

Figure 9.6: Average cost per query for the generated solutions under Kmerging

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

estimated cost

estimated cost

estimated cost

500.0k T T T T 350.0k T T T T
450.0k |- > plain 2 —x— plain
! ------ tree prefix 300.0k |- ---m--- tree prefix A
400.0k - ---x--- random 7 ---%--- random
350.0k &-- initial greedy 4 ‘g 250.0k [~ &~ initial greedy B
300.0k © 200.0k | 1
250.0k %
200.0k € 150.0k |
150.0k 3 100.0k [-
100.0k
50.0k 500k -
0.0 A" i L L L 0.0
2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
600.0k T T T T
—>— plain
500.0k | = tree prefix ol
: ---%--- random -
g 400.0k I &~ initial greedy P i
3
£ 300.0k [- 1
E
@ 200.0k 4
o
100.0k B
00 1 1 1 1
0 2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
400.0k I T T T T 500.0k I T T T T
—— plain | —<— plain “
350.0k - -—-m--- free prefix 7 450.0k |- tree prefix
3000k F X random i 400.0k [~ ---s--- random 7
. 8-~ initial greedy *g 350.0k - 8- initial greedy 4
250.0k T g 300.0k [
200.0k B (-"-; 250.0k
150.0k 4 g 200.0k
173
o 150.0k
100.0k 100.0k k
50.0k 50.0k |
0.0 0.0 ki i L L L
2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
600.0k o T T T 500.0k ! T T T
—=— plain [—=— plain =
500.0k |- ~—® tree prefix 4 4500k |- o tree prefix
' ------ random 400.0k - ---x--- random 1
400.0k &-- initial greedy B g 350.0k |- & initial greedy B
; 300.0k B
300.0k B £ 2500k - %
£ 200.0k |-]
200.0k 1 8 1500k .
1000k F o 100.0k i
[50.0k .t
0.0 i e : 0.0 i e !
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k

number of queries

(f) REPEATED-1x10000-workload

number of queries

(g) REPEATED-100x100-workload

Figure 9.7: Cost of the generated solutions under Kegges

83

84

average cost

average cost

average cost

60.0
50.0

40.0

0.0

45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

60.0
50.0
40.0
30.0
20.0
10.0

0.0

EXPERIMENTAL EVALUATION

T T T — 60.0 T T T —
plain —<— plain ——
3 tree prefix ---m--- | 50.0 tree prefix ---m--- |
f—— random : random ---%---
! initial greedy & | 40.0 initial greedy &

average cost

1 1 1 1 0.0 1 1 1 1
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
60.0
50.0
% 400
o
& 300
o
o
& 200
10.0
00 1 1 1 1
0 2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T . 60.0 T T T .
plain —<— plain ——
- tree préfix—u— 50.0 tree prefix ---m---
X . random ------ : - .
initial greedy 8- | ,g 40.0 initial greedy
B o
S 300
- ©
5 .
3 200 4

100 | m-B & 0
1 1 1 1 00 1 1 1 1
2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T T— 50.0 T T T —
plain —<— 450 L plain —<—
L tree prefix ---m--- | : tree prefix ---m---
) random ------ 40.0 - random ---%---]
_ initial greedy & % 350 initial greedy &
8 300} g
(o)
3 [} . F e B
Yo 1 & 1508 % 1
b T 10.0 4
b 50 ¥-g.g . = H
= 1 Il 1 1 00 = | Il | Il
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(f) REPEATED-1x10000-workload (9) REPEATED-100x100-workload

Figure 9.8: Average cost per query for the generated solutions under Kegges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

produced by the initial greedy pair merger and the
random pair merger are always very low and very
similar. A solution constructed by the random pair
merger includes however vastly more edges, since the
discussion which of the valid candidates for merging
with a vertex is done without considering the result-
ing cost. But also a solution produced by the greedy
pair merger contains often relatively more edges than
vertices, e.g. for the NITF- or RANDOM-workload.

The tree prefix pair merger, on the other hand, does
not show this asymmetry between edges and vertices.
Since, whenever a vertex in a prefix can not be shared
with the corresponding vertex in a prefix of the other
query plan, all remaining vertices and edges alike are

unshared.

9.2.2 Comparing the Time

The advantage the initial greedy pair merger has in so-
lution cost over the other pair mergers evaluated here
is o [set to some extend if one considers the time for
constructing a solution: Figure 9.11 and 9.13 show the
absolute time for constructing a solution versus the
number of queries, Figure 9.12 and 9.14 the average
time per query.

Confirming the theoretical complexities from Chap-
ter 6, the tree prefix pair merger (and, of course, the
constant plain pair merger) outperforms the two re-
maining incremental pair merger clearly. Except for
the RANDOM-workload, the initial greedy pair merger
can construct its solution in acceptable time (clearly
lower than 1s per query), in some cases, e.g. for the
COURSES-workload, even nearly as fast as the tree pre-

fix pair merger.

Interestingly, the random pair merger performs far
worse than the initial greedy pair merger over all
workloads. Recall, that the n query plans are com-
pacted by the arbitrary order set merger used here,
by merging the first two query plans, than merg-
ing the third query plan into the result of the first
merging, and so on. Furthermore, the complexity of
validCandidates is linear in the size of the input
query plans, as discussed in Section 6.2.1. For the ran-
dom pair merger the size of the intermediary results
increases considerably more than for the initial greedy
pair merger (as seen in the previous sections), that the
slight initial advantage is o [SetL.

85

9.2.3 Comparing the Results

To illustrate this experimental evaluation Figure 9.15
to 9.18 show the resulting query plans constructed
by the initial greedy pair merger and the tree prefix
pair merger on the COURSES- and DEVIATED-1x10000-
workloads after 2, 5, and 10 query plans have been
considered. The brightness of a vertex or edge indi-
cates the fraction of query plans shared: the darker a
vertex the more queries the vertex is part of. Interest-
ingly, the initial greedy pair merger shares the almost
same prefixes as the tree prefix pair merger, but also
finds other interesting areas for sharing, in particular
towards the end of the query plans.

Clearly, the chance of finding a query plan or part
of a query plan that is very similar to a part of a query
plan that is to be added to the multi-query plan in-
creases with the number of query plans added. There-
fore, these pictures give only a rough indication of the

solutions for larger number of query plans.

9.3 Comparison of Local Search Pair

Mergers

Only four of the pair mergers proposed in Chap-
ter 6 have been evaluated in the previous section. In
this section, the local search pair mergers from Sec-
tion 6.2.2 are compared to the previously shown pair
mergers.

For the local search mergers, the following param-
eters have been used: the maximum number of ran-
domly generated solutions, i.e., number of indepen-
dent tries, is MAX-TRIES = 10, the maximum num-
ber of improvement iterations per independent try is
MAX-ITERATIONS-PER-TRY = 15.

The simulated annealing algorithm has three more
parameters, here chosen to be Tpax = 0.30, Tmin =
0.01, c = 0.05.

Under these settings, Figure 9.19 to 9.22 show ver-
tices, edges, time, and average time per query for the
NITF-, COURSES-, RANDOM-, and REPEATED-workload
with only 100 query plans each. The cost function
used iS Kedges-

It is striking that for the kind of query plans and
for the evaluation model considered here, the initial
greedy pair merger not only outperforms the local
search mergers with respect to the time for construct-
ing a solution, but also with respect to the quality of

86

number of vertices

number of vertices

number of vertices

180.0k

160.0k

140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k
0.0

140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k
0.0

200.0k

150.0k

100.0k

50.0k

0.0

number of vertices

120.0k
100.0k
80.0k
60.0k
40.0k
20.0k

0.0

EXPERIMENTAL EVALUATION

T
—*— plain
---m--- tree prefix
---%--- random
& initial greedy

number of queries

(b) COURSES-10000-workload

number of queries

(c) RANDOM-10000-workload

number of queries

(f) REPEATED-1x10000-workload

—<— plain j T T
---m--- tree prefix
f ---*-- random i
[--@-- initial greedy]
-4
[,,I"'/’/’/— 4
| = RS ¥
e : 3
6k 8k 10k
number of queries
(a) NITF-10000-workload
200.0k
180.0k
2 160.0k
S 140.0k
g 120.0k
5 100.0k
3 800k [
E 60.0k [
S 400k [
20.0k -
0.0
T T T T
—— plain
- ---m--- tree prefix B
---%--- random
r 8- initial greedy i
number of queries
(d) DEVIATED-1x10000-workload
T T T T
—*— plain
---m--- tree prefix
[---%-- random |
& initial greedy
- Lorsnsnessnssnses P g o
0 2k 4k 6k 8k 10k

number of vertices

number of vertices

180.0k
160.0k
140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k
0.0

180.0k
160.0k
140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k

0.0
0

T
—>— plain

---m--- tree prefix
---%--- random

number of queries

(9) REPEATED-100x100-workload

Figure 9.9: Vertices in the generated solutions under Kmerging

-
3
i
10k
number of queries
(e) DEVIATED-100x100-workload
T T T :
—<— plain
---m--- tree prefix
---%--- random]
&~ initial greedy 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +
R — R . i
2 4k 6k 8k 10k

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

number of edges

number of edges

number of edges

160.0k
140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k
0.0

140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k
0.0

200.0k
180.0k
160.0k
140.0k
120.0k
100.0k
80.0k
60.0k
40.0k
20.0k

0.0
0

T T T T
—*— plain
---m--- tree prefix
---%*--- random 3

- initial greedy

4k 6k
number of queries

(a) NITF-10000-workload

8k

10k

number of edges

87

180.0k
160.0k
140.0k
120.0k
100.0k
80.0k |
60.0k
40.0k |
20.0k -

0.0

&

T

number of edges

ra
ini

T
—>— plain
-- tree prefix

ndom
tial greedy

T
—>— plain

---m--- tree prefix
---%--- random

8-~ initial greedy

number of queries

(d) DEVIATED-1x10000-workload

&-- initial greedy

4k 6k
number of queries

(f) REPEATED-1x10000-workload

8k

10k

4k
number of queries

number of edges

number of edges

(c) RANDOM-10000-workload

120.0k T T T T
—=— plain
100.0k | —® - tree prefix 7
. ---%--- random
80.0k L &-- initial greedy 4
¥
60.0k |- 1
40.0k - e
20.0k [4
1)
0.0 l
0 8k 10k
number of queries
(b) COURSES-10000-workload
T T
| L
6k 8k 10k
160.0k T T T T
—>— plain
140.0k | — = tree prefix 1
[---*-- random -
120.0k B initial greedy
100.0k | -
80.0k |- .
60.0k 1
40.0k |- &
20.0k |- 1
0.0
10k
number of queries
(e) DEVIATED-100x100-workload
160.0k T T T j
—>— plain
140.0k - ---m-—- tree prefix 1
---%--- random
120.0k = & initial greedy +
100.0k | 1
80.0k |- 1
60.0k |- . 1
40.0k |- 1
20.0k |- T
0.0 Bl P — ‘
0 oK 4k 6k 8k 10k

number of queries

(g) REPEATED-100x100-workload

Figure 9.10: Edges in the generated solutions under Kmerging

88

time for merging (s)

time for merging (s)

time for merging (s)

5.0k

4.0k

3.0k

2.0k

1.0k

0.0

5.0k

4.0k

3.0k

2.0k

1.0k

0.0

5.0k

4.0k

3.0k

2.0k

1.0k

0.0

EXPERIMENTAL EVALUATION

—=— plai;1 ' ' ' - 50k - —*— plai;'\ j j j 4
---m--- tree prefix : ---m--- tree prefix
——-x- random > ---*--- random
& initial greedy b o 40k - @ initial greedy L
B c
X =l
. q © 3.0k b
£
Bl L2 2.0k B
() i
g £
b = 1.0k - * A
1 I ——— et e T 0.0 LI } - qmmmmmmmmmm o A
2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
T T T T
5.0k F —*— plain 2 4
---m--- tree prefix
w ---%--- random
é,’ 4.0k g~ initial greedy T
=) X
o 3.0k - : B
g g
L 2.0k - B
(o}
£
S ook T ,:
0.0 et E it R)
0 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T T T T T T
—— plain 4 5.0k - —— plain i
---m--- tree prefix ---m--- tree prefix
---%--- random @ ---*--- random
B initial greedy A > 40k g initial greedy B
£
1 8 30kf -
d € .
Bl L 2.0k ¥ B
(o}
. £
B B = 1.0k o’ B
L O o — S -
-— L h .o i R 0.0 - i Sezz=== E R i %
2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T T T T T T
—<— plain i 5.0k - —>— plain J
---m--- tree prefix ---m--- tree prefix
---%--- random @ ---%--- random
& initial greedy b o 40k - @ initial greedy 1
! £
1 5 sokf 1
€
B o 2.0k | m
2 s
q = 1.0k b
B8
e * I * 0.0 it * | !
2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k

number of queries

(f) REPEATED-1x10000-workload

number of queries

(9) REPEATED-100x100-workload

Figure 9.11: Time of the generated solutions under Kmerging

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

average time for merging (ms)

average time for merging (ms)

average time for merging (ms)

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

89

number of queries

(f) REPEATED-1x10000-workload

number of queries

(g) REPEATED-100x100-workload

Figure 9.12: Average time per query under Kmerging

T T — T T . 700.0 T T T T
—*— plain Rl 2 —*— plain
F ---®--- tree prefix B = 600.0 ---m--- tree prefix A
-~ random . q 2 --%:-- random
F 8- initial greedy .- B S 500.0 &~ initial greedy B
@
- 4 E 4000 %
o
= - 4 2 300.0 E
r B o 200.0 LK 4
X (g;‘, n
. 4 g 1000 = E
- oottt T T T . P & © 0.0 el i [y - ettt .
0 2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
_. 700.0 T T g T T
2 —— plain X
= 600.0 ---=-- tree prefix -
2 ---%--- random . A
S 5000 8- initial greedy .- q
[
E 4000 - R
s
o 3000 - A
E
g 2000 F g
€ 1000 [& I
e P o @emmmmmmmmmmmmmmTeT
© o e X I S
0 2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T T . 700.0 T T T T
—>— plain E —>— plain
F ---=-—- tree prefix B <~ 600.0 ---m--- tree prefix B
---%--- random =4 ---%--- random
F 8-~ initial greedy b ‘© 5000 B-- initial greedy q
5
L -t € 400.0 X m
k)
r b o 300.0 A
u £
- a = 200.0 a B
g
= - a E g 1000 x]
Ve P gemm- - i R © - M g L S T P
0 2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T T . 700.0 T T T T
—>— plain E —>— plain
- ---m--- tree prefix q = 600.0 ---m--- tree prefix B
---%--- random -3 24 ---%--- random
F 8- initial greedy B S 5000 &-- initial greedy b
[
F 9 E 4000 B
q S o
r K i o 300.0 - B
£
L o - % 200.0 &Y
Fo Bl § 100.0 e =} T
- 1 % I * © 0.0 L i % L .
0 2k 4k 6k 8k 10k 2k 4k 6k 8k 10k

time for merging (s)

time for merging (s)

time for merging (s)

EXPERIMENTAL EVALUATION

5.0k |- —— plain ‘ P ‘ E 5.0k || —— plain ‘ ‘ ‘ R
’ ---m-—- tree prefix : : ---m-—- tree prefix
---%--- random ; w ---%--- random
4.0k | g initial greedy ; 4 o 4Ok F = initial greedy 1
! £
3.0k | ; 4§ sokp &
: £
2.0k |- X 4 8 20| 1
. 2 e
1.0k - e g 4 = tokf e 1
0.0 — $eo=o R B — 0.0 e . oo S
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
T T T T
50k F —*— plain ’ 4
---m--- tree prefix g :
w ---%--- random .
o> 40k g initial greedy T
£ ¥ -
5 30k | T i
£ -
S 20k f e y
[} R
£ T
= 1.0k | L 4
0.0 [— e ""”j///ﬂ" %
0 2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T T T T T T
5.0k | —— plain 4 5.0k - —— plain 4
,,,;,,, treedprefix ,,,;,, treedprefix -
''''' random @ ---%--- random
4.0k - g initial greedy b > 40k g initial greedy]
£ ’
3.0k | 2 g 3.0k - .
2.0k | L8 B 2ok b v . A
[0}
1.0k - _—— - E = 1.0k | = E
c} A -
0.0 PO 4 Bttt ettt 0.0 - L TR - i — S
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T T T T T L
5.0k | —<— plain 4 5.0k - —>— plain i
’ ---m-—- tree prefix : ---m-—- tree prefix
---%--- random T o ---%--- random
4.0k [@ initial greedy b o 40k - @ initial greedy 1
. [=4
S
3.0k E 5 30k E
20k - o 8 20kf b
5}
1.0k [R 4 = 1okf E
0.0 e %) 0.0 et) % %
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(f) REPEATED-1x10000-workload (9) REPEATED-100x100-workload

Figure 9.13: Time of the generated solutions under Kegges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

average time for merging (ms)

average time for merging (ms)

average time for merging (ms)

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

700.0
600.0
500.0
400.0
300.0
200.0
100.0

0.0

number of queries

(f) REPEATED-1x10000-workload

Figure 9.14

number of queries

(g) REPEATED-100x100-workload

Average time per query under Kegges

T T T T T . 700.0 T T T T
—*— plain : 2 —*— plain
F ---®--- tree prefix ; B <= 600.0 [-—-®--- tree prefix A
---*--- random : 2 ---*--- random
F 8-~ initial greedy i B S 5000 --&-- initial greedy B
K ()
F) 4 E 4000 | E
5 <
= B © 3000 | g
8 £
F E S 2000 R B
Foox R g 1000 | o 4
I yommmmmommoo — - oo . © 0.0 VR - R P oo e eietetetniieieintets
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k
number of queries number of queries
(a) NITF-10000-workload (b) COURSES-10000-workload
__ 700.0 T T % T T
E —>— plain g
= 600.0 -- tree prefix -
2 ---*--- random o
S 5000 8- initial greedy -~ - q
S .
E 4000 | ! R
2
o 3000 - A
E
g 2000 F E
€ 1000 | R
2 H [— o
© 0.0 & P S ! &
0 2k 4k 6k 8k 10k
number of queries
(c) RANDOM-10000-workload
T T T T . 700.0 T T T T
—>— plain E —>— plain
- --—-m-— tree prefix B < 600.0 - --—-=-- tree prefix B
---%--- random =4 ---%--- random
F 8-~ initial greedy b ‘S 500.0 - 8- initial greedy . q
[}
- 4 E 4000 | 7 i
5
= B © 3000 [E
£
L g = L 4
e % 200.0 L o
L — = E g 1000 7
PV S e ettt [0.0 i,ﬁgiﬁ' [P - T T
0 2k 4k 6k 8k 10k 2k 4k 6k 8k 10k
number of queries number of queries
(d) DEVIATED-1x10000-workload (e) DEVIATED-100x100-workload
T T T —_ 7000 T T T T
E —>— plain
r q = 600.0 ---m-- tree prefix -
=4 ---%--- random
F 8- initial greedy B ‘S 500.0 - & initial greedy B
L [
L - E 4000 |- b
o
r i o 300.0 B
% £
F L © 2000 . -4
S
r i o B % 1000 [-~ B
KT 3
g i %] * © 0.0 Jre il * ! *
0 2k 4k 6k 8k 10k 0 2k 4k 6k 8k 10k

91

92

EXPERIMENTAL EVALUATION

(a) After two query plans (b) After five query plans

=u-9 m-Q "

(c) After ten query plans

Figure 9.15: Solution for initial greedy pair merger on COURSES-workload

B0 B 0E OB EO OB N-O B
0
R
N\ =0
"o m-9

(a) After two query plans (b) After five query plans

| B)

(c) After ten query plans

Figure 9.16: Solution for tree prefix pair merger on COURSES-workload

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

R 0mB mE . om0

e .

(a) After two query plans (b) After five query plans
0
HAZ.
R] L] L] n | \._.
0o

(c) After ten query plans

Figure 9.17: Solution for initial greedy pair merger on DEVIATED-1x10000-workload

5 E-Q H &I &

]
/
a5 -E-m-E-0-o-m-Q
N,
/.A [==
¢ = B B B0 -0 K0
N
0

(a) After two query plans (b) After five query plans

=0 mu

(c) After ten query plans

Figure 9.18: Solution for tree prefix pair merger on DEVIATED-1x10000-workload

93

94

that solution although in most cases only by a small
margin.

Among the local search mergers, the deterministic
hill-climber seems actually preferable, indicating that
Kedges be€haves rather monotonic under this setup.

The time for constructing a solution behaves as ex-
pected from the theoretical time complexities estab-
lished in Chapter 6.

9.4 Comparison of Set Mergers

Until now only the arbitrary order set merger has been
used for experimental evaluation. In this section, we
will compare solution quality and time for di Lerént
set mergers using the same pair merger, viz. the initial
greedy pair merger.

The results shown in Figure 9.23 through 9.26 in-
dicate that the order of mergings in this setup is not
a [ecting the quality of the generated solution at all.
Figure 9.23 shows that the solution quality for all set
mergers is almost the same.

Once again, the theoretical complexities from Chap-
ter 6 are nicely reflected in Figure 9.21 and 9.22: The
arbitrary order and the initial separate order opti-
mizer pose nearly no overhead over the pair merger
and are linear in the number of queries, whereas the
initial pairwise and progressive pairwise order opti-
mizer are clearly polynomial with the second even
more expensive than the first one.

EXPERIMENTAL EVALUATION

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

number of vertices

number of vertices

number of edges

number of edges

1.8k
1.6k
1.4k
1.2k
1.0k
800.0
600.0
400.0
200.0
0.0

1.6k
1.4k
1.2k
1.0k
800.0
600.0
400.0
200.0
0.0

2.5k

2.0k

1.5k

1.0k

500.0

0.0

T
—<— plain
---+--- tree prefix
---*--- initial greedy
8- deterministic hillclimber P
——-®=— stochastic hillclimber
simmulated annealing

number of queries

(a) NITF-100-workload

T T
—<— plain
---+-- tree prefix
---*--- initial greedy
8- deterministic hillclimber
——-®=— stochastic hillclimber
simmulated annealing

10 20 30 40 50 60 70 80 90 100
number of queries

(c) RANDOM-100-workload

number of vertices

number of vertices

1.2k

1.0k

800.0

600.0

400.0

200.0

0.0

2.0k

T T
—%— plain
---+--- tree prefix 4
---%--- initial greedy

& deterministic hillclimber
——-®=— stochastic hillclimber T
---&-- simmulated annealing e

10 20 30 40 50 60 70 80 90 100
number of queries

(b) COURSES-100-workload

1.5k

1.0k

500.0

0.0

T T
—%— plain
---+-- tree prefix
---%--- initial greedy

& deterministic hillclimber
——-®=— stochastic hillclimber
---&-- simmulated annealing

60 70 80 90 100
number of queries

(d) REPEATED-1x100-workload

Figure 9.19: Vertices of the generated solutions under Kegges

T T T
—*— plain
---+-- tree prefix
---*--- initial greedy

&~ deterministic hillclimber
- stochastic hillclimber
---&-- simmulated annealing

1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
number of queries

(a) NITF-100-workload

T T T
—*— plain
---+-- tree prefix
---*--- initial greedy

e deterministic hillclimber
--®— stochastic hillclimber
---o-- simmulated annealing

1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
number of queries

(c) RANDOM-100-workload

number of edges

number of edges

1.2k

1.0k

800.0

600.0

400.0

200.0

0.0

T T T
—%— plain
---+-- tree prefix
---*---initial greedy

&~ deterministic hillclimber
- stochastic hillclimber
---&-- simmulated annealing

10 20 30 40 50 60 70 80 90 100
number of queries

(b) COURSES-100-workload

T T T
—%— plain
---+-- tree prefix
---*---initial greedy

e deterministic hillclimber
-—-®— stochastic hillclimber
---o-- simmulated annealing

10 20 30 40 50 60
number of queries

(d) REPEATED-1x100-workload

Figure 9.20: Edges of the generated solutions under Keqges

95

96

time for merging (s)

time for merging (s)

average time for merging (ms)

average time for merging (ms)

T T T
—— plain S/
--—+--- tree prefix,
---*--- initial greedy
& deterministic hillclimber
——-®=— stochagtic hillclimber
---o-- simmylated annealing

time for merging (s)

time for merging (s)

EXPERIMENTAL EVALUATION

T T
—<— plain B
-- tree prefix rd
---%--- initial greedy -
& deterministic Hillclimber 4
——-®=— stochastic hillclimber
---o-- simmulated annealing

250.0 -
200.0 o B
150.0 o 7
pel
100.0 e —
50.0 B T B
0.0 et i L L . .
0 10 20 30 40 50 60 70 80 90 100
number of queries
(b) COURSES-100-workload
500.0 T | T T T
—<— plain . 4
4500 U e prefix 7
400.0 ---%--- initial greedy~ T
350.0 & deterministj¢ hillclimber -
300.0 —-m— stochastic hillclimber B
. ---e-- simmulated annealing
250.0 K B
200.0 , B
150.0 © ~
100.0 - = el
50.0 5 -
0.0 Sz L

number of queries

(d) REPEATED-1x100-workload

Figure 9.21: Time of the generated solutions under Kegges

250.0 ; b
200.0 S B
150.0 . -
. 2} I
100.0 . E
50.0 T B
0.0 Rt
0 10 20 30 40 50 60 70 80 90 100
number of queries
(a) NITF-100-workload
500.0 — : T
—<— plain ! i
450.0 --—+-- tree preffix
400.0 F ---x--- initial greedy 7
350.0 &~ deterministic hillclimber -
300.0 ---m— stocHastic hillclimber B
g ---&-- simmulated annealing
250.0 % b
200.0 K o
150.0 g e B
100.0 / a7 B
50.0 T]
0.0 = I % P L I b
0 10 20 30 40 50 60 70 80 90 100
number of queries
(c) RANDOM-100-workload
10.0k T —
—— plain
--—+--- tre& prefix
8.0k - - itial greedy b
5 deterministic hillclimber
60k -~ stochastic hillclimber 7
. 604'@ - simmulated annealing
[
4.0k ® B
2.0k ° i
a [B T
00 S SO S UUOU TUUSON U
0 10 20 30 40 50 60 70 80 90 100
number of queries
(a) NITF-100-workload
10.0k T T
—— plain
-e—+=-- tree prefix
8.0k - 4P initial greedy b
i@~ deterministic hillclimber
6.0k —¢m-— stochastic hillclimber
B --o-- simmulated annealing &
4.0k 4
2.0k a I
g e mee T T T
e
0.0 ok L 1 % . L L b
0 10 20 30 40 50 60 70 80 90 100

number of queries

(c) RANDOM-100-workload

average time for merging (ms)

average time for merging (ms)

10.0k T T T T
—>— plain -
--—+-- tree prefix -~
8.0k = ---x--- initial greed) 1
&~ deterministic hillclimber
6.0k --m— stoghastic hillclimber B
. --o-- .simmulated annealing
®
4.0k 4
2.0k £
L
00 R
0 10 20 30 40 50 60 70 80 90 100
number of queries
(b) COURSES-100-workload
10.0k T T 13
—>— plain -
--—+-- tree prefix
8.0k [---x---_initfal greed) b
- deterministic hillclimber
6.0k b % stochastic hillclimber B
. 0\&? - simmulated annealing
i)
4.0k A
2.0k 4
00 o

number of queries

(d) REPEATED-1x100-workload

Figure 9.22: Time-Per-Query of the generated solutions under Keqges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

estimated cost

estimated cost

average cost

average cost

140.0k T T T
—— arbitrary order
120.0k |- —--+-- initial separate gain
*---initial pairwise gain
100.0k - &~ progressive pairwise gain
80.0k | E
60.0k |- g
40.0k B
20.0k 4
0.0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
number of queries
(a) NITF-500-workload
250.0k T T T
—— arbitrary order
--~+-- initial separate gain
200.0k - ---x--- initial pairwise gain
B progressive pairwise gain
150.0k 4
100.0k B
50.0k - 4
0.0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

number of queries

(c) RANDOM-500-workload

estimated cost

estimated cost

60.0k

50.0k -

40.0k -

30.0k
20.0k
10.0k

0.0

35.0k
30.0k
25.0k
20.0k
15.0k
10.0k
5.0k
0.0

L arb\‘traryo}der ‘
--—+-- initial separate gain A
---*--- initial pairwise gain s
-+ progressive pairwise gain T 4
_—'/JV/”’
e 4
1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
number of queries
(b) COURSES-500-workload
T T T T
—<— arbitrary order
--—+-- initial separate gain
---*--- initial pairwise gain
-+ progressive pairwise gain
L 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

number of queries

(d) REPEATED-20x25-workload

Figure 9.23: Cost of the generated solutions under Kmerging

600.0 . . . :
arbitrary order —x<—
500.0 initial separate gain --—+-- _|
’ initial pairwise gain -
400.0 progressive pairwise gain &

300.0

200.0

100.0

0.0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

number of queries

(a) NITF-500-workload

700.0 T T T T
i arbitrary order —x—
600.0 initial separate gain --—+--
initial pairwise gain ------
500.0 progressive pairwise gain &

400.0
300.0
200.0
100.0

0.0 I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

number of queries

(c) RANDOM-500-workload

average cost

average cost

T T T T

arbitrary order —»— |
initial separate gain ---+--
initial pairwise gain ------ 7

progressive pairwise gain & |

50 100 150 200 250 300 350 400 450 500
number of queries

(b) COURSES-500-workload

T T T T
arbitrary order —»— |
initial separate gain ---+--
initial pairwise gain ---*--- 7
progressive pairwise gain & 4

S

50 100 150 200 250 300 350 400 450 500
number of queries

(d) REPEATED-20x25-workload

Figure 9.24: Cost-Per-Query of the generated solutions under Kmerging

97

98

time for merging (s)

time for merging (s)

average time for merging (ms)

average time for merging (ms)

T T T
—<— arbitrary order
4500 = initial separate gain
- initial pairwise gain
progressive pairwise gain- -

0 50 100 150 200 250 300

number of queries

350 400 450 500

(a) NITF-500-workload

500.0 T bq ‘d T

| —<— arbitrary order B
4500 --—+-- initial separate gain
400.0 - ---x--- initial pairwise gain B
350.0 |- - progressive pairwise gain
300.0 H i
250.0 - 4
200.0 - 4
150.0 4
100.0 4
500 - 5y]

0.0 e L L L L L L L

0 50 100 150 200 250 300

number of queries

350 400 450 500

(c) RANDOM-500-workload

time for merging (s)

time for merging (s)

EXPERIMENTAL EVALUATION

500.0 ; r ; ;
4500 | T3 %tljigirzgg?; gain 7
4000 - - initial pairwise gain . Bl
350.0 progressive pairwise gain 4
300.0 o4
250.0 4
200.0 4
150.0 - 4
100.0 fal 4
50.0
0.0 —— — . . .

n
200 250 300 350
number of queries

0 50 100 150 400 450 500

(b) COURSES-500-workload

500.0 T T T T

450.0 1 ianritl)il':lqasreypc:rda?; gain]
4000 |- ---x--- initial pairwise gain 1
350.0 B-- progressive pairwise gain 7
3000 |- 1
250.0 -]
2000]
150.0 N
1000 8]

200 250 300 350
number of queries

0 50 100 150 400 450 500

(d) REPEATED-20x25-workload

Figure 9.25: Time of the generated solutions under Kmerging

1.0k . r . . -
—— arbitrary order .
--—+:- initial separate gain .
800.0 ---%-:- initial pairwise gain .-’ 7
@+~ progressive pairwise gain
600.0 -

400.0

200.0

0 50 100 150 200 250 300 350 400 450 500
number of queries

(a) NITF-500-workload

1.0k

T T T a
——— arbitrary order E
--—+-- initial separate gain.
---*:-- initial pairwise gair

£ progressive pairwise gain

800.0

600.0

400.0

200.0

L 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
number of queries

0.0

(c) RANDOM-500-workload

average time for merging (ms)

average time for merging (ms)

1.0k T T T T
—— artiitrary order
-- inifial separate gain
800.0 ---%--- initial pairwise gain 7
& progressive pairwise gain
600.0 I
400.0 P 1
“ B
200.0
o
0.0 - L L L L L

1
200 250 300 350 400 450 500

number of queries

(b) COURSES-500-workload

1.0k

T T
—x— artﬁlrary order
---+-- initial separate gain
---%---initial pairwise gain -
B jprogressive pairwise gain-"

800.0

600.0 B

400.0 x |

200.0 B
gy — TE——

0.0
0 50 100 150 200 250 300 350 400 450 500

number of queries

(d) REPEATED-20x25-workload

Figure 9.26: Time-Per-Query of the generated solutions under Kmerging

Chapter 10

Implementation

In this chapter, a brief overview over the implementation of the method proposed in this thesis is given. The

overview concentrates on the design of the optimization framework. A more extensive documentation of the

implementation is available in form of an documentation of the API [50].

Contents

10.1Basic Graph Library
10.2From Graphs to Query Plans
10.2.1 Computing the cost of a query plan . .

10.3 Pair mergers

104Setmergerso oo

10.5 Other Components of the Optimization Framework

10.6Testing i

Based on the prototype of the SPEX engine pre-
sented in [79], the optimization framework proposed
in this work has been implemented. As implementa-
tion language, Java [74] has been selected, in particu-
lar to ease the migration from the previous SPEX ver-
sion. All pair and set mergers proposed in Chapter 6
have been implemented (cf. Sections 10.3 and 10.4) on
top of the optimization framework. A new graph li-
brary (cf. Section 10.1) optimized for e [cieht iteration
over the edges of a vertex is employed to implement
the query plans for SPEX (cf. Section 10.2) and as well
as numerous algorithms that are part of the optimiza-
tion framework (cf. Section 10.5). Finally, several tools
for automated testing and performance measurement

have been developed (cf. Section 10.6).

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.
M.S. thesis, University of Munich, Institute of Computer Sci-
ence.

[74] Joy, B., et al. 2000. The Java Language Specification, 2nd

ed. Addison-Wesley.

10.1 Basic Graph Library:
spex.util_graph

The core of the implementation, both with respect to
the class hierarchy and to performance, is the graph
library. From the set and pair merger algorithms and
a review of the shape of query plans that are to be op-
timized based on the graph library, analytical require-
ments for the graph library can be obtained:

(1) Fast iteration over the edges incident to a vertex
is needed for both for the merge function as well
as for the local cost functions.

(2) merge furthermore requires a (almost) constant-
time test whether two given vertices are adjacent.

(3) The degree of most vertices is usually very small,
in almost every case clearly smaller than the
number of vertices. Therefore, an implementa-
tion with O(V x E) space complexity such as an
adjacent list is preferable to an implementation
with O(V?) space complexity such as an adjacent

matrix.

100

(4) Several algorithms require the ability to attach ar-
bitrary pieces of information to a vertex or edge.

(5) E Lcieht access to the ancestors and descendants
of a vertex.

Several existing graph libraries for Java have been
reviewed along this criteria, but none of them could
satisfy the given constraints. Most of the graph li-
braries for Java are tailored to graph visualization
[66]. This results not only in relatively heavy-weight
libraries introducing a considerable overhead into the
optimization framework, but also in their failure to
meet most of the criteria presented above as they have
other focus, as described in [91].

Therefore, a specialized graph library has been im-
plemented based on the idea of an adjacent list due
to the third observation. But instead of a simple list,
an associative storage or Map is used that uses ver-
tices as keys and edges as entries. Thereby, the test
whether two vertices are adjacent is in most cases con-
stant. To allow fast iteration over the edges, the edges
The JDK

recently introduced such a Map as part of the collec-

are furthermore linked like in a linked list.

tions framework, called there LinkedHashMap, as it is
based on a hash as associative storage.

Extensive profiling of this implementation has
shown however, that (1) iteration over the elements in
a LinkedHashMap is still very ine [Lcieht compared to
iterating over the elements of a list such as LinkedList
or array and (2) the test whether two given vertices are
adjacent has far less influence on the overall run-time
than the iteration. Therefore, a second implementa-
tion of the graph library based on LinkedLists for stor-
ing the edges incident to a vertex has been provided.
It turned out, that switching from the original imple-
mentation to this second implementation improved
the time for the more expensive algorithms by up to
75%.

Figure 10.5 shows the hierarchy of the most impor-
tant classes and interfaces that are part of the (second
version of the) graph library, implemented as package
spex.util.graph.

Three interfaces are at the center of the graph li-

brary: the DirectedAcyclicGraph, Vertex, and Edge in-

[66] Herman, I, et al. 2000. Graph visualization and navigation
in information visualization: A survey. |EEE Transactions
on Visualization and Computer Graphics 6, 1, 24-43.

[91] Marshall, M. S, et al. 2001. An object-oriented design for

graph visualization. Software Practice and Experience 31, 8,
739-756.

IMPLEMENTATION

DirectedAcyclicGraph

+ removeVertex(v : Vertex) : boolean

+ removeVertex(v : Vertex, plain : boolean) : boolean
+ addEdge(e : Edge)

+ addEdge(source : Vertex, sink : Vertex)

+ removeEdge(e : Edge) : boolean

+ removeEdge(source : Vertex, sink : Vertex) : boolean
+ getVertices() : Listlterator

+ areAdjacent(v : Vertex, w : Vertex) : boolean

+ areAdjacent(e : Edge, f: Edge) : boolean

+ numVertices() : int

+ numEdges() : int

+ degree(v : Vertex) : int

+ degree() : int

+ isEmpty() : boolean

+ containsVertex(v : Vertex) : boolean

+ containsEdge(source : Vertex, sink : Vertex) : boolean
+ getVertexFactory() : VertexFactory

+ getEdgeFactory() : EdgeFactory

+ deepClone() : DirectedAcyclicGraph

+ shallowClone() : DirectedAcyclicGraph

+ resetProcessedFlag()

+ getVerticesList() : List

+ islsomorphic(other : DirectedAcyclicGraph) : boolean
+ getRoots() : List

+ getLeaves() : List

+ getRootslterator() : Iterator

+ getleaveslterator() : Iterator

Figure 10.1: Interface DirectedAcyclicGraph

terface, that represent a DAG, a vertex in a DAG and a
directed edge.

The DirectedAcyclicGraph interface provides access
to the vertices in the graph and several graph related
functions, such as test for graph isomorphism and
cloning of graphs. All edge related functions are con-
venient wrappers for the corresponding functions of
the vertex interface. The Vertex interface is the most
extensive interface in the optimization framework and
allows the manipulation of a vertex and its incident
edges by a plethora of operations as shown in Fig-
ure 10.2. Most notably, the edges of a vertex can be
traversed by an Listlterator.

The Edge is simple in comparison to the Vertex in-
terface, since it provides essentially only access to the
vertices adjacent to it and a convenient function for
testing whether adding that edge is part of a cyclic
path. The latter function is implemented using estab-

lished methods for dynamic cycle detection [125].

All these interfaces are inherited from Decorable,
a software pattern used to allow arbitrary attribute-
value pairs to be associated with an object, as required
by the specifications for the graph library discussed
above.

[125] Shmueli, O. 1983. Dynamic cycle detection. Information

Processing Letters 17, 4, 185-188.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 101

Decorable
ﬁ |A ~ —
/ -~
1 ~
/
| DecoratedObject Labelable
I
X
| - \
< /
DirectedAcyclicGraph LabeledObject Vertex Edge
\} A
|
\ / !
AdjacentListDAG AdjacentListVertex SimpleEdge

Figure 10.5: Hierarchy of important classes and interfaces in spex.util.graph

Decorable
.
/ T =<
| ~
/
/ DecoratedObject Cloneable Labelable
’ B
| 7 \
L |]
DirectedAcyclicGraph LabeledObject Vertex Edge
A 4 A
| |
1 / !
AdjacentListDAG AdjacentListVertex SimpleEdge
/ T A
QueryGraph QueryVertex MultiQueryEdge
SingleQueryGraph MultiQueryGraph PropertyQueryVertex StructuralQueryVertex RelationVertex HeadVertex
TextVertex MultiPropertyQueryVertex LabelVertex PredicateVertex SetOperationVertex
MultiTextVertex MultiLabelVertex

Figure 10.6: Hierarchy of important classes and interfaces in spex.queries

102

Vertex

+ addEdgeTo(v : Vertex)

+ addEdgeFrom(v : Vertex)

+ addEdge(e : Edge, plain : boolean)

+ addEdgeTo(v : Vertex, plain : boolean)

+ addEdgeFrom(v : Vertex, plain : boolean)

+ addEdge(e : Edge)

+ removeEdge(e : Edge) : boolean

+ removeEdgeTo(v : Vertex) : boolean

+ removeEdgeFrom(v : Vertex) : boolean

+ removeEdge(e : Edge, plain : boolean) : boolean

+ removeEdgeTo(v : Vertex, plain : boolean) : boolean
+ removeEdgeFrom(v : Vertex, plain : boolean) : boolean
+ getOutgoingEdges() : Listlterator

+ getincomingEdges() : Listlterator

+ getParents() : Listlterator

+ getChildren() : Listlterator

+ getAdjacentVertices() : Listlterator

+ getincidentEdges() : Listlterator

+ isAdjacent(v : Vertex) : boolean

+ hasParent(v : Vertex) : boolean

+ hasChild(v : Vertex) : boolean

+ existsPathTo(v : Vertex) : boolean

+ createsCycle(v : Vertex) : boolean

+ getEdgeTo(v : Vertex) : Edge

+ getEdgeFrom(v : Vertex) : Edge

+ degree() : int

+ numOutgoingEdges() : int

+ numincomingEdges() : int

+ getGraph() : DirectedAcyclicGraph

+ getPathFrom(v : Vertex) : LinkedList

+ getPathTo(v : Vertex) : LinkedList

|+ shallowClone(graph : DirectedAcyclicGraph) : Vertex
+ deepClone(target : DirectedAcyclicGraph) : Vertex

+ getDescendants Traversal(order : char) : Traversallterator
+ getAncestorsTraversal(order : char) : Traversallterator
+ getDescendantsTraversal(order : char, f : Filter) : Traversallterator
+ getAncestorsTraversal(order : char, f: Filter) : Traversallterator
+ getDescendantsTraversal() : Traversallterator

+ getAncestorsTraversal() : Traversallterator

+ getDescendantsTraversal(f : Filter) : Traversallterator
+ getAncestorsTraversal(f : Filter) : Traversallterator

+ getChildrenTraversal(f : Filter) : Traversallterator

+ getParentsTraversal(f : Filter) : Traversallterator

+ getChildrenTraversal() : Traversallterator

+ getParentsTraversal() : Traversallterator

+ getChild() : Vertex

+ getParent() : Vertex

+ getParent(f : Filter) : Vertex

+ getChild(f : Filter) : Vertex

+ hasldentical Type(other : Vertex) : boolean

+ islsomorphic(vm : Vertex) : boolean

+ includes(vm : Vertex) : boolean

+ isincludedin(vm : Vertex) : boolean

+ isProcessed() : boolean

+ getProcessedValue() : Object

+ setProcessed()

+ setProcessed(value : Object)

[+ clearProcessed()

Figure 10.2: Interface Vertex

Edge

+ getSourceVertex() : Vertex

+ getSinkVertex() : Vertex

+ getOpposite Vertex(v : Vertex) : Vertex

+ isIncident(v : Vertex) : boolean

+ createsCycle() : boolean

+ clone(source : Vertex, sink : Vertex) : Edge

Figure 10.3: Interface Edge

Decorable

+ remove(key : Object) : Object

+ get(key : Object) : Object

+ has(key : Object) : boolean

+ set(key : Object, value : Object)

|+ setAttributes(attributes : HashMap)

Figure 10.4: Interface Decorable

IMPLEMENTATION

10.2 From Graphs to Query Plans:

spex.queries

Based on this graph library, query plans for the SPEX
engine are implemented. Figure 10.6 shows the full hi-
erarchy of classes and interfaces in the spex.queries
package. This hierarchy can be divided into classes
and interfaces that are used to represent query plans
or query graphs, as they are called in the implementa-
tion, vertices that occur in query plans, and edges that
occur in query plans.

Once again, the case of the edges is the simplest:
The interface Edge is implemented by SimpleEdge that
is part of the graph library. Instances of SimpleEdge
are used in general graphs but also in query plans as
long as the query plan evaluates a single query only.
The class MultiQueryEdge extends SimpleEdge by sev-
eral operations for handling the queries assigned to an
edge in a query plan (as represented by the g function
in the formal specification of a query plan).

Vertices occurring in query graphs are classified by
the operator they are assigned to. For each opera-
tor, there is a corresponding class as shown in Figure
10.7. The out operator is represented by the Head-
Vertex and the vertices for property operators are fur-
ther divided in vertices that can have a single property
assigned to them and vertices that can carry multi-
ple properties. The QueryVertex class shown in Fig-
ure 10.8 extends the AdjacentListVertex of the Ver-
tex interface provided as part of the graph library by
operations specific to a vertex in a query, such as
operations for accessing the queries a vertex is part
of. Furthermore, means to store the cost of a vertex
are provided, allowing e [cieht implementation of the
vertex-based cost functions discussed in Chapter 8 us-
ing memorization.

Finally, for e Cciehcy reasons, there are two kinds
of query plans (called query graphs): query plans that
evaluate a single query only as instances of the class
SingleQueryGraph, and query plans that evaluate mul-
tiple queries as instances of the MultiQueryGraph that
provide additional methods for accessing the queries
evaluated by a query plan. Furthermore, MultiQuery-
Graph allows e [cieht access to its vertices by the op-
erator they are assigned to. This operation is crucial
for implementing validCandidates in the Abstract-
Merger (cf. Section 10.3). Finally, e [cieht access to
the mappings from vertices of one MultiQueryGraph
to another is provided as support for the pair mergers

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Vertex

7

/

AdjacentListVertex

QueryVertex
N

103

PropertyQueryVertex

StructuralQueryVertex

RelationVertex HeadVertex

A

A

TextVertex MultiPropertyQueryVertex

LabelVertex

PredicateVertex

SetOperationVertex

AN

MultiTextVertex MultiLabelVertex

Figure 10.7: Class hierarchy for query vertices

QueryVertex

queries : Set
cost : double
selectivityEstimate : double

+ setQueries(queries : Set)

+ getQueries() : Set

[+ numQueries() : int

+ addQuery(queryID : int) : boolean

+ addQuery(queryID : Integer) : boolean

[+ removeQuery(queryID : int) : boolean

+ removeQuery(querylID : Integer) : boolean

+ isPartOf(querylID : int) : boolean

+ isPartOf(queryID : Integer) : boolean

+ partOf(queryIDs : Collection) : Collection

+ addAllQueries(queries : Collection) : boolean

+ removeAllQueries(queries : Collection) : boolean
+ isDownStep() : boolean

+ isUpStep() : boolean

+ getCorrespondingRelation() : RelationVertex

+ getTypeKey() : Object

+ shallowClone(target : DirectedAcyclicGraph) : Vertex

+ onHeadBranch() : boolean

+ getLevellnDocument() : int

+ numOutgoingEdges(queryID : Integer) : int

+ numincomingEdges(querylID : Integer) : int

+ addIsomorphic(vm : QueryVertex, querylD : Integer) : boolean
cloneQueryVertexProperties(target : QueryVertex)
+ getCost() : double

+ setCost(cost : double)

+ resetCost()

+ resetSelectivityEstimate()

+ getSelectivityEstimate() : double

+ setSelectivityEstimate(value : double)

+ deepClone(target : DirectedAcyclicGraph, querylD : Integer) : Vertex

Figure 10.8: Class QueryVertex

DirectedAcyclicGraph

A
I

AdjacentListDAG

QueryGraph
N

SingleQueryGraph

MultiQueryGraph

Figure 10.9: Class hierarchy for query graphs

104

shown in Section 10.3 as well as for the pairwise set

merger.

10.2.1 Computing the cost of a query plan:

spex.queries.optimizers.cost

All vertex-based cost functions proposed in Chapter 8
are implemented as shown in Figure 10.10 based on
the common interface CostFunction providing means
for computing the cost of a graph or a vertex. All these
implementations are required to provide means to up-
date the cost of a graph upon changes to that graph.
Thus, if e.g. a vertex is added to the graph, an in-
dependent cost function can simply increase the cost
of the graph by the cost of the new vertex. For a local
cost function, also all now adjacent vertices of the new
vertex might change their cost and therefore have to
be considered. In the case of a global cost function, all
vertices might actually be a [ecked. Nevertheless, this
optimization together with the memorization of the
cost of a vertex allow very e [Lcieht implementations
of the cost functions, in particular of the independent
and local cost function.

The three cost functions Koperators, implemented
by the class ProcessingCostFunction, Kmerging, imple-
mented by MergingCostFunction, and Kselectivity, imple-
mented by SelectivityCostFunction, can be configured
with an instance of the class EvaluatorCharacteristics
that describes the mapping from operator-property

pairs to relative costs discussed in Chapter 8.

10.3 Pair mergers:

spex.queries.optimizers.merger

All pair mergers proposed in Chapter 6 have been
implemented including the various variants. Fig-
ure 10.11 shows the hierarchy of the correspond-
ing classes and interfaces. The incremental mergers
are mostly implemented slightly more e Lcieht than
shown in Chapter 6, but without considerable change
to the worst-case time complexity. The two variants
of the greedy pair merger are implemented in the
GreedylncrementalMerger that can be configured by
the variant to select.

The central interface of this package is the Merger,
that is implemented by the abstract class Abstract-
Merger, as shown in Figure 10.12, that is in turn

extended by all the concrete pair mergers. The

IMPLEMENTATION

Iterator

+ hasNext() : boolean
+ next() : Object
+ remove()

A

I

1
Neighbourlterator

I patternVertices : Iterator
I currentPatternVertex : QueryVertex
| originalModelVertex : QueryVertex
I modelVertices : Iterator
I base : MultiQueryGraph
| cf : CostFunction

+ hasNext() : boolean

+ restore()

+ next() : Object

+ remove()

Figure 10.13: Class Neighbourlterator

Merger interface provides the single method merge
with two query plans as input that returns a Mul-
tiQueryGraph representing the result of merging
the two input plans. The AbstractMerger con-
tains implementations of operations used by all
mergers, such as validCandidates implemented by
getValidMergeCandidates or operations for adding
and removing a merging from one query plan into an-
other.

Another important class is the Neighbourlterator
that provides e [cieht iteration over the neighbors of a
solution. This iteration is implemented incrementally,
i.e.,, on each call to the next method the next neigh-
bor is generated on-the-fly thus decreasing the space

complexity dramatically.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

CostFunction
A
- | ~
- ~
P] ~
VertexEdgeCostFunction VertexCostFunction ProcessingCostFunction

A

MergingCostFunction

A

SelectivityCostFunction

Figure 10.10: Hierarchy of important classes and interfaces in spex.queries.optimizers.cost

Randomlr |

AbstractLox ferg | phP |

PlainMerger GreedylncrementalMerger ExhaustivelncrementalMerger
StochasticHillClimber Simulated. I | D inisticHillClimber

Figure 10.11: Hierarchy of important classes and interfaces in spex.queries.optimizers.mergers

Merger

+ merge(pattern : QueryGraph, model : QueryGraph, cf : CostFunction) : MultiQueryGraph

AbstractMerger

-ANCESTOR_MASK : int
- DESCENDANT_MASK : int

+ getValidMergeCandidates(v : QueryVertex, model : MultiQueryGraph) : Collection

+ addMerging(vp : QueryVertex, vm : QueryVertex, model : MultiQueryGraph, cf : CostFunction)
+ removeMerging(vp : QueryVertex, model : MultiQueryGraph, cf : CostFunction)

+ removeAllAncestors(of : QueryVertex, from : Collection)

+ removeAllDescendants(of : QueryVertex, from : Collection)

Figure 10.12: Interface Merger

106

MultiQueryOptimizer
merger : Merger
cf : CostFunction
queryCount : int

+ reset()

+ reset(cf : CostFunction, merger : Merger)
+ optimize() : MultiQueryGraph

+ addQuery(query : QueryGraph)

+ numQueries() : int

+ update(o : Observable, arg : Object)

|+ toString() : String

Figure 10.15: Interface Optimizer

10.4 Set mergers:

spex.queries.optimizers

As the pair mergers, also all set mergers discussed in
Section 6.3 have been implemented. The implementa-
tion refers to a set merger as an optimizer since it is
the interface from the multi-query optimization sub-

system to the rest of the optimization framework.

The hierarchy of classes and interfaces realizing the
set mergers from Section 6.3 is shown in Figure 10.14.
The class ExhaustiveBestOrderOptimizer provides an
exhaustive implementation of a set merger. The arbi-
trary order set merger is implemented in two variants
by ArbitraryOrderOptimizer and AlternativeArbitrary-
OrderOptimizer where only the latter is extended from
AbstractBestOrderOpti-

mizer provides means to store and access sets of

AbstractBestOrderOptimizer.

queries and is extended by all the optimizers that
care about the order of queries (as they use the set
of queries to determine the best order), whereas the
ArbitraryOrderOptimizer merges each query immedi-
ately into a multi-query graph and stores only that
one. The GreedyBestOrderOptimizer implements the
initial separate, initial pairwise and progressive pair-
wise order set merger. Slightly more e [cieht special-
izations of the two initial set mergers are provided
in the classes InitialSeparateGainGreedyOptimizer and
InitialPairwiseGainGreedyOptimizer.

The interface Optimizer allows to add queries to a
set merger, to reset the set of queries, and to optimize
the current set into a multi-query graph as shown in
Figure 10.15.

abling push-based query addition, i.e., whenever an-

It extends the Observer interface en-

other component of the optimization framework such
as a query parser of query generator, has a new query
available, the update method of all Observers regis-
tered with that component (extending Observable) are
called.

IMPLEMENTATION

10.5 Other Components of the Opti-

mization Framework

The actual optimization framework implemented as
part of this thesis, entails numerous packages and
classes that are not discussed in this thesis. Notable
among these are classes for generating and translating
query plans. There are several kinds of translators:
in particular, parser from a serial form into a query
plan and serializer that create a serial form such as an
RPQ or XPath query from a query plan. Several such
translators have been implemented, in particular for
serializing to and parsing from RPQ, XPath, and the
dot-graph visualization language.

The second kind of translators are responsible for
generating a physical query plan from a logical query
plan represented by a QueryGraph. Two such transla-
tors with di Cerkent capabilities are implemented that
generate a SPEX network for a QueryGraph.

Rewriters are components that transform one query
plan into another one. Important rewriters are e.g.,
the InverseloinRewriter that implements one of the
rewriting algorithms for removing inverse relations
described in [107] and the BranchPrefixCompacter that
implements the prefix compaction in query plans dis-
cussed in Section 2.3.3.

For a more extensive description of the optimiza-
tion framework please refer to the APl documentation

[50] provided as part of this thesis.

10.6 Testing:

spex.tests

For testing and evaluation of the method as well as the
implementation proposed in this work, several tools
for automated testing have been developed. Most no-
tably, these tools allow the generation of large sets of
query plans based on a DTD. These query plans can
then be evaluated with an arbitrary number of combi-
nations of set merger, pair merger, cost function, se-
rializer etc. in an automated process. The generation

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.
of the EDBT Workshop on XML Data Management (XMLDM).
Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109-125.

Furche, T. MQ-SPEX: optimization

framework for SPEX, API http:

//www.pms. informatik.uni-muenchen.de/forschung/

[50] Multi-query

documentation.

xpath-eval .html.

http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS

Observer

p

MultiQueryOptimizer

N

107

AbstractBestOrderOptimizer ArbitraryOrderOptimizer

N T

GreedyBestOrderOptimizer PairwiseBestOrderOptimizer ExhaustiveBestOrderOptimizer

AlternativeArbitraryOrderOptimizer

N

InitialPairwiseGainGreedyOptimizer InitialSeparateGainGreedyOptimizer

Figure 10.14: Hierarchy of important classes and interfaces in spex.queries.optimizers

as well as the evaluation itself are highly parameter-

izable. For a more extensive documentation, please
refer to the documentation of the API [50] of the opti-

mization framework provided as part of this thesis.

108 IMPLEMENTATION

Chapter 11

Conclusion and Future Work

Starting from a discussion about query plans for
evaluating queries against an XML stream, an ex-
tensive investigation of the optimization of multiple
queries to be executed simultaneously is provided in
this thesis. Query plans are introduced as graphs of
operators that specify the flow of data in an evalua-
tion engine. It is emphasized, that sharing of opera-
tors becomes a critical issue for optimization against
streams, in particular for XML query plans as pro-
posed here. Where previous work in this field is con-
cerned, if at all, only with operator sharing among
common prefixes of a query plan, we show that it is
feasible to consider sharing of arbitrary operators.

The notion of a query plan and an evaluation model
is formalized to facilitate a precise definition of the
optimization problem considered. In Chapter 5 we de-
fine the minimum common super-plan problem and
its more feasible variant, the stable minimum com-
mon super-plan, formally as optimization problems:
The objective is to find, given a set of query plans, a
query plan that contains all the original query plans
as subgraphs and is cost optimal. The intuition be-
hind this problem definition is that such a query plan
evaluates all the queries that are also evaluated by the
input query plans using the same evaluation strategy
for that query as the corresponding query plan from
the input but shares operators among queries wher-
ever the underlying cost function justifies that.

By reducing the maximum common connected sub-
graph problem to the general stable minimum com-
mon super-plan problem it is proven that the stable
minimum common super-plan is NP-hard and NPO PB-
complete, i.e., it can not be approximated within n™

for any [0.

Chapter 6 proposes several heuristic algorithms for

solving this problem. Algorithms (called pair mergers)
for two query plans as well as algorithms that consider
arbitrary sets of query plans are investigated and sev-
eral di Cerkent heuristics are presented for both cases.
In particular, two di Cerknt classes of pair mergers are
identified di [erkntiated by what operations are sup-
ported by the kind of query plans considered. The
incremental pair merger operate on partial solutions
and therefore require that there is some way to deter-
mine the cost and validity of a partial solution. Lo-
cal search pair mergers, on the other hand, are often
less e [cieht but require only a transformation func-
tion that commutes from one solution to another one.

To evaluate these algorithms, an overview over the
SPEX engine, used as basis for the evaluation, is pro-
vided: SPEX is a novel evaluation engine proposed in
[79; 105] and extended in [106], based on networks of
deterministic push-down transducers. We show how
to extended this evaluation engine to the query plans
for multiple queries generated by the heuristics dis-
cussed above.

Based on this evaluation engine and one of the ap-
propriate cost functions, discussed in Chapter 8, the
heuristics are evaluated against seven diverse work-
loads of query plans mimicking common application
scenarios as well as the extreme cases. For each of

these workloads, the most promising heuristics are

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.
M.S. thesis, University of Munich, Institute of Computer Sci-
ence.

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-
pressions with qualifiers against XML streams. In Proc. of
the International Conference on Data Engineering (ICDE).

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-
versity of Munich, Institute for Computer Science.

109

110

tested with up to 10,000 query plans with an average
size of 15 as input, whereas the test for the remaining
heuristics are limited to smaller input sizes.

The experimental evaluation shows, that under the
considered cost functions and query plans, the pro-
posed method for optimization of multiple queries
can provide with the right combination of heuristics a
distinctively better cost than conventional techniques
based on prefix compaction only.

Concluding, this work shows that sharing of opera-
tors among multiple query plan can, at least for the
SPEX evaluation engine, be extended from common
prefixes to arbitrary operators in a query plan. Fur-
thermore, a simple greedy heuristic can compute solu-
tions that are clearly superior to solutions constructed
if one considers only common prefixes as in previous
work in reasonable, albeit longer time. We believe, that
the best combination of heuristics identified in Chap-
ter 9 can be employed in practial cases justifying the
larger time required for query optimization by consid-
erably reducing the query execution time.

Nevertheless, several open issues remain: In partic-
ular, only one of three strategies for solving the sta-
ble minimum common super-plan problem has been
investigated extensively. For example, adapting tech-
niques for frequent sub-structure discovery [68] in bi-
ological data to the problem at hand might prove very
beneficial. Furthermore, clustering of the queries, ei-
ther in a preprocessing step or during the construc-
tion of the super-plan, can drastically reduce the com-
plexity of the problem. Related work on graph cluster-
ing, reviewed in [21], could provide hints for such an
extension.

Genetic algorithms have shown considerable poten-
tial as heuristics for solving several graph theoretical
problems [37; 98]. Although finding a crossover oper-
ation might not be trivial, it could prove very beneficial

to investigate such a heuristic.

[68] Inokuchi, A., et al. 2000. An apriori-based algorithm for

mining frequent substructures from graph data. In Proc.
of the European Conference on Principles and Practice of
Knowledge Discovery and Data Mining (PKDD2000). 13-23.

[21] Bunke, H. 2000. Recent developments in graph matching. In

Proc. of the International Conference on Pattern Recognition

(ICPR). Vol. 2.

[37] Cross, A. D. J, et al. 1996. Genetic search for structural

matching. In Computer Vision - ECCV '96, R. C. B. Buxton,

Ed. LNCS 1064. Springer Verlag, 514-525.

[98] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures

= Evolution Programs, 2nd ed. Springer Verlag.

CONCLUSION AND FUTURE WORK

Finally, we have not considered combining the pro-
posed heuristics in a reasonable way, e.g., to use
certain incremental pair mergers to provide starting
points for the local search pair merger.

Aside of improving the heuristics, there is one other
important open question: Can we find classes of
cost functions that are still interesting but for which
the stable minimum common super-plan problem be-
comes easier to approximate or even easier to solve
precisely? Although we do not believe, that there is
a class of interesting cost functions where the stable
minimum common super-plan problem becomes eas-
ier to solve, i.e., not NP-hard, there might be classes,
where it is easier to approximate, i.e., one can find
a heuristic such that a solution constructed by that
heuristic has a performance ratio bounded by n™for
some [0.

Appendix A

Contents

Bibliography

(1

[2

3]

[4]

(5]

(6]

[v]

(8l

Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F.
Estimating the selectivity of XML path expressions
for internet scale applications. In Proc. of the Inter-
national Conference on Very Large Databases (VLDB).
2001.

Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley,
M., and Chandra, T. D. 1999. Matching events in a
content-based subscription system. In Proc. of the
ACM Symposium on Principles of Distributed Comput-

ing. ACM Press, 53-61.

Alex C. Snoeren, Kenneth Conley, D. K. G. 2001.
Mesh-based content routing using XML. In Proc. of
the ACM Symposium on Operating Systems Principles

(SOSP). 160-173.

Altinel, M. and Franklin, M. J. 2000. E [cieht filtering
of XML documents for selective dissemination of in-
formation. In Proc. of the International Conference on
Very Large Databases (VLDB).

Armen, C. and Stein, C. 1994. A Zg—approximation al-
gorithm for the shortest superstring problem. Tech.
Rep. PCS-TR94-214, Department of Computer Sci-

ence, Dartmouth College, Hannover (NH).

Arora, S. 1998. The approximability of NP-hard prob-
lems. In Proc. of the ACM Symposium on Theory of
Computing. 337-348.

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A., and Protasi, M. 1999. Com-
plexity and Approximation: Combinatorial Optimiza-
tion Problems and their Approximability Properties.
Springer Verlag, Berlin.

Avila-Campillo, I., Gupta, A., Onizuka, M., Raven,
D., and Suciu, D. 2002. XMLTK: An XML toolkit

for scalable XML stream processing. In Proc. of

111

[9

—

[10]

[11]

[12]

[13]

[14]

the Workshop on Programming Language Tech-
nologies for XML (PLAN-X).

http://www.research.avayalabs.com/user/

Proc. available at

wadler/planx/planx-eproceed/proceed.html.

Avnur, R. and Hellerstein, J. M. 2000. Eddies: Contin-
uously adaptive query processing. In Proc. of the ACM
SIGMOD International Conference on Management of
Data. ACM Press, 261-272.

Babcock, B., Babu, S., Datar, M., Motwani, R., and
Widom, J. 2002. Models and issues in data stream
In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Sys-
tems (PODS).

systems.

Babu, S. and Widom, J. 2001. Continuous queries over
data streams. SIGMOD (ACM Special Interest Group
on Management of Data) Record, 109-120.

Banavar, G., Chandra, T. D., Mukherjee, B., Nagara-
jarao, J., Strom, R. E., and Sturman, D. C. 1999. An ef-
ficient multicast protocol for content-based publish-
subscribe systems. In Proc. of the International Con-
ference on Distributed Computing Systems (ICDCS).
262-272.

Barton, C., Charles, P., Goyal, D., Raghavachari,
M., V. 2002. An
algorithm for streaming XPath processing with

Fontoura, M., and Josifovski,

In Proc. of the
Tech-

forward and backward axes.
Workshop on Programming
nologies for XML (PLAN-X).

http://www.research.avayalabs.com/user/

Language
Proc. available at

wadler/planx/planx-eproceed/proceed.html.

Barton, C., Charles, P., Goyal, D., Raghavachari, M.,
Fontoura, M., and Josifovski, V. 2003.
XPath processing with forward and backward axes.

Streaming

http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html

112

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

In Proc. of the International Conference on Data Engi-
neering (ICDE).

Berlund, A., Boag, S., Chamberlin, D., Fernandez,
M. F., Kay, M., Robie, J., and Siméon, J., Eds. 2002.
XML path language (XPath) 2.0. Working draft, World
Wide Web Consortium. http://www.w3.0rg/TR/
xpath20/.

Blum, A., Jiang, T., Li, M., Tromp, J., and Yannakakis,
M. 1994. Linear approximation of shortest super-
strings. Journal of the ACM 41, 630-647.

Bonnet, P., Gehrke, J., and Seshadri, P. 2001. Towards
sensor database systems. In Proc. of the International
Conference on Mobile Data Management (ICMDM). 3-
14.

Botts, M., Ed. 2002. Sensor model

(SensorML) for in-situ and remote sensors spec-

language
ification. discussion paper 02-026r4, Open GIS
Consortium. http://www.opengis.org/techno/

discussions/02-026r4.pdf.

Botts, M. and Reichardt, M. 2003. Sensor web

enablement. white paper, Open GIS Consortium.
http://www.opengis.org/pressrm/summaries/

SensorWebWhPpr030512.doc.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., and
Maler, E., Eds. 2000. Extensible markup language
(XML) 1.0 (second edition). Recommendation, World
Wide Web Consortium. http://www.w3.0org/TR/
REC-xml.

Bunke, H. 2000.
matching. In Proc. of the International Conference on
Pattern Recognition (ICPR). Vol. 2.

Recent developments in graph

Bunke, H., Jiang, X., and Kandel, A. 2000. On the min-
imum common supergraph of two graphs. Springer
Computing 65, 1, 13-25.

Calvanese, D., Giacomo, G. D., Lenzerini, M., and
Vardi, M. Y. 2000. Containment of conjunctive reg-
ular path queries with inverse. In Proc. of the Inter-
national Conference on the Principles of Knowledge
Representation and Reasoning (KR). 176-185.

Carney, D., Cetintemel, U., Cherniack, M., Convey, C.,
Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., and
Zdonik, S. 2002. Monitoring streams: A new class of
data management applications. In Proc. of the Inter-
national Conference on Very Large Databases (VLDB).

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L.
2000. Achieving scalability and expressiveness in an
internet-scale event notification service. In Proc. of
the ACM Symposium on Principles of Distributed Com-

puting. ACM Press, 219-227.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. 2001.
Design and evaluation of a wide-area event notifica-

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[33]

[36]

[37]

[38]

[39]

Bibliography

tion service. ACM Transactions on Computer Systems
(TOCS) 19, 3, 332-383.

Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding
for content-based networking. Tech. Rep. CU-CS-922-
01, Department of Computer Science, University of
Colorado.

Chan, C.-Y., Felber, P., Garofalakis, M., and Rastogi,
R. 2002a. E Lcienht filtering of XML documents with
XPath expressions. The VLDB Journal (Special Issue
on XML Data Management).

Chan, C.-Y., Felber, P., Garofalakis, M., and Rastogi,
R. 2002b. E [cieht filtering of XML documents with
XPath expressions. In Proc. of the International Con-
ference on Data Engineering (ICDE). 235-244.
Chandrasekaran, S. and Franklin, M. J. 2002. Stream-
ing queries over streaming data. In Proc. of the Inter-
national Conference on Very Large Databases (VLDB).
Chen, J., DeWitt, D. J., , and Naughton, J. F. 2002.
Design and evaluation of alternative selection place-
ment strategies in optimizing continuous queries. In
Proc. of the International Conference on Data Engi-
neering (ICDE).

Chen, J., DeWwitt, D. J., Tian, F., and Wang, Y. 2000.
NiagaraCQ: A scalable continuous query system for
In Proc. of the ACM SIGMOD In-
ternational Conference on Management of Data. SIG-
MOD Record 29, 2, 379-390.

internet databases.

Cisco Systems. 2000. Cisco 10S netflow — technology
data sheet. http://www.cisco.com/warp/public/
cc/pd/iosw/prodlit/iosnf_ds.pdf.

Clark, J. and DeRose, S., Eds. 1999. XML path lan-
guage (XPath) version 1.0. Recommendation, World
Wide Web Consortium. http://www._w3.0rg/TR/
xpath.

Crescenzi, P. and Panconesi, A. 1991. Completeness
in approximation classes. Information and Computa-
tion 93, 2, 241-262.

Crespo, A., Buyukkokten, O., and Garcia-Molina, H.
2003. Query merging: Improving query subscription
processing in a multicast environment. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE).
Cross, A. D. J., Wilson, R. C., and Hancock, E. R. 1996.
Genetic search for structural matching. In Computer
Vision — ECCV '96, R. C. B. Buxton, Ed. LNCS 1064.
Springer Verlag, 514-525.

Dayal, U., Hanson, E. N., and Widom, J. 1995. Active
database systems. In Modern Database Systems. 434—
456.

Deering, S. E. and Cheriton, D. R. 1990. Mul-
ticast routing in datagram internetworks and ex-
tended LANs. ACM Transactions on Computer Sys-
tems (TOCS) 8, 2, 85-110.

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.opengis.org/techno/discussions/02-026r4.pdf
http://www.opengis.org/techno/discussions/02-026r4.pdf
http://www.opengis.org/pressrm/summaries/SensorWebWhPpr030512.doc
http://www.opengis.org/pressrm/summaries/SensorWebWhPpr030512.doc
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/iosnf_ds.pdf
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/iosnf_ds.pdf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Optimizing Multiple Queries against XML Streams

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Desai, A. 2001.
In Proc. of the IDEAlliance XML Conference.

Introduction to sequential XPath.
Elec-
tronic Proc. available at http://www.idealliance.
org/papers/xml2001/.

Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., and
Fischer, P. 2002. Path sharing and predicate evalua-
tion for high-performance XML filtering. Submitted
for publication, www.cs.berkeley.edu/~diaoyl/
publications/yfilter-public.ps.

Diao, Y., Fischer, P., Franklin, M. J., and To, R. 2002.
YFilter: E Ccieht and scalable filtering of XML docu-
ments. In Proc. of the International Conference on
Data Engineering (ICDE).

Douglass, R., Mork, J., and Suresh, B. 1997. Battle-
field awareness and data dissemination (BADD for
the warfighter. In Proc. of the SPIE, B. R. Suresh, Ed.
Vol. 3080. SPIE — The International Society for Optical
Engineering, 18-24.

Du LCeld, N. G. and Grossglauser, M. 2001. Trajectory
sampling for direct tra Cc_dbservation. |EEE/ACM
Transactions on Networking (TON) 9, 3, 280-292.
Eric, H., Al-Fayoumi, N., Carnes, C., Kandil, M., Liu, H.,
Lu, M., Park, J., and Vernon, A. 1997. TriggerMan: An
asynchronous trigger processor as an extension to an
object-relational DBMS. Tech. Rep. 97-024, University
of Florida, CISE Department.

Eric N. Hanson, T. J. 1996. Selection predicate index-
ing for active databases using interval skip lists. In-
formation Systems 21, 3, 269-298.

Fabret, F., Jacobsen, H.-A., Llirbat, F., Pereira, J., Ross,
K. A., and Shasha, D. 2001. Filtering algorithms and
implementation for very fast publish/subscribe sys-
tems. In Proc. of the ACM SIGMOD International Con-
ference on Management of Data. ACM Press, 115-
126.

Finkelstein, S. J. 1982. Common subexpression anal-
In Proc. of the ACM
SIGMOD International Conference on Management of
Data. 235-245.

ysis in database applications.

Franklin, M. J., Ed. 1996. Special Issue on Data Dis-
semination. Data Engineering Bulletin, vol. 19, 3. IEEE
Computer Society.

Furche, T.

tion framework for

MQ-SPEX: Multi-query optimiza-
SPEX, API

http://www.pms. informatik.uni-muenchen.de/

documentation.

forschung/xpath-eval .html.

Garcia-Molina, H., Ullmann, J. D., and Widom, J. 2001.
Database systems: the complete book, 1st ed. Prentice
Hall, Upper Saddle River, New Jersey.

Gore, P., Cytron, R., Schmidt, D., and O’Ryan, C. 2001.
Designing and optimizing a scalable CORBA notifica-
tion service. ACM SIGPLAN Notices 36, 8, 196-204.

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

113

Gottlob, G., Koch, C., and Pichler, R. 2003. The com-
plexity of XPath query evaluation. In Proc. of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS). 179-190.

Gough, J. and Smith, G. 1995. E Lcieht recognition of
events in a distributed system. In Proc. of the Aus-

tralasian Computer Science Conference.

Graefe, G. 1993. Query evaluation techniques for
large databases. ACM Computing Surveys 25, 2, 73—
170.

Green, T. J., Miklau, G., Onizuka, M., and Suciu, D.
2003. Processing XML streams with deterministic au-
tomata. In Proc. of the International Conference on

Database Technology (ICDT). 173-189.

Gruber, R. E., Krishnamurthy, B., and Panagos, E.
1999. The architecture of the READY event notifi-
In Proc. of the ICDCS Workshop on

Electronic Commerce and Web-Based Applications.

cation service.

Gruber, R. E., Krishnamurthy, B., and Panagos, E.
2000. READY: A high performance event notification
service.
Data Engineering (ICDE). 668-669.

In Proc. of the International Conference on

Gupta, A. and Nishimura, N. 1998. Finding largest
subtrees and smallest supertrees. Algorithmica 21, 2,
183-210.

Gupta, A. K. and Suciu, D. 2003. Stream processing of
XPath queries with predicates. In Proc. of the Proc. of
the ACM SIGMOD International Conference on Man-
agement of Data.

Hanson, E. N. 1991. The interval skip list: A data
structure for finding all intervals that overlap a point.
In Proc. of Workshop on Algorithms and Data Struc-
tures, Ottawa, Canada. Springer Verlag, 153-164.

Hanson, E. N., Carnes, C., Huang, L., Konyala, M.,
Noronha, L., Parthasarathy, S., Park, J. B., and Vernon,
A. 1999. Scalable Trigger Processing. In Proc. of the
International Conference on Data Engineering (ICDE).
IEEE Computer Society Press, 266-275.

Hanson, E. N. and Chaabouni, M. 1990. The IBS-
tree: A data structure for finding all intervals that
overlap a point. Tech. Rep. WSU-CS-90-11, Dept. of
Computer Science and Engineering, Wright State Uni-
versity. Available at ftp://ftp.cis.ufl._edu/cis/
tech-reports/tr94/tr94-040.ps.

Hanson, E. N., Chaabouni, M., Kim, C.-H., and Wang,
Y.-W. 1990. A predicate matching algorithm for
database rule systems. In Proc. of the ACM SIGMOD
International Conference on Management of Data.
ACM Press, 271-280.

Harnden, F. R., Primini, F. A., and Payne, H. E., Eds.
2001. Astronomical Data Analysis Software and Sys-

http://www.idealliance.org/papers/xml2001/
http://www.idealliance.org/papers/xml2001/
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
ftp://ftp.cis.ufl.edu/cis/tech-reports/tr94/tr94-040.ps
ftp://ftp.cis.ufl.edu/cis/tech-reports/tr94/tr94-040.ps

114

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

tems X: Science Data Pipelines. ASP (Astronomical So-
ciety of the Pacific) Conference Series, vol. 238.
Herman, |., Melangon, G., and Marshall, M. S. 2000.
Graph visualization and navigation in information vi-
sualization: A survey. IEEE Transactions on Visualiza-
tion and Computer Graphics 6, 1, 24-43.

Hochbaum, D., Ed. 1996. Approximation Algorithms
for NP-hard Problems, 1st ed. Brooks Cole.

Inokuchi, A., Washio, T., and Motoda, H. 2000. An
apriori-based algorithm for mining frequent sub-
structures from graph data. In Proc. of the European
Conference on Principles and Practice of Knowledge
Discovery and Data Mining (PKDD2000). 13-23.
Inokuchi, A., Washio, T., and Motoda, H. 2003. Com-
plete mining of frequent patterns from graphs: Min-
ing graph data. Machine Learning 50, 3, 321-354.
Inokuchi, A., Washio, T., Nishimura, Y., and Motoda,
H. 2002. General framework for mining frequent pat-
terns from structures. In Proc. of the International
Workshop on Active Mining (AM 2002). 23-30.

Press Telecommunications Council.
http://www.

International
News industry text format (NITF).
nitf.org.

lves, Z. G., Halevy, A. Y., and Weld, D. S. 2001. In-
tegrating network-bound XML data. |IEEE Data Engi-
neering Bulletin 24, 2, 20-26.

Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2002. An XML
query engine for network-bound data. VLDB Journal
Special Issue on XML Data Management.

Joy, B., Steele, G., Gosling, J., and Bracha, G. 2000.
The Java Language Specification, 2nd ed. Addison-
Wesley.

Kann, V. 1992. On the approximability of the maxi-
mum common subgraph problem. In Proc. 9th Symp.
Theoretical Aspects of Computer Science. Number 577
in Lecture Notes in Computer Science. Springer Ver-
lag, 377-388.

Kantor, B. and Lapsley, P., Eds. 1986.
news transfer protocol - a proposed standard for the

Network

stream-based transmission of news. RFC 977, IETF.
http://www. ietf.org/rfc/rfc0977 . txt.

Keidl, M., Kreutz, A., Kemper, A., and Kossmann, D.
2002. A publish & subscribe architecture for dis-
tributed metadata management. In Proc. of the In-
ternational Conference on Data Engineering (ICDE).

309-320.

Khanna, S., Motwani, R., Sudan, M., and Vazirani, U.
1999. On syntactic versus computational views of
approximability. SIAM Journal on Computing 28, 1,
164-191.

Kiesling, T. 2002. Towards a streamed XPath evalu-
ation. M.S. thesis, University of Munich, Institute of

[80]

[81]

[82]

(83]

[84]

[85]

(86]

[87]

[88]

[89]

[90]

[91]

[92]

Bibliography

Computer Science. Description and diploma thesis at
http://www.pms. informatik.uni-muenchen.de/

lehre/projekt-diplom-arbeit/streamedxpath.

html.

M. P.
Sci-

Kirkpatrick, S., Gelatt, C. D., and Vecchi,
1983.
ence 220, 4598, 671-680.

Optimization by simulated annealing.

Krishnamurthy, B. and Rosenblum, D. S. 1995. Yeast:
A general purpose event-action system. IEEE Transac-
tions on Software Engineering (TSE) 21, 10, 845-857.

Kuramochi, M. and Karypis, G. 2002. An e Lcieht al-
gorithm for discovering frequent subgraphs. Tech.
Rep. 02-026, Computer Science Departement, Univer-

sity of Minnesota.

Lakshmanan, L. V. and Parthasarathy, S. 2002. On
e [cieht matching of streaming XML documents and
queries. In Proc. of the International Conference on
Extending Database Technology (EDBT). 142-160.

Lim, L., Wang, M., Padmanabhan, S., Vitter, J. S., and
Parr, R. 2002. XPathLearner: An on-line self-tuning
markov histogram for XML path selectivity estima-
tion. In Proc. of the International Conference on Very
Large Databases (VLDB).

Liu, L., Pu, C., Barga, R., and Zhou, T. 1996. Di [erkn-
tial evaluation of continual queries. In Proc. of the In-
ternational Conference on Distributed Computing Sys-
tems (ICDCS). 458-465.

Liu, L., Pu, C., and Tang, W. 1999. Continual queries
for internet scale event-driven information delivery.
IEEE Transactions on Knowledge and Data Engineer-
ing (TKDE) 11, 4, 610-628.

Ludascher, B., Mukhopadhyay, P., and Papakonstanti-
nou, Y. 2002. A transducer-based XML query proces-
sor. In Proc. of the International Conference on Very
Large Databases (VLDB).

Madden, S. and Franklin, M. J. 2002. Fjording the
stream: An architecture for queries over streaming
sensor data. In Proc. of the International Conference
on Data Engineering (ICDE).

Madden, S., Shah, M., Hellerstein, J. M., and Raman,
V. 2002. Continuously adaptive continuous queries
In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data.

over streams.

Maier, D. and Storer, J. A. 1977. A note on the com-
plexity of the superstring problem. Tech. Rep. 233,

Princeton University. Oct.

Marshall, M. S., Herman, I., and Melang¢on, G. 2001.
An object-oriented design for graph visualization.

Software Practice and Experience 31, 8, 739-756.

Martinez, J. M., Ed. 2002. Mpeg-7 overview. Tech.
Rep. N4980, ISO/IEC JTC1/SC29/WG11. http:

http://www.nitf.org
http://www.nitf.org
http://www.ietf.org/rfc/rfc0977.txt
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm

Optimizing Multiple Queries against XML Streams

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

//mpeg.telecomitalialab.com/standards/
mpeg-7/mpeg-7.htm.

McGregor, J. J. 1982. Backtrack search algorithms and
the maximal common subgraph problem. Software-
Practice and Experience 12, 23-34.

Megginson, D. and Brownell, D. 2002. SAX: The sim-
ple API for XML. http://www.saxproject.org/.

Mehringer, D. M., Plante, R. L., and Roberts, D. A,,
Eds. 1999. Astronomical Data Analysis Software and
Systems VIII: Data Pipelines. ASP (Astronomical Soci-
ety of the Pacific) Conference Series, vol. 172.

Meuss, H. and Schulz, K. 2001. Complete answer ag-
gregates for tree-like databases: A novel approach to
combine querying and navigation. ACM Transactions
on Information Systems (TOIS) 19, 2, 161-215.

Muhl, G., Fiege, L., and Buchmann, A. 2002. Filter
similarities in content-based publish/subscribe sys-
tems. In Proc. of the International Conference on
Architecture of Computing Systems (ARCS). Lecture
Notes in Computer Science, vol. 2299. Springer Ver-

lag, 224-238.

Michalewicz, Z. 1996. Genetic Algorithms + Data
Structures = Evolution Programs, 2nd ed. Springer
Verlag.

Michalewicz, Z. and Fogel, D. B. 2000. How to Solve
It: Modern Heuristics, 1st ed. Springer Verlag.
Miklau, G.

cs.washington.edu/research/xmldatasets/,

XML data repository. http://www.

University of Washington.

Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu,
S., Datar, M., Manku, G., Olston, C., Rosenstein, J.,
and Varma, R. 2003.

mation, and resource management in a data stream

Query processing, approxi-
management system. In Proc. of the Conference on

Innovative Data Systems Research (CIDR).

Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M.
2001. Monitoring XML data on the Web. SIGMOD
(ACM Special Interest Group on Management of Data)
Record 30, 2, 437-448.

Object Management Group, Inc. 2001. Event Ser-
1.1 ed.

http://www.omg.org/technology/

vice Specification, Object Management

Group, Inc.

documents/formal/event_service.htm.

Object Management Group, Inc. 2002. Notification
Service Specification, 1.0.1 ed. Object Management
Inc.

Group, http://www.omg.org/technology/

documents/formal/notification_service.htm.

Olteanu, D., Kiesling, T., and Bry, F. 2003. An eval-
uation of regular path expressions with qualifiers
against XML streams. In Proc. of the International

Conference on Data Engineering (ICDE).

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

115
Olteanu, Furche,
F. 2003.
progressive evaluation of XPath.

D., T, T,
Advanced techniques for streamed and

Kiesling, and Bry,
Research re-

port, University of Munich, Institute for Com-

puter Science. http://www.pms. informatik.

uni-muenchen.de/forschung/xpath-eval .html.

Olteanu, D., Meuss, H., Furche, T., and Bry, F.
2002. XPath: Looking forward. In Proc. of the EDBT
Workshop on XML Data Management (XMLDM). Lec-
ture Notes on Computer Science (LNCS), vol. 2490.
Springer Verlag, 109-125.

Ozen, B., Kilic, O., Altinel, M., and Dogac, A. 2001.
Highly personalized information delivery to mobile
clients. In Proc. of ACM International Workshop on

Data Engineering for Wireless and Mobile Access.

Ozkan, C., Dogac, A., and Evrendilek, C. 1995. A
heuristic approach for optimization of path expres-
sions. In Proc. of the International Conference on

Database and Expert Systems Applications. 522-534.

Papadimitriou, C. H. and Yannakakis, M. 1991. Op-
timization, approximation, and complexity classes.
Journal of Computer and System Sciences 43, 425-
440.

Peng, F. and Chawathe, S. S. 2003a. XPath queries
on streaming data. In Proc. of the Proc. of the ACM
SIGMOD International Conference on Management of
Data.

Peng, F. and Chawathe, S. S. 2003b. XSQ: Streaming
XPath queries. In Proc. of the International Confer-

ence on Data Engineering (ICDE).

Pereira, J., Fabret, F., Jacobsen, H.-A,, Llirbat, F., and
Shasha, D. 2001. WebFilter: A high-throughput XML-
based publish and subscribe system. In Proc. of the
International Conference on Very Large Databases
(VLDB). 723-724.

Pereira, J., Fabret, F., Llirbat, F., Preotiuc-Pietro, R.,
Ross, K. A., and Shasha, D. 2000. Publish/subscribe
on the web at extreme speed. In Proc. of the Inter-
national Conference on Very Large Databases (VLDB).

627-630.

Pereira, J., Fabret, F., Llirbat, F., and Shasha, D. 2000.
E Ccieht matching for web-based publish/subscribe
systems. In Proc. of the International Conference on
Cooperative Information Systems. Lecture Notes in
Computer Science, vol. 1901. Springer Verlag, 162-
173.

Polyzotis, N. and Garofalakis, M. 2002. Statistical syn-
opses for graph-structured XML databases. In Proc. of
the ACM SIGMOD International Conference on Man-
agement of Data.

Ramakrishnan, S. and Dayal, V. 1998. The pointcast

http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
http://www.saxproject.org/
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html

116

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

network. In Proc. of the ACM SIGMOD International

Conference on Management of Data. ACM Press, 520.

Reiss, S. P. 1990. Connecting tools using message
passing in the field environment. IEEE Software 7, 4,
57-66.

Rosenthal, A. and Chakravarthy, U. S. 1988. Anatomy
of a modular multiple query optimizer. In Proc. of the
International Conference on Very Large Databases
(VLDB). 230-239.

Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S.
2000. E LCcieht and extensible algorithms for multi
query optimization. SIGMOD (ACM Special Interest
Group on Management of Data) Record 29, 2, 249-
260.

Segall, B. and Arnold, D. 1997. Elvin has left the
building: A publish/subscribe notification service
In Proc. of AUUG (Australian Unix
and Open Systems User Group) '97.

with quenching.

Segall, B., Arnold, D., Boot, J., Henderson, M., and
Phelps, T. 2000. Content based routing with elvin4. In
Proc. of AUUG2K (Australian Unix and Open Systems
User Group).

Sellis, T. K. 1988. Multiple-query optimization. ACM
Transactions on Database Systems (TODS) 13, 1, 23—
52.

Sellis, T. K. and Ghosh, S. 1990. On the multiple-
query optimization problem.
Knowledge and Data Engineering (TKDE) 2, 2, 262-
266.

IEEE Transactions on

Shmueli, O. 1983. Dynamic cycle detection. Informa-
tion Processing Letters 17, 4, 185-188.

M. 2003. SPEX Viewer:
user interface for SPEX.

Spannagel, A graphical
Project thesis, Univer-
sity of Munich, Institute for Computer Science.
http://www.pms. informatik.uni-muenchen.
de/publikationen/projektarbeiten/Markus.

Spannagel/SPEX_Viewer .html.

Spears, W. M. 1996. Cliques, Coloring, and Satisfia-
bility: Second DIMACS Implementation Challenge. DI-
MACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 26. American Mathematical
Society, Chapter Simulated Annealing for Hard Satis-
fiability Problems, 533-558.

Sullivan, M. and Heybey, A. 1998. Tribeca: A system
for managing large databases of network tra [c_1In

Proc. of the USENIX Annual Technical Conference.

Sun Microsystems, Inc. 2001. Jini™ Technology
Core Platform Specification, 1.2 ed. Sun Microsys-
tems, Inc. http://wwws.sun.com/software/jini/

specs/jinil.2html/core-title_html.

Sun Microsystems, Inc. 2002. Java Message Service

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Bibliography

API Specification, 1.1 ed.
http://java.sun.com/products/jms/.

Terry, D. B., Goldberg, D., Nichols, D., and Oki,
B. M. 1992. Continuous queries over append-only
databases. In Proc. of the ACM SIGMOD International
Conference on Management of Data. ACM Press, 321-
330.

Sun Microsystems, Inc.

Turner, J. S. 1989. Approximation algorithms for the
shortest common superstring problem. Information
and Computation 83, 1 (Oct.), 1-20.

Ukkonen, E. 1990. A linear-time algorithm for find-
ing approximate shortest common superstrings. Al-
gorithmica 5, 313-323.

Ullmann, J. R. 1976. An algorithm for subgraph iso-
morphism. Journal of the ACM 23, 1, 31-42.

Wang, K. and Liu, H. 1999. Discovering structural
association of semistructured data. IEEE Transactions
on Knowledge and Data Engineering (TKDE).

Widom, J. and Ceri, S., Eds. 1996. Active Database
Systems: Triggers and Rules For Advanced Database

Processing. Morgan Kaufmann.

Wu, Y., Patel, J. M., and Jagadish, H. V. 2002. Es-
timating answer sizes for XML queries. In Proc. of
the International Conference on Extending Database
Technology (EDBT). 590-608.

Xu, L. and Oja, E. 1990.
nealing, boltzmann machine, and attributed graph
matching. L. Almeida, Ed. LNCS 412. Springer Verlag,

151-161.

Improved simulated an-

Yamaguchi, A., Nakano, K., and Miyano, S. 1997. An
approximation algorithm for the minimum common
supertree problem. Nordic Journal of Computing 4, 3,
303-316.

Yan, T. W. and Garcia-Molina, H. 1999. The sift infor-
mation dissemination system. ACM Transactions on
Database Systems (TODS) 24, 4, 529-565.

Yannakakis, M. 1978. The node-deletion problem for
hereditary properties. Tech. Rep. 240, Computer Sci-
ence Laboratory, Princeton University.

Yannakakis, M. 1979. The e [eck of a connectivity re-
quirement on the complexity of maximum subgraph
problems. Journal of the ACM 26, 4, 618-630.

Yu, H., Estrin, D., and Govindan, R. 1999. A hierar-
chical proxy architecture for internet-scale event ser-
vices. In Proc. of the IEEE International Workshop on
Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE).

Yu, P. S., Ed. 2003. IEEE Transactions on Knowledge
and Data Engineering: special section on online anal-
ysis and querying of continuous data streams. Vol. 15.
IEEE Computer Society.

http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://wwws.sun.com/software/jini/specs/jini1.2html/core-title.html
http://wwws.sun.com/software/jini/specs/jini1.2html/core-title.html
http://java.sun.com/products/jms/

	1 Introduction
	2 Challenges for Query Optimization on Semi-structured Streams
	2.1 Traditional Query Optimization
	2.1.1 Optimizing Logical Query Plans

	2.2 Querying XML Data
	2.3 Optimizing Queries against XML Streams
	2.3.1 Optimization Objective
	2.3.2 Query Plans for XML
	2.3.3 Optimizing XML Query Plans
	2.3.4 Query Plans for Multiple Queries

	3 Related work
	3.1 Trigger Processing
	3.2 Continuous Query Systems
	3.2.1 Continuous Query Systems on Tuple Streams
	3.2.2 Continuous Query Systems on Semi-structured Streams

	3.3 Publish-Subscribe Architectures
	3.3.1 Content-based
	3.3.2 XML-based

	3.4 Single Query Processors against XML Streams

	4 Concise Representation of XML Query Plans
	4.1 Formalization of a Query Plan
	4.1.1 Evaluation Model
	4.1.2 Query Plan

	4.2 Use Case: Traditional Relational Query Plans
	4.3 Use Case: Query Plans for XML Streams

	5 The Minimum Common Super-Plan Problem
	5.1 Complexity and Approximability of Optimization Problems
	5.1.1 Optimization Problems
	5.1.2 NPO Problems
	5.1.3 Approximability of NP-hard Problems

	5.2 Minimum Common Super-Plan
	5.3 Related Problems

	6 Heuristics for the Stable Minimum Common Super-Plan Problem
	6.1 Strategies for the SMCSP
	6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans
	6.2.1 Incremental Pair Mergers
	6.2.2 Local Search Pair Mergers

	6.3 Set Mergers: Algorithms for Merging Sets of Query Plans
	6.3.1 Pairwise Set Merger: Example for the Clustered Strategy

	7 Use Case: SPEX
	7.1 SPEX in a Nutshell
	7.2 Evaluating Query Plans for Multiple Queries

	8 Cost Estimation in a Streamed Environment
	8.1 Classes of Cost Functions
	8.1.1 Independent Cost Functions
	8.1.2 Local Cost Functions
	8.1.3 Global Cost Functions

	9 Experimental Evaluation
	9.1 Setup
	9.1.1 Workloads

	9.2 Assessing the Feasibility of the Approach
	9.2.1 Comparing the Cost
	9.2.2 Comparing the Time
	9.2.3 Comparing the Results

	9.3 Comparison of Local Search Pair Mergers
	9.4 Comparison of Set Mergers

	10 Implementation
	10.1 Basic Graph Library
	10.2 From Graphs to Query Plans
	10.2.1 Computing the cost of a query plan

	10.3 Pair mergers
	10.4 Set mergers
	10.5 Other Components of the Optimization Framework
	10.6 Testing

	11 Conclusion and Future Work
	A Bibliography

