
INSTITUT FÜR INFORMATIK
Lehr- und Forschungseinheit für

Programmier- und

Modellierungssprachen

Oettingenstraße 67 D–80538 München

Optimizing Multiple Queries against XML Streams

Tim Furche

Diplomarbeit

Beginn der Arbeit: 01.02.2003

Abgabe der Arbeit: 31.07.2003

Betreuer: Prof. Dr. François Bry

Dipl.-Ing. Dan Olteanu

Erklärung

Hiermit versichere ich, dass ich diese Diplomarbeit selbständig verfasst habe. Ich habe dazu keine anderen als

die angegebenen Quellen und Hilfsmittel verwendet.

München, den 31.07.2003 Tim Furche

Classification

according to: ACM Computing Classification System (1998 Version)

Categories and Subject Descriptors:

H.2.4 [Database Management]: Systems;

H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing

— Indexing Methods;

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

— Information filtering; Search process;

H.3.4 [Information Storage and Retrieval]: Systems and Software

— Performance evaluation (efficiency and effectiveness);

General Terms: Algorithms, Performance

Additional Key Words and Phrases: XML query evaluation, query merging, prefix merging, path sharing,

stream processing, cost function, query optimization

Abstract

Processing and querying streams, XML streams in particular, has recently become a widely recognized area

of interest both in research and in industry. In contrast to traditional query evaluation for databases, where

multiple queries against the same data can be evaluated sequentially, for a streamed environment only the

simultaneous execution of multiple queries is feasible, as the sequential evaluation requires multiple passes

over the stream.

This work presents an overview of techniques for optimizing multiple queries posed against a stream of

XML data. Building upon the SPEX query engine [79; 105], the problem how to find a cost-optimal query plan

that allows the simultaneous evaluation of multiple queries against the same stream is presented and shown

to be not only hard to solve but also hard to approximate, if arbitrary parts, and not only common prefixes as

in previous approaches, can be shared among query plans. Several heuristics are investigated and compared,

in particular with respect to their complexity. Furthermore, it is shown how to extend the SPEX query engine

to support such query plans for multiple queries. This extension proves to be both natural and efficient. An

extensive experimental evaluation shows that sharing arbitrary operators under a realistic cost function results

in query plans that have consistently lower cost for reasonable sets of queries than query plans where only

common prefixes are considered. In most cases, the relative improvement is higher than 50%. Although the

time for generating such query plans is higher than for query plans where only common prefixes are shared,

the increase in time is within an acceptable margin.

Zusammenfassung

Die Anfragebearbeitung auf Strömen, insbesondere Strömen von XML Daten, ist in den letzten Jahren weit-

gehend als interessante Herausforderung für Forschung wie Industrie anerkannt worden. Im Gegensatz zu

traditionellen Anfrageauswertern für Datenbanken, die mehrere Anfragen auf denselben Daten sequenziell

verarbeiten, ist diese Verarbeitungsform für Ströme nicht geeignet, da sie mehrere Durchläufe über den Strom

erfordert. Für Ströme ist daher nur die gleichzeitige Auswertung mehrerer Anfragen akzeptabel.

Diese Arbeit gibt eine Überblicksdarstellung der Techniken zur Optimierung mehrerer simultan auf einem

XML-Strom zu verarbeitenden Anfragen. Ausgehend von dem SPEX-Anfrageauswerter [79; 105] wird das Pro-

blem, einen kostenoptimalen Plan zur Anfrageauswertung zu finden, vorgestellt und gezeigt, daß es für dieses

Problem nicht nur schwer ist, eine optimale Lösung zu finden, sondern selbst eine nur angenäherte Lösung

nicht einfach zu finden ist, wenn nicht nur gemeinsame Präfixe wie in bisherigen Ansätzen, sondern beliebige

Teile eines Plans von mehreren Pläne gemeinsam genutzt werden können. Mehrere heuristische Algorithmen

werden untersucht und verglichen, insbesondere im Hinblick auf ihre Komplexität. Desweiteren wird gezeigt,

wie der SPEX Anfrageauswerter erweitert werden kann, um mehrere Anfragen gleichzeitig verarbeiten zu kön-

nen. Eine umfassende experimentelle Auswertung der Algorithmen zeigt, daß der vorgeschlagene Ansatz unter

einer realistischen Kostenfunktionen zu deutlich geringeren Kosten für die generierten Pläne zur Anfrageaus-

wertung führt, als wenn nur gemeinsame Präfixe betrachtet werden. In den meisten getesteten Fällen ergeben

sich um mehr als 50% geringere Kosten. Weiterhin nimmt die benötigte Zeit zur Generierung solcher Pläne

im Vergleich zu Plänen, in denen nur gemeinsame Präfixe genutzt werden, zwar zu, der Anstieg ist jedoch

verhältnismäßig gering.

Danksagung

Für die sehr gute Betreuung und eine angenehme Atmosphäre bei meiner Diplomarbeit möchte ich mich beson-

ders bei meinen Betreuern François Bry und Dan Olteanu bedanken.

viii

Contents

1 Introduction 1

2 Challenges for Query Optimization on Semi-structured Streams 5

2.1 Traditional Query Optimization . 5

2.1.1 Optimizing Logical Query Plans . 6

2.2 Querying XML Data . 7

2.3 Optimizing Queries against XML Streams . 10

2.3.1 Optimization Objective . 10

2.3.2 Query Plans for XML . 11

2.3.3 Optimizing XML Query Plans . 12

2.3.4 Query Plans for Multiple Queries . 14

3 Related work 17

3.1 Trigger Processing . 17

3.2 Continuous Query Systems . 18

3.2.1 Continuous Query Systems on Tuple Streams . 18

3.2.2 Continuous Query Systems on Semi-structured Streams . 20

3.3 Publish-Subscribe Architectures . 20

3.3.1 Content-based . 22

3.3.2 XML-based . 26

3.4 Single Query Processors against XML Streams . 30

4 Concise Representation of XML Query Plans 33

4.1 Formalization of a Query Plan . 33

4.1.1 Evaluation Model . 33

4.1.2 Query Plan . 34

4.2 Use Case: Traditional Relational Query Plans . 35

4.3 Use Case: Query Plans for XML Streams . 35

5 The Minimum Common Super-Plan Problem 37

5.1 Complexity and Approximability of Optimization Problems . 38

5.1.1 Optimization Problems . 38

5.1.2 NPO Problems . 38

5.1.3 Approximability of NP-hard Problems . 39

5.2 Minimum Common Super-Plan . 40

5.3 Related Problems . 42

ix

x CONTENTS

6 Heuristics for the Stable Minimum Common Super-Plan Problem 45

6.1 Strategies for the SMCSP . 45

6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans . 47

6.2.1 Incremental Pair Mergers . 47

6.2.2 Local Search Pair Mergers . 56

6.3 Set Mergers: Algorithms for Merging Sets of Query Plans . 60

6.3.1 Pairwise Set Merger: Example for the Clustered Strategy . 61

7 Use Case: SPEX 65

7.1 SPEX in a Nutshell . 65

7.2 Evaluating Query Plans for Multiple Queries . 67

8 Cost Estimation in a Streamed Environment 69

8.1 Classes of Cost Functions . 69

8.1.1 Independent Cost Functions . 70

8.1.2 Local Cost Functions . 70

8.1.3 Global Cost Functions . 72

9 Experimental Evaluation 73

9.1 Setup . 73

9.1.1 Workloads . 74

9.2 Assessing the Feasibility of the Approach . 80

9.2.1 Comparing the Cost . 80

9.2.2 Comparing the Time . 85

9.2.3 Comparing the Results . 85

9.3 Comparison of Local Search Pair Mergers . 85

9.4 Comparison of Set Mergers . 94

10 Implementation 99

10.1 Basic Graph Library . 99

10.2 From Graphs to Query Plans . 102

10.2.1 Computing the cost of a query plan . 104

10.3 Pair mergers . 104

10.4 Set mergers . 106

10.5 Other Components of the Optimization Framework . 106

10.6 Testing . 106

11 Conclusion and Future Work 109

A Bibliography 111

Chapter 1

Introduction

Processing of data streams or sequences of blocks

of data (usually called elements of the stream) has

triggered rising interest, both in research [131; 24;

144] and in industry [33; 94]. Stream processing dif-

fers from conventional methods of data processing in

main memory or on data bases in the requirement to

process data immediately on its arrival in the stream

instead of creating an appropriate data structure that

is on which the actual processing is performed af-

terwards. In particular, if the data to be processed

changes fast, only small fragments of the data have

to be processed repeatedly, the data arrives at a high

rate, or the amount of data is too large to be effi-

ciently stored and processed, stream processing pro-

vides clear advantages over traditional methods based

on in-memory data structures or databases.

Indeed, in most applications for stream processing

at least one of these characteristics can be observed,

including some of the most exciting areas of applica-

tion for streams:

— With increasing complexity of electronic and in-

formation systems, monitoring and analysis of these

[131] Terry, D. B., et al. 1992. Continuous queries over append-

only databases. In Proc. of the ACM SIGMOD International

Conference on Management of Data. ACM Press, 321–330.

[24] Carney, D., et al. 2002. Monitoring streams: A new class of

data management applications. In Proc. of the International

Conference on Very Large Databases (VLDB).

[144] Yu, P. S., Ed. 2003. IEEE Transactions on Knowledge and

Data Engineering: special section on online analysis and

querying of continuous data streams. Vol. 15. IEEE Com-

puter Society.

[33] Cisco Systems. 2000. Cisco IOS netflow – technology data

sheet.

[94] Megginson, D. and Brownell, D. 2002. SAX: The simple API

for XML.

systems, performed on streams of data provided ei-

ther by the system itself or by specific sensors infor-

mation, more and more essential. Recent work in this

area includes the analysis of network traffic [128; 44;

33] and monitoring of sensor networks [17; 88].

— Publish-subscribe systems provide capabilities

to selectively disseminate information or publications

for a large number of users or subscribers based on

their profile or subscription [49]. These systems even

find applications ranging from news distribution net-

works [117] over event notification systems alerting

users of certain events [26] to the dissemination of

relevant information for different needs in a military

engagement [43].

— Another emerging application is the real-time in-

[128] Sullivan, M. and Heybey, A. 1998. Tribeca: A system for

managing large databases of network traffic. In Proc. of the

USENIX Annual Technical Conference.

[44] Duffield, N. G. and Grossglauser, M. 2001. Trajectory sam-

pling for direct traffic observation. IEEE/ACM Transactions

on Networking (TON) 9, 3, 280–292.

[17] Bonnet, P., et al. 2001. Towards sensor database systems.

In Proc. of the International Conference on Mobile Data Man-

agement (ICMDM). 3–14.

[88] Madden, S. and Franklin, M. J. 2002. Fjording the stream:

An architecture for queries over streaming sensor data. In

Proc. of the International Conference on Data Engineering

(ICDE).

[49] Franklin, M. J., Ed. 1996. Special Issue on Data Dissemina-

tion. Data Engineering Bulletin, vol. 19, 3. IEEE Computer

Society.

[117] Ramakrishnan, S. and Dayal, V. 1998. The pointcast net-

work. In Proc. of the ACM SIGMOD International Conference

on Management of Data. ACM Press, 520.

[26] Carzaniga, A., et al. 2001. Design and evaluation of a wide-

area event notification service. ACM Transactions on Com-

puter Systems (TOCS) 19, 3, 332–383.

[43] Douglass, R., et al. 1997. Battlefield awareness and data

dissemination (BADD for the warfighter. In Proc. of the

1

2 INTRODUCTION

tegration of fast “news feeds” from diverse sources,

similar to Google News (http://news.google.com)

or NewsIsFree (http://www.newsisfree.com/). In

the context of web services, the automatic on-the-fly

syndication of streams generated by heterogeneous

services is viewed as an emmerging challenge.

— With the advent of MPEG-7 [92] it is expected

that an increasing number of multimedia streams ac-

companied by detailed meta-data information have to

be efficiently filtered, transformed, and routed from

sources to consumers.

— Pipeline processing allows several independent

processors to be used in a pipeline, where the out-

put stream of one processor is the output stream of

the next one, therefore allowing each processor to per-

form its task as soon as the previous one delivers new

data. Pipeline processing is of particular importance

where large amounts of data have to be processed by

diverse components, e.g. in astronomic data analysis

[95; 65].

All these areas of applications share an inherent

heterogeneity of information sources in respect to the

data delivered, the parameters of the provided ser-

vice, or simply the administrative responsibility. For

example, monitors on devices from various vendors

in network analysis might generate monitoring data

with differing resolution, precision and in varying in-

tervals, the various news agencies used as sources

for syndication as well as dissemination will likely

focus on different stories or aspects of the same

story. These heterogeneous information sources re-

quire some agreed upon means for information en-

coding as provided by XML [20] dialects for the var-

ious areas such as NITF (News Industry Text Format,

http://www.nitf.org) for news, MPEG-7 for meta-

data on multimedia streams, or SensorML [18] for

SPIE, B. R. Suresh, Ed. Vol. 3080. SPIE – The International

Society for Optical Engineering, 18–24.

[92] Martínez, J. M., Ed. 2002. Mpeg-7 overview. Tech. Rep.

N4980, ISO/IEC JTC1/SC29/WG11.

[95] Mehringer, D. M., et al., Eds. 1999. Astronomical Data Anal-

ysis Software and Systems VIII: Data Pipelines. ASP (Astro-

nomical Society of the Pacific) Conference Series, vol. 172.

[65] Harnden, F. R., et al., Eds. 2001. Astronomical Data Analysis

Software and Systems X: Science Data Pipelines. ASP (Astro-

nomical Society of the Pacific) Conference Series, vol. 238.

[20] Bray, T., et al., Eds. 2000. Extensible markup language

(XML) 1.0 (second edition). Recommendation, World Wide

Web Consortium.

[18] Botts, M., Ed. 2002. Sensor model language (SensorML) for

sensor information and configuration. Although in

some of these applications, most notably for sensor

data, one commonly expects rather flat data consist-

ing in simple attribute-value pairs—and even monitor-

ing data sometimes requires more sophisticated mod-

eling constructs, e.g., when representing the fused in-

formation from entire sensor networks or partial re-

sults of sensor analysis [19]—, others such as syndi-

cation of news or meta-data processing with MPEG-7

require the richer hierarchical relations provided by

XML.

�

Summing up, a clear need for the efficient process-

ing of XML streams can be identified in all the above

application areas. In particular, all the described ap-

plications require some capability to query the incom-

ing stream: Sensor networks have to correlate and

monitor incoming data based on specifications of in-

teresting events (e.g., “send an alert, if the value of

sensor A is above a certain limit for more than 5 min-

utes”). Publish-subscribe systems route data based on

the subscriptions of their users, essentially filtering

the stream of data with large numbers of queries, such

as “send all publications containing a certain keyword

both in the title and the first paragraph”. Syndication

systems correlate information from different sources

and often, again based on user profiles, select only po-

tentially interesting data. Finally multimedia streams

have to be filtered and routed based on queries over

the meta-data, it is even possible to select only parts

of a multimedia stream, e.g. “return only those scenes

in the movie where a certain speaker uses a certain

word”.

As noted above, one of the advantages of stream

processing is the progressive delivery of result in a

single pass over the stream. One-pass processing is

required in particular on large or unbounded streams

or if the results have to be delivered continuously even

before all data has arrived, as it is common in moni-

toring and event notification systems. This manner

of processing imposes three important challenges to

a query engine:

(1) It is not feasible to look back in a stream (ex-

cept possibly within a certain small window). Hence,

in-situ and remote sensors specification. discussion paper

02-026r4, Open GIS Consortium.

[19] Botts, M. and Reichardt, M. 2003. Sensor web enablement.

white paper, Open GIS Consortium.

http://news.google.com
http://www.newsisfree.com/
http://www.nitf.org

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 3

queries containing such backward navigation either

have to be rewritten, as proposed in [107], or disal-

lowed.

(2) As a stream is always processed sequentially,

traditional optimization techniques, such as database

indices, that are tailored to minimize the amount of

access to data and the result of intermediary results,

are not applicable to streams. Here, the optimization

objective is to minimize the number of operations per

element in the stream rather than the number of ele-

ments visited. This shift in the optimization objective

is reflected in the notion of a stream index employed

in the XML Toolkit [8] that does not provide efficient

access paths to data relevant for a query but rather al-

lows to skip elements not relevant for a query reduc-

ing the number of operations for each such element

to one.

(3) If several queries, such as monitoring condi-

tions or subscriber profiles, have to be evaluated

against the same stream, it is not feasible to evaluate

the queries sequentially as in traditional databases but

they have to be processed simultaneously

In this work, the last issue is further investigated:

The requirement to execute multiple queries concur-

rently against the same stream combined with the sec-

ond observation, that the number of operations per el-

ement is crucial for fast processing of streams, there

is an evident need for novel methods to optimize mul-

tiple queries for a single processing against a stream.

Indeed, all proposals [4; 28; 41] of query engines

for publish-subscribe systems are tailored to process

large amounts of queries, but due to their application

area restricted to the filtering of small self-contained

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).

Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

[8] Avila-Campillo, I., et al. 2002. XMLTK: An XML toolkit for

scalable XML stream processing. In Proc. of the Workshop

on Programming Language Technologies for XML (PLAN-X).

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted for pub-

lication, www.cs.berkeley.edu/~diaoyl/publications/

yfilter-public.ps.

documents from a stream of such documents . Among

the general query engines recently proposed [56; 60;

111; 14; 105] only the [56; 60] consider the optimiza-

tion of multiple queries. All these approaches have in

common, that the optimization is based on common

prefixes in the queries (for an in-depth comparison see

Chapter 3). The approach presented here improves on

these by considering not only prefixes but rather any

kind of shared subparts techniques for multi-query

optimization on XML streams in several points:

(1) A framework for multi-query optimization to-

gether with a formal representation of (logical) query

plans on XML streams is presented in Chapter 4.

(2) Based on this representation, the general prob-

lem to derive the (cost-) minimum common super-plan

for executing a set of queries is defined precisely and

its complexity and approximability properties are in-

vestigated in Chapter 5.

(3) Several heuristic algorithms to construct the

minimum common super-plan for a set of query plans

are given and compared in respect to their complexity

in Chapter 6.

(4) A cost model for navigational query languages

against XML streams is proposed, based on experience

with the SPEX processor (cf. [105]) in Chapter 8.

(5) The SPEX evaluation model is extended to allow

the execution of multiple queries according to a query

plan generated by the proposed algorithms in Chap-

ter 7.

(6) An extensive experimental evaluation of the

proposed algorithms based on the cost model intro-

duced proves the feasibility of the proposed methods

if the queries to be processed are known before pro-

cessing (in contrast to being updated during process-

ing) in Chapter 9.

[56] Green, T. J., et al. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference

on Database Technology (ICDT). 173–189.

[60] Gupta, A. K. and Suciu, D. 2003. Stream processing of XPath

queries with predicates. In Proc. of the Proc. of the ACM

SIGMOD International Conference on Management of Data.

[111] Peng, F. and Chawathe, S. S. 2003a. XPath queries on

streaming data. In Proc. of the Proc. of the ACM SIGMOD

International Conference on Management of Data.

[14] Barton, C., et al. 2003. Streaming XPath processing with

forward and backward axes. In Proc. of the International

Conference on Data Engineering (ICDE).

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

4 INTRODUCTION

�

The remainder of this work is structured as follows:

In Chapter 2 the proposed approach for multi-query

optimization is compared to conventional query opti-

mization techniques for databases and tuple streams

detailing the use of query plans for XML streams.

A more systematic survey of related work on multi-

query optimization follows in Chapter 3, focusing on

previous work on processing XML streams. Based on

the query plans informally introduced in Chapter 2,

Chapter 4 establishes a formal representation of query

plans together with an extensive use-case describing

structure and generation of query plans for SPEX. The

problem how to construct a common query plan with

minimal cost for multiple queries is formalized in

Chapter 5. Chapter 5 also investigates the properties

of the problem in respect to complexity and approx-

imability. Several heuristic algorithms for the gener-

ation process are described and compared with re-

spect to complexity in Chapter 6. Based on experi-

ence with the SPEX engine, Chapter 8 establishes cost

functions suitable for a streamed environment, where

statistics for the data are unlikely to be available. Ex-

tending the use-case on the generation of query plans

for SPEX from Chapter 2, Chapter 7 presents the eval-

uation of the query plans created by the algorithms

from the previous chapter. Using the cost functions

from Chapter 8 and the just introduced evaluation of

query plans with the help of SPEX, an extensive ex-

perimental evaluation of the algorithms is performed

in Chapter 9. Chapter 10 details the implementation

of the query optimization framework, the algorithms,

the cost functions, and extensions of the SPEX engine.

Finally, Chapter 11 concludes with a short outlook on

future work on the topic.

Chapter 2

Challenges for Query Optimization on

Semi-structured Streams

The question, in which respect goals and challenges of query optimization for semi-structured streams differ

from those encountered in traditional query optimization, is to be investigated in this chapter. Preceded by

a short recall of query optimization in relational databases, the impact of the characteristics of a stream,

in particular a semi-structured stream, on query optimization is analyzed. This analysis motivates several

important shifts to the focus of query optimization in face of semi-structured streams.

Contents

2.1 Traditional Query Optimization . 5

2.1.1 Optimizing Logical Query Plans . 6

2.2 Querying XML Data . 7

2.3 Optimizing Queries against XML Streams . 10

2.3.1 Optimization Objective . 10

2.3.2 Query Plans for XML . 11

2.3.3 Optimizing XML Query Plans . 12

2.3.4 Query Plans for Multiple Queries . 14

To emphasize the novelties of query optimization

for semi-structured data streams, a short review of

traditional query optimization techniques (for rela-

tional databases) is indicated.

2.1 Traditional Query Optimization

Query optimization is an important part of query pro-

cessing. Query processing is often divided into two

steps: query compilation and query execution. During

query compilation a given query is parsed and com-

piled into a query plan that is afterwards executed by

the execution engine against the actual data. Follow-

ing, [51] query compilation can be further divided into

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-

plete book, 1st ed. Prentice Hall, Upper Saddle River, New

three phases (cf. Figure 2.1):

(1) The query, specified in an appropriate query

language, is parsed into a query parse tree.

(2) From the parse tree, a logical query plan is gen-

erated and subsequently optimized by various trans-

formation and rewriting rules. The translation from

the query tree to the logical query plan as well as

the rules used for optimization depend on the logical

query algebra [55] of the data model or the database

system. The logical algebra is closely related to the

data model of the query language (or languages) sup-

ported. Relational database systems usually employ

the relational algebra as logical query language.

Jersey.

[55] Graefe, G. 1993. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2, 73–170.

5

6 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

query

Parse

Generate logical
query plan

Optimize logical
query plan

Select physical
query plan

query parse tree

logical query plan

preferred logical query plan

physical query plan

Figure 2.1: Query compilation

(3) Following construction and optimization of the

logical query plan, both mostly independent of the

physical aspects of the query execution engine, the

logical query plan is translated into a physical query

plan specified in the physical algebra [55] of the

database system. The physical algebra, and conse-

quently the physical query plan, differs from the logi-

cal algebra in that it provides a finer granularity of op-

erators. Hence, a physical algebra contains for many

operators of the logical algebra several physical op-

erators with various trade-offs among the operators.

For example, the relational join operator can be real-

ized in numerous ways, such as nested-loop, merge or

hash-based join algorithms. Therefore, the translation

of a logical into a physical query plan often involves a

selection among many alternative plans, usually based

on a cost estimation.

As this work focuses on optimization of logical

query plans for semi-structured streams, in the fol-

lowing the premises and objectives for traditional op-

timization on logical query plans are examined. Some

consideration on the generation of a physical query

plan for the SPEX evaluation engine is given in Chap-

ter 7, presenting an application for the methods pro-

posed in the following chapters.

2.1.1 Optimizing Logical Query Plans

As briefly mentioned above, the primary objective for

query optimization on (relational) databases is to min-

imize access to data on secondary storage, as that ac-

[55] Graefe, G. 1993. Query evaluation techniques for large

databases. ACM Computing Surveys 25, 2, 73–170.

cess is usually by orders of magnitude more expensive

than in-memory operations, and to minimize interme-

diary results. To meet these objectives, the initial log-

ical query plan similar to the parse trees of a query,

is revised by applying rewriting and transformation

rules to the plan that change the estimated cost of

the query plan but not its semantics. The best results

in this optimization phase can be obtained if the se-

lection and the order of application of these rewrit-

ing rules is determined based on the estimated cost

of the resulting query plan, e.g., based on statistics

over the data accessed by the query or on properties

of the operators of the relational algebra. More in-

depth descriptions of query optimization and cost es-

timation for relational databases can be found among

many others in [55; 51].

To illustrate the kind of optimizations usually con-

sidered on a logical query plan consider Figure 2.2.

Figure 2.2(a) gives the initial query plan derived from

the SQL query SELECT S.b FROM S, R WHERE S.b =

R.a AND R.c = "v", selecting the b attribute from

relation S (denoted S.b), if there is a tuple in the

cross product of S with another relation R, such

that S.b is equal to R.a and R.c has the value

“v”. In relational algebra this query is denoted as

πS.b(σS.b=R.a(σR.c=“v”(R × S))). The later expression

serves as basis for the initial query plan. Obviously

this query plan can be improved quite notably, if one

observes that a part of the selection expression con-

tains only attributes from relation R. Pushing the se-

lection to R and changing the cross product into a

join leads to the query plan shown in Figure 2.2(b), a

considerable improvement regardless of the concrete

data the query will be processed against as the initial

plan constructed first the entire cross product with a

size |R| · |S| and evaluated then the selection on all

constructed tuples, whereas the optimized query per-

forms the selection directly on R, thereby also reduc-

ing the number of tuples that have to be considered

for the join. If there is an index on the R.c attribute,

the advantage of the second query plan is even higher.

In this simple case the decision for the second query

plan is independent of the concrete data, but there are

many other cases where optimization has to rely on

statistics about the data to be queried, e.g., when con-

sidering the order of selections on a single relation.

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-

plete book, 1st ed. Prentice Hall, Upper Saddle River, New

Jersey.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 7

×

RS

S.b = R.a

S.b

R.c = “
v”

(a) Initial query plan

R

S R.c = “
v”

S.b = R.a

S.b

(b) Optimized query plan

Figure 2.2: Two query plans for the same query

Similar to this example, optimization on logical

query plans for relation data often reduces to reorder-

ing of operators and in some cases to replacing oper-

ators (or sequences of operators) by ones that are ex-

pected to be evaluated more efficiently. In particular,

operator reordering is possible due to the an impor-

tant property that is shared by all basic operators of

the relational algebra: they filter or enhance the origi-

nal data, but always retain either a super- or a subset

(with respect to the tuples or attributes) of the input.

This property leads to a high flexibility in the posi-

tioning of operators. For example, a selection can be

pushed to nearly any position in the query plan with

the single restriction not to be pushed after a projec-

tion that removes the attributes the selection is based

on. This flexibility in operator placement is consid-

ered one of the strengths of the relational data model,

as it allows extensive optimization without effect on

the correctness of the query plan.

It is worth mentioning, that these considerations

on operator reordering for relational databases apply

even stronger for query optimization on streams of

tuples or attribute-value pairs, as many such systems

emphasize on filtering of the incoming data and do

not provide more expensive, for unbounded or very

large streams infeasible, operators such as cross prod-

ucts or joins.

�

Naturally, the operators used in querying semi-

structured data differ considerably from the operators

used to access relational data. In particular, opera-

tor reordering is far less promising on semi-structured

data streams. To illustrate this issue, it is important

to identify the differences between the logical algebra

used in this paper for semi-structured streams and the

“v
”

a
 2

b
 1

b
 7

3
b

4
c
 6
c

5
b
 8
c

“v
”

Figure 2.3: An XML data tree

relational algebra used as logical algebra in relational

database systems. Therefore, the following section

introduces the semi-structured data model together

with a query algebra and a query language on such

data.

2.2 Querying XML Data

In this work, XML data is considered to be tree-shaped.

The tree is an ordered, node-labeled and its nodes are

called elements of the XML data (for reasons of sim-

plicity, we do not distinguish between different kinds

of nodes such as element, text, or attribute nodes,

though the presented approach can easily be extended

to several node types). Each element can have a num-

ber of local properties or attributes. Here, we restrict

the attributes to the label of an element and the text

contained in an element. In Figure 2.3 a sample tree

is shown with labels represented left of the element

identified by its position in a pre-order traversal of

the tree. The text contained in an element is pictured

to the right of that element in quotation marks. It is

assumed that the siblings of an element are ordered

as depicted. There are several structural relations be-

tween elements that can be derived from such a docu-

ment tree: The three base relations child, next-sibling,

and next associate an element with its children, its

following sibling, and the following element in a pre-

order traversal respectively. For each base relation,

there is a transitive closure, viz. descendants, next-

siblings, and nexts, and an inverse relation (cf. [23]),

viz. parent, preceding-sibling, and preceding, that in

turn have a closure relation, viz. ancestors, preceding-

siblings, and precedings.

Let Relations be the set of relations just defined,

Labels the set of possible labels for an element, Texts

[23] Calvanese, D., et al. 2000. Containment of conjunctive reg-

ular path queries with inverse. In Proc. of the International

Conference on the Principles of Knowledge Representation

and Reasoning (KR). 176–185.

8 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

the set of possible texts contained in an element. Then

an XML data tree is formally defined as a tuple T =
(Elements,A,L,T) where

—Elements is the set of elements in the tree,

—A : Elements → Relations → ℘(Elements) is a map-

ping from elements and relations to set of elements,

such that AJrK(e) is the set of elements in T that

stand in relation r with the element e,

—L : Labels → ℘(Elements) is a mapping from labels

to sets of elements, such that LJlK is the set of ele-

ments in T with label l, and

—T : Texts → ℘(Elements) is a mapping from texts

to sets of elements, such that T J“t”K is the set of

elements in T containing the text “t”.

For querying such a data tree T , we use an abstrac-

tion of the navigational features of XPath [34; 15] in-

fluenced by [96], called RPQ (regular path queries).

RPQ contains nearly all features from positive core

XPath [53] adding intersections. RPQ uses variables

to identify sets of elements from the data tree and op-

erators to restrict the set of elements identified by a

variable. The bindings of the variables in an RPQ query

with n variables are represented as a set of n-tuples

over Elements, where each such tuple t ∈ Elementsn

represents one combination of variable bindings to el-

ements. For a tuple t, t.v represents the binding of

variable v in E. All variables are bound to all elements

in the tree, unless restricted by one or more of the

following expressions.

The operators of RPQ correspond to the relations

and properties defined on a data tree. For each of the

relations defined above, there is a relation operator,

as shown in Table 2.1. Relation operators form rela-

tion expressions v r w that restrict the set of variable

bindings such that for each binding tuple t the bind-

ing for v must stand in r relation to the binding for

w. Additionally, for each label l ∈ Labels there is a

[34] Clark, J. and DeRose, S., Eds. 1999. XML path language

(XPath) version 1.0. Recommendation, World Wide Web

Consortium.

[15] Berlund, A., et al., Eds. 2002. XML path language (XPath)

2.0. Working draft, World Wide Web Consortium.

[96] Meuss, H. and Schulz, K. 2001. Complete answer aggre-

gates for tree-like databases: A novel approach to combine

querying and navigation. ACM Transactions on Information

Systems (TOIS) 19, 2, 161–215.

[53] Gottlob, G., et al. 2003. The complexity of XPath query

evaluation. In Proc. of the ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS). 179–

190.

base inverse closure inverse closure

child C B C+ B+

next-sibling ≺ � ≺+ �+

next � � �+ �+

Table 2.1: RPQ relations

RPQ ::= Identifier(Var) :- Expr.
Expr ::= Expr ∧ Expr | Expr ∨ Expr | (Expr) |

| Var Relation Var | Label (Var).
Relation ::= Base | Inverse | Base+ | Inverse+.

Base ::=C |≺ |� . Inverse ::=B |� |� .

Table 2.2: Grammar for RPQ

property operator l and for each text “t” ∈ Texts there

is an operator “t”. Property expressions use property

operators to restrict the bindings for a variable to ele-

ments with a certain property (label or text), e.g., l(v)

restricts the set of variable bindings to binding tuples

t such that t.v ∈ LJlK.

Relation and property expressions can be combined

via ∧ or ∨ to form conjunctions or disjunctions. An

RPQ query is an expression of the form Q(h) :- E

where Q is an arbitrary identifier for the query, h is

a variable occurring in E that identifies the set of ele-

ments that are selected by the query, and E is either a

relation or property expression or built up from such

expressions using conjunctions or disjunctions. h is

referred to as the head variable, all other variables oc-

curring in E are body variables. For the precise syntax,

please refer to Table 2.2

Given an RPQ expression E, the result of evalu-

ating E against T = (Elements,A,L,T) is SJEK(β),

where β = Elementsn. The result is a subset of the

Elementsn, i.e., a set of tuples, where each tuple con-

tains one binding for each variable in E. From the

result set, the bindings for the head variable v are

obtained by a simple projection. Hence, for a query

Q(v) :- E, RJQ(v) :- EK(Bindings) specifies the set

of bindings of the head variable v to elements in the

XML data tree. The precise definition of the semantics

is given in Table 2.3 by means of the semantic map-

pings R for queries and S for expressions of RPQ.

Table 2.3 shows that disjunctions, resp. conjunc-

tions of RPQ expressions can be directly mapped to

unions, resp. intersections of the result of their

operands. Furthermore, the relation and property op-

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 9

R : Query→ Bindings→ Nodes

RJQ(v) :- EK(β) = πv (SJEK(β))

S : Expression→ Bindings→ Bindings

SJE1 ∧ E2K(β) = SJE1K(β)∩ SJE2K(β)
= SJE1K(SJE2K(β)) = SJE2K(SJE1K(β))

SJE1 ∨ E2K(β) = SJE1K(β)∪ SJE2K(β)
SJ(E)K(β) = SJEK(β)

SJv1 r v2K(β) = σt.v2∈AJrK(t.v1)(β) =
= {t ∈ β | t.v2 ∈AJrK(t.v1)}

SJl (v)K(β) = σt.v∈LJlK(β) = {t ∈ β | t.v ∈ LJlK}
SJ“s” (v)K(β) = σt.v∈T J“s”K(β) = {t ∈ β | t.v ∈ T J“s”K}

Table 2.3: Denotational Semantics for RPQ

erators are reduced to selections on the set (or rela-

tion) of bindings. Therefore, all properties of the rela-

tional algebra carry over to the semantics of RPQ.

In the following, inverse relations are not explicitly

considered, for replacing in an RPQ each v r w, where

r is inverse to a base relation r , by w r v yields an

equivalent RPQ without inverse relation. (Note that

such a rewriting might result in complex queries with

intersections. [107] describes this and more sophisti-

cated rewritings of inverse relations resulting in sim-

pler queries.)

�

To further illustrate the features of RPQ consider

the RPQ query Q(v4) :- v0 C v1 ∧ a (v1) ∧ v1 C

v2 ∧ b (v2) ∧ “v” (v2) ∧ v1 ≺+ v3 ∧ v3 C+ v4 ∧
c (v4) that selects all c elements v4 that are descen-

dants of elements v3 that are following siblings of a

elements v1 that have at least one b child containing

the text “v” and are children of an element. The mean-

ing of the query can be more easily grasped if one pic-

tures the relations among the elements in a graphical

manner, as shown in Figure 2.4. This graphical nota-

tion of RPQ is referred to in the following as query

graph, a legend to it is provided in Figure 2.5. On the

XML tree from Figure 2.3 this query selects only the c

element 8, but not the other c elements, as they are not

descendants of an element that is a following sibling

of an a. The corresponding bindings of the variables

to elements in the data tree is pictured in Figure 2.6

It proves to be helpful, to classify RPQ queries by

the allowed relations among variable bindings as these

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).

Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

0

a

“v
”

c

b

1

2

3

4

Figure 2.4: Query Q(v4) :- v0 C v1 ∧ a (v1) ∧ v1 C

v2 ∧ b (v2) ∧ “v” (v2) ∧ v1 ≺+ v3 ∧ v3 C+ v4 ∧
c (v4)

El
em
en
t re
la
ti
on
s

chil
d

ne
xt
-si
blin
g

ne
xt

de
sc
en
da
nt

ne
xt
-si
blin
gs

ne
xt
s

El
em
en
t proper
ti
es

la
be
l “a
” s
tri
ng
 value
 “v”

bi
nd
in
gs
 o
f
0
 h
av
e
..
.

bi
nd
in
gs
 o
f
0
 s
ta
nd
 i
n
…
re
la
ti
on t
o
bi
nd
in
gs
 o
f
1

St
ru
ct
ural
 p
ro
pe
rtie
s

0
a

0

1

0

1

0
 1
 0
 1

0

1

0

1

“v
”
0

bindings
 for

0
 part of
 r
es
ul
t
0

Figure 2.5: Legend to the graphical notation for RPQ

0

a

“v
”

c

b

1

2

3

4

“v
”

a
 2

b
 1

b
 7

3
b

4
c
 6
c

5
b
 8
c

“v
”

Figure 2.6: Binding for variables from Figure 2.4 to the

data tree in Figure 2.3

10 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

0
a

1
c

2
b

(a) General graph

query

1
c

0

2
b

0
a a

(b) Distinct-intersection DAG

query

Figure 2.7: Graph queries

classification closely corresponds to different classes

of complexity for evaluation as shown in [106]. In-

formally, queries are classified by the shape of their

corresponding query graph. If the query graph is a

single path (all nodes have at most one in- or out-

going edge respectively) the corresponding query is

called path query, is the query graph tree-shaped (con-

taining nodes with several outgoing edges) the corre-

sponding query is called a tree query, and if the query

graph is a full graph (containing also nodes with sev-

eral incoming edges) the corresponding query is called

a graph query. Furthermore, distinct-intersection DAG

queries are queries where the corresponding query

graph is acyclic and does not contain two distinct di-

rected paths with the same source and sink. The latter

restriction restricts the graph in such a way that for all

nodes the incoming paths have to be distinct, i.e., may

not contain a same node. Figure 2.7 shows a general

graph query, that is not a distinct-intersection DAG

query, and a very similar distinct-intersection DAG

query. Both queries select c elements, if they are de-

scendants of an a and children of an b containing the

text “v” that are children of an a. But the first query

stipulates additionally, that the b must be children of

the same a that the c is descendant of. As such, in con-

trast to the first one the second query still matches if

one adds an additional a between elements 2 and 3 in

the data tree from Figure 2.3. This lack in expressive-

ness of distinct-intersection DAG queries is offset by

the fact that they can be often more efficiently evalu-

ated (cf. [106]).

Having established a framework for querying XML,

we can know turn our attention back to the question

how to optimize the just introduced queries using log-

ical query plans.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

2.3 Optimizing Queries against XML

Streams

2.3.1 Optimization Objective

Where the previous section establishes a framework

for querying XML, this section focuses on the opti-

mization of queries against XML data, in particular

XML streams. The semantics discussed in the last

section allows to query XML with (relation and prop-

erty) operators that are composed from the basic re-

lation operators. This seems to suggest, that common

techniques for query optimization on relational query

plans can be easily adapted to XML. Indeed, the Tuk-

wila system [72; 73] demonstrates the feasibility of an

approach based on an evaluation model similar to the

RPQ semantics on a small number of elements: A spe-

cial operator provides all combinations of elements

needed for further evaluation, the remaining opera-

tors (e.g., selection or join operators) are evaluated on

these combinations following a query plan. For the

query from Figure 2.4 this operator returns for each

a element in the data each combination of b elements

and c elements that are related to the a as given by the

query. Obviously, this approach is not judicious for a

larger (or even unbounded) number of elements to be

queried, as the number of generated tuples can grow

exponential in the number of elements.

If the elements and their relations can be easily ac-

cessed in arbitrary order, it is possible to retain al-

most all of the freedom in choosing the order of op-

erator application that the relational algebra provides

but still to avoid to compute all combinations of bind-

ings for all variables. In this work, we focus on the

influence of streamed processing of XML data on (log-

ical) query optimization. As stated above, the pivotal

premise of streamed processing is to process the data

progressively as it arrives without first creating inter-

mediary data structures to hold the data and without

several passes over the data. In a stream, the data tree

from Figure 2.3 is serialized in pre-order leading to

a stream of nested elements that are represented by

[72] Ives, Z. G., et al. 2001. Integrating network-bound XML data.

IEEE Data Engineering Bulletin 24, 2, 20–26.

[73] Ives, Z. G., et al. 2002. An XML query engine for network-

bound data. VLDB Journal Special Issue on XML Data Man-

agement.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 11

begin- and end-element markers or tags:

〈b〉〈a〉〈b〉〈c〉v〈/c〉〈/b〉〈b〉〈c〉〈/c〉〈/b〉〈/a〉

〈b〉〈c〉〈/c〉〈/b〉〈/b〉.

The sequential nature of the data stream has se-

vere implications on query evaluation and optimiza-

tion. As it is not acceptable to store the stream for

later processing, all operators have to operate on the

current elements only and can never “look back”. The

fundamental observation for querying an XML stream

is that the sequence of the data implies the sequence

in which the relation operators can be applied. This

is due to the fact that all the relation operators re-

late an element with other elements that come later in

the stream (assuming we have rewritten inverse rela-

tions as described above). To illustrate this, consider

again the query from Figure 2.4. There are property

operators that operate solely on the bindings of v1

or v2, e.g., a (v1) or “v” (v2). Conventional optimiza-

tion techniques might suggest to evaluate first these

property operators and then to relate the (hopefully

considerable smaller) result bindings with the relation

operator C that relates v1 and v2. Furthermore, as-

suming it is known that there are very few c elements

occurring in the data at all, first to look at the bindings

of v4 that have the label c and then to relate them via

the bindings of v3 to v1. But in a streamed context,

this is not possible, as it would require to store all

the elements that occur in the stream but are to be

considered later due to the query plan. This would vi-

olate the essential objective for streamed processing,

to store as few data as possible and to output result

as soon as it is available. In a streamed environment,

all property operators operating on a elements have to

be evaluated before such operators on bs and cs that

are related to an a as such bs and cs occur after the

related a in the stream.

This fundamental realization restricts the freedom

of query optimization severely: For streamed process-

ing the order of access to the data is dictated by the

stream and can not be selected by the optimizer. The

immediate consequence of this property of streamed

querying is that the optimization objective changes:

Where optimizers for relational databases try to re-

duce access to secondary storage (i.e., optimize the ac-

cess paths) and to reduce intermediary results, query

optimization for XML data streams is concerned more

about

a

“v
”
b

c
in
 ou
t
[
]

Figure 2.8: Query plan for query from Figure 2.4

(1) generating query plans that respect the order of

access to data dictated by the stream, in particu-

lar any kind of access to past elements should be

avoided at all cost and

(2) minimizing the number of operations performed

by the evaluation engine per element. This actu-

ally might entail the minimization of the number

of elements for which some evaluation beyond

mere skipping is required, therefore the mini-

mization of intermediary results.

2.3.2 Query Plans for XML

To allow a deeper discussion of these challenges for

optimizing queries on XML streams, an informal in-

troduction to query plans for XML is in place. Based

on the operators just defined as part of a (logical)

query algebra for navigational query languages such

as RPQ or XPath, a query plan is specifying the flow of

data through this operators. Figure 2.8 shows a logical

query plan for the query from Figure 2.4. It specifies

that all data will flow starting from in through the op-

erators in the direction of the edges. Note, that there

is a single data source, the stream, in contrast to re-

lational query plans that usually contain several rela-

tions as sources of data. The operators used in the

query plan are the operators from the logical query al-

gebra, i.e., relation and property operators, with some

additional structural operators added that are used to

specify branches and joins in the graph. With these

additional operators, the relations among the vari-

ables in an RPQ query can be represented in the struc-

ture of the query plan without having to retain the

variables in the graph:

— Path queries are represented naturally by con-

necting the corresponding operators into a path, e.g.,

the query Q(v2) :- a (v1) ∧ v1 C v2 ∧ b (v2) that

selects all b children of a elements leads to the query

plan in Figure 2.10. This query plan can be interpreted

as follows: All elements from the stream are passed

through the three operators in sequence. The data

stream is enriched with bindings to elements, that

indicate elements that are selected by the query so

12 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

a
in
 ou
t
b

Figure 2.9: Plan for Q(v2) :- a (v1) ∧ v1 C v2 ∧
b (v2).

far. Initially, there are bindings to all elements in the

stream, as stipulated by the RPQ semantics∗ Each op-

erator changes the bindings it finds in the stream, e.g.,

the property operator a retains only bindings to ele-

ments with label a, the C operator replaces the bind-

ings encountered in the stream by bindings to the chil-

dren of those elements for which it finds a binding in

the stream. There is one special operator, that is not

directly derived from the query algebra, the head or

output operator labeled with out. It indicates that the

bindings encountered at that point are result.

— Tree queries such as the query from Figure 2.4,

for which Figure 2.8 gives a query plan, require the use

of one additional structural operator to express sev-

eral restrictions on the same variable. The predicate

operator labeled with [] indicates that the bindings

encountered in the stream are restricted by several re-

lation operators instead of only one.

— Finally, for graph queries (cf. Figure 2.7) two

more operators are needed to indicate that the bind-

ings obtained by different sub-plans have to be consid-

ered together, either by retaining only those bindings

that occur in both (intersection operator labeled with

∩) or by accepting all bindings (union operator labeled

with ∪). The full notation is given in Figure 2.10.

In the described way, the query plan specifies an in-

cremental construction of the query bindings for the

result variable only. Not all the tuples of bindings

are constructed as the semantics of RPQ suggests, but

rather the bindings for different variables are consid-

ered in sequence. The order in that they are consid-

ered is determined by the relations among them: an

expression v1 r v2 where r is a relation indicates that

the bindings for v1 are constructed before the bind-

ings for v2 and used by the r relation operator to ob-

tain bindings for v2. All property operators for v1

have to be placed before any relation operator for a re-

lation expression with v1 as source and after relation

∗This is due to the implicit binding of all variables in RPQ to

all elements in the data tree unless the variables are restricted

further. For query languages such as XPath, that allow queries

to select, e.g., only the top-most element, appropriate operators

can be easily added, but are not considered here for reasons of

simplicity.

El
em
en
t re
la
ti
on
s

[
]

chil
d

ne
xt
-si
blin
g

ne
xt

de
sc
en
da
nt

ne
xt
-si
blin
gs

ne
xt
s

El
em
en
t proper
ti
es

a
 “v
”
la
be
l “a
” s
tri
ng
 value
 “v”

se
le
ct o
nl
y
elem
en
ts
 w
ith
..
.

se
le
ct ele
me
nt
s
th
at
 s
ta
nd
 i
n
…
re
la
ti
on
 with
cu
rr
en
t
el
em
en
t

St
ru
ct
ural
 p
ro
pe
rtie
s

structur
al predica
te

in
di
ca
te
s
a(n
)
… on
 t
he
 cur
re
nt
 ele
me
nt

in
te
rsection
 uni
on

ou
t
 current element is part of resul
t

in
 acce
ss
 to stream

Figure 2.10: Graphical notation for RPQ query plans

operators for a relation expression with v1 as sink.

Hence, the query plan respects the order of access to

elements in the data stream, as stipulated above.

2.3.3 Optimizing XML Query Plans

To give an impression of the optimization possible on

these query plans, some examples for optimization

techniques are apt to be considered:

— Whereas reordering of operators is a central

concept when optimizing query plans for relational

databases, in the query plans just introduced the po-

sition of most operators is fixed due to the sequential

nature of the access to data from the stream. More

precisely, the order of the relation operators can not

be changed and all non-relation operators (such as a

label or text operator) can not be moved before or af-

ter a relation operator. Therefore, reordering can only

be applied if there are several property or structural

properties in between two relation operators. For ex-

ample, if there is a restriction on the label and the

text of a variable, as in the query from Figure 2.4 for

variable v2, the order of the two property operators

is arbitrary and can be determined by the optimizer.

In the same way, the optimizer might decide the order

of the predicate operator in the corresponding query

plan (cf. Figure 2.8) and the label operator a that are

both within the same relation operators. Instead of

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 13

0

1

2

3

Figure 2.11: Query with inverse relation

a

ou
t
in

b

Figure 2.12: Optimized plan for query from Fig-

ure 2.11

placing the label operator as shown, it might for ex-

ample be put on both branches after the prefix.

It should be obvious that this kind of reordering, al-

though in some cases useful, is less central to the op-

timization of query plans than in the relation case, due

to the reasons stated above.

— Another common technique for plan optimiza-

tion is the replacement of operators or operator

groups by other, better suited operators. One exam-

ple for this optimization has been considered above

directly on the query, but can be as well performed

in the logical plan optimization: The replacement of

operators on inverse relations. In this case, only the

optimized query plan will respect the order of ac-

cess as dictated by the stream. Figure 2.11 depicts

the query Q(v3) :- a (v0) ∧ v0 C+ v1 ∧ v1 B+

v2 ∧ b (v2) ∧ v2 C v3, that selects the children of

an element that is the descendant of an a and has an

ancestor b. Informally, this query is equivalent to a

query that selects the children of an element, if it is

the descendant of both an a and an b, leading to the

optimized query plan shown in Figure 2.12. For more

such rewritings refer to [107].

— If one recalls, that the second objective for

the plan optimization on XML streams presented in

Section 2.3.1 is to minimize the number of opera-

tions performed per element, it is natural to consider

whether it is possible to “reuse” certain operators that

process the same (or similar) elements. This strategy

can be observed on a query as shown in Figure 2.13.

An initial query plan directly derived from the query

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).

Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

a
 1

c

3
“v
”
b
 2

4

0

Figure 2.13: Query for prefix sharing

a

“v
”
b

c
in
 ou
t
[
]

(a) Initial query plan

a

“v
”
b

c
in
 [
]
 ou
t

(b) Optimized query plan

Figure 2.14: Query plan for query from Figure 2.13

graph is shown in Figure 2.14(a). But that query plan is

not taking into consideration that both branches fol-

lowing the predicate operator [] start with a C oper-

ator. In particular, since both operators also process

the same input (in particular, the same bindings) and

yield the same result, sharing these operator seems

very natural as shown in Figure 2.14.

Indeed, operator sharing proves to be one of the

most promising strategies for optimizing logical query

plans on XML streams, even if the operators are not

guaranteed to process the same bindings as in this

case, as there is often a considerable overlapping

among the bindings that are input for different op-

erators due to the closure relations such as C+ or�+

that cover large fragments of the input stream and due

to the fact that some operators might perform opera-

tions on all elements in the input (e.g., bookkeeping of

the current level of the data conveyed in the stream).

In the remainder of this chapter, the latter avenue

shall be investigated more closely, in particular if

there are several queries to be evaluated simultane-

ously against the same stream.

14 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

2.3.4 Query Plans for Multiple Queries

As discussed above, due to the requirement to pro-

cess a stream in a single-pass, multiple queries that

are to be evaluated against the same stream have to be

processed simultaneously. In the context of optimiza-

tion, this means that there should be a single query

plan generated for all queries to be processed simul-

taneously. Clearly, the optimization of such a query

plan poses several challenges beyond what has been

discussed in the last section.

Though no core area of research, multi-query op-

timization for traditional (non-stream) DBMS has re-

ceived some attention [48; 123; 119; 124; 120], dom-

inated by two primary approaches: Merging of com-

mon subexpressions and merging of local query plans

for single queries into a global query plan for sev-

eral queries. Both techniques are based on finding

appropriate sub-queries by reordering [123] that can

be shared. Notwithstanding the fact that these tech-

niques have limited appliance for our concern when

considering the order of property operators, most of

the more advanced techniques (e.g., subsumption of

expressions in [119]) to exploit commonality between

expressions are tailored to reducing access to sec-

ondary storage, whereas for our concern the reduction

of the number of operations performed on a single

data element is crucial. [119] presents an approach to

find an almost optimal set of sub-queries, that if ma-

terialized and reused, can improve the speed of the

query processing. Clearly, this technique is not ap-

plicable to streams where the queries are processed

simultaneously instead of sequentially and where the

operator order that is heavily employed to find the

best set of sub-queries in [119] is much less flexible.

Some of the previous work on evaluating and op-

[48] Finkelstein, S. J. 1982. Common subexpression analysis in

database applications. In Proc. of the ACM SIGMOD Inter-

national Conference on Management of Data. 235–245.

[123] Sellis, T. K. 1988. Multiple-query optimization. ACM Trans-

actions on Database Systems (TODS) 13, 1, 23–52.

[119] Rosenthal, A. and Chakravarthy, U. S. 1988. Anatomy of a

modular multiple query optimizer. In Proc. of the Interna-

tional Conference on Very Large Databases (VLDB). 230–239.

[124] Sellis, T. K. and Ghosh, S. 1990. On the multiple-query

optimization problem. IEEE Transactions on Knowledge and

Data Engineering (TKDE) 2, 2, 262–266.

[120] Roy, P., et al. 2000. Efficient and extensible algorithms for

multi query optimization. SIGMOD (ACM Special Interest

Group on Management of Data) Record 29, 2, 249–260.

timizing queries for XML streams, such as [4; 28; 56],

has considered the optimization of multiple queries to

be evaluated simultaneously. But, where appropriate,

only some form of prefix compaction on tree queries

is considered, where operators are shared only if they

can be shared continuously from the beginning of the

query plan. Furthermore, no systematic consideration

to the problem has been presented so far. In the fol-

lowing chapter, related work on multi-query process-

ing and querying XML streams is investigated closely.

This work extends these previous approaches by

proposing a novel method to the optimization of

multiple-queries, that optimizes the query plan for

multiple, simultaneously evaluated queries by consid-

ering common sub-queries at any position in the query

plan. For example, if the two very similar queries from

Figure 2.4 and 2.13 are to be executed simultaneously,

the similarities among the queries can be used to re-

duce the operations per element considerably: In Fig-

ure 2.15(a) a common query plan for both queries is

given where the edges are labeled with the queries (for

space reasons 1 stands for the first, 2 for the second

query) they are part of. For convenience, operators

belonging to the first query only are colored in blue,

those part of the second query only in red, and shared

operators remain black. In contrast to a query plan as

shown in Figure 2.15(b), where only those operators

are shared that are part of a common prefix of the re-

spective query plans, this query plan shares also the

label operator c and the output operator. But whereas

the sharing of operators part of the common prefix of

the respective single query plans creates only negligi-

ble overhead on the evaluation (as the bindings gen-

erated by the operators are the same of both queries

until the queries split up), this inner sharing requires a

slight change to the evaluation engine: when elements

and bindings to elements can arrive from several op-

erators that are part of different queries, as it is the

case for the c operator, the following operators have

to process on all bindings encountered, similar to the

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

[56] Green, T. J., et al. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference

on Database Technology (ICDT). 173–189.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 15

a

“v
”
b

c

1,
2
 1
 1
 1,
2

1,
2
 1,
2
1,
2

1,
2

ou
t

1,
2

2

in

1,
2

[
]

(a) Maximum sharing

a

“v
”
b

c

1,
2
 1
 1
 1

1,
2
 1,
2
1,
2

1
,
2

ou
t

1

c
 ou
t

2

2

[
]
in

1,
2

2

(b) Prefix sharing

Figure 2.15: Plans for Figure 2.4 and Figure 2.13

union case. But when the queries are split again or,

as in this case, the result for the different queries are

determined by the output operator, the bindings en-

countered at that point have to be split based on the

bindings encountered when the sharing started. For

example, in this query plan when the result of query

1 (cf. Figure 2.4) is determined by the output opera-

tor, only those cs for which bindings where created

by the C operator connected to the c label operator

have to be considered, but not bindings created by the

C+ operator. For a more in-depth description of these

additions to the evaluation model see Chapter 7.

This additional processing introduced by inner

sharings means that it is not always preferable to

share all operators possible, but rather only, if the ex-

pected gain is larger than this overhead. For this rea-

son, the optimal query plan for several queries is not

necessarily the plan with the lowest numbers of oper-

ators, but rather the one that has the best estimated

cost (cf. Chapter 8).

Another important observation when considering

the best query plans for some queries is that the

merged plan may not be cyclic (as any query plan).

Therefore, if you consider the query from Figure 2.4

and the query Q(v4) :- v1 C+ v2 ∧ c (v2) ∧ v2 C

v3 ∧ a (v3) ∧ v3 C v4 ∧ b (v4) ∧ “v” (v4) for which

a query plan is shown in Figure 2.16, the query plan

shown in Figure 2.17(a) is not a legal query plan for

the two queries. The elements from the stream are

processed several times by the same operator in such

a cyclic query plan which is contradictory to the initial

goal, to reduce the number of operations per element.

Furthermore, in such a query plan the simple descrip-

tion of the data flow given above is not any more ap-

plicable. Figure 2.17(b) and 2.17(c) show two differ-

ent legal query plans for the two queries, the first one

sharing the two C operators with their corresponding

label operators, the second one sharing the C+ oper-

ator and its corresponding label operator. Although,

the first query plan has a lower number of operators

and thus seems to be preferable at the first glance, the

second one shares the comparatively expensive C+

operator and might therefore actually provide a better

evaluation time. Again, the selection of the query plan

depends on the estimation of the cost for evaluating

the query plan as discussed in Chapter 8.

After this informal introduction of queries and (log-

ical) query plans for single and multiple queries, the

next chapter emphasizes the contribution of this work

by presenting a survey of related work on multi-

query optimization and query evaluation against XML

streams. Building upon the informal presentation in

this chapter, a formal definition and description of a

query plan is given in Chapter 4 that is used in Chap-

ter 5 to define the optimization problem, how to con-

struct the optimal query plan for several queries or

query plans.

16 CHALLENGES FOR QUERY OPTIMIZATION ON SEMI-STRUCTURED STREAMS

c
 a
 b
 “v
”
in
 ou
t

Figure 2.16: Plan for query Q(v4) :- v1 C+ v2 ∧ c (v2) ∧ v2 C v3 ∧ a (v3) ∧ v3 C v4 ∧ b (v4) ∧ “v” (v4)

“v
”

1
,
2
 1
 1
 1
,
2

1
,
2
 1

1

ou
t

1

[
]

1

c

2

2

a

2

b

in

1

2

(a) Illegal plan with maximum sharing

“v
”

1
,
2
 1
 1
 1

1
,
2
 1

1

ou
t

1

[
]

1

c

c

2
 2

1
 a

2

b

2

in

2

(b) Legal plan

a

“v
”
b

1
 1
 1
 1,
2

1
 1

1

ou
t

1

[
]

1

c

2

2

a
 b

2
 2
 2

in

1

2

(c) Alternative legal plan

Figure 2.17: Query plans for Figure 2.4 and Figure 2.16

Chapter 3

Related work

In this chapter, a comprehensive overview over research relevant for our concern is presented. Though the

focus is on comparable XML-based systems, some consideration is given to earlier work on relational databases

and tuple streams. Based on the discussion of what sets query optimization for semi-structured data streams

apart from traditional techniques in Chapter 2, an overview over related relational systems is presented cov-

ering scalable trigger systems, continuous query engines and publish-subscribe architectures based on tuple

streams. A more in-depth discussion of XML-based publish-subscribe systems follows, where the number of

queries is large compared to the size of the documents. Single query processors on XML streams, as presented

in the final section, are tailored to the reverse scenario: a single query is processed over a very large (possibly

unbounded) stream.

Contents

3.1 Trigger Processing . 17

3.2 Continuous Query Systems . 18

3.2.1 Continuous Query Systems on Tuple Streams . 18

3.2.2 Continuous Query Systems on Semi-structured Streams . 20

3.3 Publish-Subscribe Architectures . 20

3.3.1 Content-based . 22

3.3.2 XML-based . 26

3.4 Single Query Processors against XML Streams . 30

In order of their emergence, several areas of re-

search on streaming query systems are discussed. It

is worth noting, that the expressiveness of the used

query language decreases from the very general ECA-

Rules in Section 3.1 to the rather limited query abil-

ities of the publish-subscribe systems in Section 3.3.

The decrease in expressiveness is accompanied by

an increase in scalability, allowing more and more

queries to be evaluated at once.

3.1 Trigger Processing

Trigger processing for active databases has attracted

a great deal of interest, cf. [38; 136]. Active

databases are database systems supporting event-

condition-action rules (also called triggers), i.e., rules

that trigger one or more actions if a certain condi-

tion is fulfilled on an incoming event, e.g., an update.

Hence, triggers, more specifically the conditions of

triggers, can be considered as queries on a sequence

or stream of incoming events. Most active databases

[38] Dayal, U., et al. 1995. Active database systems. In Modern

Database Systems. 434–456.

[136] Widom, J. and Ceri, S., Eds. 1996. Active Database Systems:

Triggers and Rules For Advanced Database Processing. Mor-

gan Kaufmann.

17

18 RELATED WORK

only allow a small number of triggers per event type,

e.g., per update event on a certain table. [62] de-

scribes an approach to scalable trigger processing al-

lowing large numbers of triggers per event type based

on the TriggerMan system [45] for asynchronous trig-

ger processing. Similar to our work, their approach

is based on the observation, that among a large num-

ber of triggers many are likely to differ only in the

constants used. Hence, they propose a grouping tech-

nique for triggers based on the signature of their re-

spective predicates, where an expression signature de-

fines an equivalence class of all instantiations of that

expression with different constant values. The con-

stants occurring in expressions of one class are stored

in in-memory data structures for finding all intervals

overlapping a point in the information space. To this

end, the use of the IBS-tree (interval binary search tree)

[63; 64] or the interval skip list [61; 46] as dynamic

data structures for interval data is proposed, i.e., to

support storage of interval data with efficient inser-

tions and deletions. Furthermore, an indexing tech-

nique for the expression signatures is defined, index-

ing the expression signatures by their data sources.

There is a substantial difference to our approach, as

in the case of XML streams the predicates are grouped

by the inherent order of the stream (cf. Chapter 2) and

thus no further indexing of the expression signatures

is possible.

[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In

Proc. of the International Conference on Data Engineering

(ICDE). IEEE Computer Society Press, 266–275.

[45] Eric, H., et al. 1997. TriggerMan: An asynchronous trig-

ger processor as an extension to an object-relational DBMS.

Tech. Rep. 97-024, University of Florida, CISE Department.

[63] Hanson, E. N. and Chaabouni, M. 1990. The IBS-tree: A

data structure for finding all intervals that overlap a point.

Tech. Rep. WSU-CS-90-11, Dept. of Computer Science and

Engineering, Wright State University.

[64] Hanson, E. N., et al. 1990. A predicate matching algorithm

for database rule systems. In Proc. of the ACM SIGMOD In-

ternational Conference on Management of Data. ACM Press,

271–280.

[61] Hanson, E. N. 1991. The interval skip list: A data struc-

ture for finding all intervals that overlap a point. In Proc.

of Workshop on Algorithms and Data Structures, Ottawa,

Canada. Springer Verlag, 153–164.

[46] Eric N. Hanson, T. J. 1996. Selection predicate indexing

for active databases using interval skip lists. Information

Systems 21, 3, 269–298.

3.2 Continuous Query Systems

Driven by the increasing demand for event-driven

information delivery, in the early 1990s continuous

query systems on relational data streams have been

proposed. In contrast to one-time queries, i.e., queries

that are evaluated once over a point-in-time snap-

shot of the data set, a continuous query is continu-

ously processed over a stream of data. Continuous

queries are often used for monitoring and flow analy-

sis, as they offer excellent support for alerts and no-

tifications. Typical queries are e.g., “select all stocks

whose price increased by 10% over the last 10 min-

utes” in a financial monitoring system or “report all

packets with a certain destination address” for net-

work analysis. Exemplary applications are the finan-

cial search and monitoring engine Traderbot (http:

//www.traderbot.com) or the stock news monitoring

system “Fly on the Wall” (http://theflyonthewall.

com).

There is an obvious similarity between event-

condition-action rules and continuous query. The

most important difference is, that trigger processors

usually reside upon traditional DBMS and are tightly

integrated with them. Apart of that, continuous query

systems can be seen as a specialization of trigger sys-

tems, providing a more efficient and scalable query

evaluation at the cost of expressiveness.

3.2.1 Continuous Query Systems on Tuple

Streams

Early work on continuous query systems has concen-

trated on data streams consisting exclusively of inser-

tions (append-only) [131]. With the increasing success

of the Internet for information delivery, the need for

monitoring diverse data streams in a distributed envi-

ronment has become more pressing. [86] describes

the OpenCQ query system, a three-tier architecture

for querying streams from diverse sources, and pro-

poses the use of common multi-query optimization

enhanced by incremental query evaluation as detailed

[131] Terry, D. B., et al. 1992. Continuous queries over append-

only databases. In Proc. of the ACM SIGMOD International

Conference on Management of Data. ACM Press, 321–330.

[86] Liu, L., et al. 1999. Continual queries for internet scale

event-driven information delivery. IEEE Transactions on

Knowledge and Data Engineering (TKDE) 11, 4, 610–628.

http://www.traderbot.com
http://www.traderbot.com
http://theflyonthewall.com
http://theflyonthewall.com

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 19

in [85]. Catered to network analysis, the Tribecca

system [128] employs a rather constricted query lan-

guage, allowing only operations on the current data

item of the stream or on a fixed-size window. Opti-

mization for multiple queries are not considered.

Recently, research on continuous queries over

streams of tuples has concentrated on two areas. In

the context of the Telegraph project at UC Berkeley,

several techniques for adaptive continuous query sys-

tems have been proposed [89; 30]. In this context,

an adaptive continuous query system treating queries

and data as duals, i.e., where both data and queries are

streaming and multi-query processing is viewed as a

join of query and data streams. Therefore, these sys-

tems allow new queries as well as new data to arrive at

any time. They combine conventional techniques for

multi-query optimization (most notably the predicate

filter as detailed in [89] that is similar to the approach

in the TriggerMan system) with a novel adaptive query

planer [9]. Furthermore in [30], the approach of treat-

ing data and queries in a symmetric manner is ex-

tended to the notion of allowing new queries to be

evaluated even on data that has arrived prior to the

query.

Another focus in research is the definition and im-

plementation of a general architecture for relational

stream management systems. There are two major

projects currently underway to specify such an archi-

tecture: The STREAM project at Stanford and the Au-

rora project at Brandeis University, Brown University

and M.I.T. Both projects share the desire to present a

comprehensive framework for processing of relational

data on streams.

In [10] a survey over existing approaches and an

[85] Liu, L., et al. 1996. Differential evaluation of continual

queries. In Proc. of the International Conference on Dis-

tributed Computing Systems (ICDCS). 458–465.

[128] Sullivan, M. and Heybey, A. 1998. Tribeca: A system for

managing large databases of network traffic. In Proc. of the

USENIX Annual Technical Conference.

[89] Madden, S., et al. 2002. Continuously adaptive continuous

queries over streams. In Proc. of the ACM SIGMOD Interna-

tional Conference on Management of Data.

[30] Chandrasekaran, S. and Franklin, M. J. 2002. Streaming

queries over streaming data. In Proc. of the International

Conference on Very Large Databases (VLDB).

[9] Avnur, R. and Hellerstein, J. M. 2000. Eddies: Continuously

adaptive query processing. In Proc. of the ACM SIGMOD In-

ternational Conference on Management of Data. ACM Press,

261–272.

[10] Babcock, B., et al. 2002. Models and issues in data stream

outlook on potential research issues is presented.

Based upon this work, [11] presents a general and flex-

ible architecture for continuous queries clearly identi-

fying the various components of a continuous query

system. Features of a traditional DBMS are also pro-

vided. Their architecture is flexible in the sense, that

it can support any combination of append-only and

update-able input and answer stream, whereas our

work assumes both streams to be append-only, in par-

ticular the answer stream is monotonic, as any ele-

ment of the input or answer stream that is update-able

has to be buffered until it can no longer be updated,

e.g., until the end of the stream.

In [101], the STREAM system is further extended by

adding resource management and approximation, and

a formal semantics for continuous queries (with user-

specified sliding windows) over relational data is pro-

posed. Furthermore, the effects of their resource man-

agement strategies on established multi-query opti-

mization techniques (considering common subexpres-

sions and subexpression containment) are addressed

together with a short discussion of issues on sharing

not only common subexpressions but also synopses

for approximation.

Due to the focus on monitoring applications the

Aurora project [24] differs considerably from the

STREAM system, as it is tailored to real-time opera-

tion and does not provide traditional DBMS features.

By elaborate monitoring of the Quality of Service (QoS)

dynamic resource allocation and graceful degradation

strategies, such as load shedding during periods of

high load, are suggested. Apart of the dynamic re-

source allocation, the Aurora system can be seen as

a generalization of prior work on network monitoring

[128] and scalable trigger systems [62].

systems. In Proc. of the ACM SIGACT-SIGMOD-SIGART Sym-

posium on Principles of Database Systems (PODS).

[11] Babu, S. and Widom, J. 2001. Continuous queries over data

streams. SIGMOD (ACM Special Interest Group on Manage-

ment of Data) Record, 109–120.

[101] Motwani, R., et al. 2003. Query processing, approximation,

and resource management in a data stream management

system. In Proc. of the Conference on Innovative Data Sys-

tems Research (CIDR).

[24] Carney, D., et al. 2002. Monitoring streams: A new class of

data management applications. In Proc. of the International

Conference on Very Large Databases (VLDB).

20 RELATED WORK

3.2.2 Continuous Query Systems on Semi-

structured Streams

Aside of continuous query systems for relational data

streams, continuous queries against semi-structured

streams have received some interest from researchers,

though publish-subscribe architectures, as outlined in

the following section, support an even larger number

of queries, hence are better suited for the chief appli-

cation area of XML, the Internet.

In [32; 31] a scalable continuous query system for

XML data streams, called NiagaraCQ, is described.

The core approach in NiagaraCQ to achieve scalabil-

ity is based on the idea to group continuous queries

on predicates using their signature similar to the ap-

proach taken in [62]. The chief contribution is to

apply this technique to XML data streams, where in-

stead of attributes arbitrary path expression can be

the data source of a predicate. Furthermore, they

extend this approach to include join predicates, i.e.,

predicates on two data sources. Nevertheless, scalabil-

ity is severely limited in this approach: First, any data

source used in a predicate is buffered entirely during

the file scan thus providing random access to the data

for the remaining operators. As argued in Chapter 2,

this is not appropriate for large documents. Further-

more, though experiments in [32] show the expected

increase in performance by employing grouping tech-

niques, the scalability is still limited to thousands of

queries by the high expressiveness of the employed

query language (XML-QL).

Albeit focused on the integration of network-bound

data, the Tukwila system developed at the University

of Washington [72; 73] has a similar evaluation model.

Well-established techniques for query evaluation in re-

[32] Chen, J., et al. 2000. NiagaraCQ: A scalable continuous

query system for internet databases. In Proc. of the ACM

SIGMOD International Conference on Management of Data.

SIGMOD Record 29, 2, 379–390.

[31] Chen, J., et al. 2002. Design and evaluation of alterna-

tive selection placement strategies in optimizing continu-

ous queries. In Proc. of the International Conference on

Data Engineering (ICDE).

[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In

Proc. of the International Conference on Data Engineering

(ICDE). IEEE Computer Society Press, 266–275.

[72] Ives, Z. G., et al. 2001. Integrating network-bound XML data.

IEEE Data Engineering Bulletin 24, 2, 20–26.

[73] Ives, Z. G., et al. 2002. An XML query engine for network-

bound data. VLDB Journal Special Issue on XML Data Man-

agement.

lational databases are extended by the x-scan opera-

tor, that provides pattern matching of incoming XML

data against simple tree expressions and generates in

essence tuples of bindings between variables and in-

put trees. Most selection or filter operators are ap-

plied to the tuples provided by the x-scan operator.

Again as discussed in Chapter 2, this is not feasible

in our context. In particular, the tuples generated by

the x-scan operator can be prohibitively large. For this

case, [73] suggests to swap the tuples to secondary

storage. As demonstrated by the various proposals

for publish-subscribe systems and our work the gen-

eration of these tuples can be avoided in most cases

by pushing the selection operators inside the docu-

ment scan. The adaption of a virtual memory man-

ager for XML tree fragments similar to the Tukwila

XML Tree Manager would allow queries over windows

larger than the available main memory and might be

considered for future work. Furthermore, the match-

ing operator x-scan treats XPath expressions as regu-

lar path expressions, creating an NFA for each query.

The NFA is then translated into a DFA using the stan-

dard construction. The disadvantage of this approach,

as discussed in the next section, is that the DFA can

grow exponentially in the size of the queries. Recent

work extends the x-scan operator to multiple queries,

allowing several queries to be processed in a single

pass, but does not provide considerable optimization

on the queries.

Based on the techniques employed in the publish-

subscribe system XFilter, as presented in more detail

in the following section, a continuous query system

for mobile clients (CQMC) has been proposed in [108].

3.3 Publish-Subscribe Architectures

With the advent of high-bandwidth communication at

low cost, the number of sources generating quickly

large amounts of data increases. The increasing num-

ber of sources (or publishers) combined with more

and more users or subscribers, make an efficient deci-

sion which data shall be transfered (on what way) to

a subscriber imperative. This decision is at the heart

of publish-subscribe systems, that provide an efficient

way to deliver the desired (parts of) publications to

[108] Ozen, B., et al. 2001. Highly personalized information de-

livery to mobile clients. In Proc. of ACM International Work-

shop on Data Engineering for Wireless and Mobile Access.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 21

subscribers. If this decision is based on the content

of the publications (rather than on fixed meta-data,

such as an address), a query processor is needed to

filter and route the data. Obviously the scalability re-

quirements for such an architecture are even higher

than in a continuous query system (e.g., hundreds of

thousands to millions of subscribers for a high rate

of publications). Hence, there is an inherent trade-

off in the design of a publish-subscribe system: The

more expressive the subscription language, i.e., the

(query) language in which the subscriptions are for-

mulated, the less scalable the query processor. If on

the other hand the expressiveness of the subscription

language is too low, the selectivity of the subscriptions

might suffer, increasing the amount of (potentially

useless) data and diminishing the usefulness of the

subscription system. Based on this observation, the

expressiveness or flexibility of the subscription lan-

guage used for filtering of the publications can serve

as a characteristic trait of a publish-subscribe system:

— In the most basic case, a limited number of pre-

defined channels or groups is provided by the sys-

tem and a subscriber can only select among these.

A famous example for such a channel-based publish-

subscribe system is the USENET News based on the

Network News Transfer Protocol [76] with millions

of users and gigabytes of daily traffic. The USENET

News system can also serve as an example for the

advantages and pitfalls of a channel-based publish-

subscribe system: Though it is able to support enor-

mous amounts of subscribers and publications (more

than 700 million publications since 1981), most users

receive large numbers of news messages they are not

interested in, as the selectivity of a group based ap-

proach is limited (even for the USENET News with

thousands of newsgroups). The communication over-

head induced by the transmission of messages unre-

lated to the users information interest is considerable.

— Therefore, content-based publish-subscribe sys-

tems allow subscriptions to be specified as predicates

over an information space, i.e., a finite number of pre-

defined attributes. In this case, publications are usu-

ally represented as attribute-value pairs and subscrip-

tions are conjunctions of predicates. The obvious ad-

vantage is increased flexibility (and hence selectivity)

[76] Kantor, B. and Lapsley, P., Eds. 1986. Network news trans-

fer protocol – a proposed standard for the stream-based

transmission of news. RFC 977, IETF.

for the subscriptions, as the subscriber can combine

arbitrary attributes, reducing the number of unwanted

publications. The disadvantage is, that a query proces-

sor is needed to match publications to subscriptions.

Most recent publish-subscribe systems fall into this

class.

Clear evidence of the demand for content-based sys-

tems is provided by the popularity of the PointCast

news distribution network (http://www.pointcast.

com), documented in [117], or the call for applica-

tions and techniques to effectively filter sensor, mon-

itor and tactical data on a battlefield in the context of

the DARPA “Battlefield Awareness and Data Dissemi-

nation (BADD)” [43] project.

— Though sometimes considered as a special case

of content-based publish-subscribe systems, the in-

troduction of structural matching of semi-structured

data (usually in XML) poses novel challenges. Most im-

portantly, the number of data sources, i.e., the number

of different XML elements referenced in the query, is

in general no longer finite due to the hierarchical and

possibly recursive structure of XML. A system capable

of filtering XML data using an appropriate query lan-

guage (such as regular path expressions or XPath [34])

is here referred to as XML-based publish-subscribe

system.

— The most general class is based on methods

known from information retrieval considering a flat

data model for the message: A subscription speci-

fies some keywords that describe the subscribers in-

tent. Instead of indexing the publications as in tradi-

tional information retrieval systems, the subscriptions

are indexed. The main advantage of a retrieval-based

publish-subscribe system is that it allows the user to

specify a rather vague intent thus further decoupling

the publisher and the subscriber. Those publications

matching the intent of the subscriber to some pre-

defined extend are delivered to the subscriber. For

large-scale systems it is usually not feasible to use

retrieval-based methods for online selection of publi-

[117] Ramakrishnan, S. and Dayal, V. 1998. The pointcast net-

work. In Proc. of the ACM SIGMOD International Conference

on Management of Data. ACM Press, 520.

[43] Douglass, R., et al. 1997. Battlefield awareness and data

dissemination (BADD for the warfighter. In Proc. of the

SPIE, B. R. Suresh, Ed. Vol. 3080. SPIE – The International

Society for Optical Engineering, 18–24.

[34] Clark, J. and DeRose, S., Eds. 1999. XML path language

(XPath) version 1.0. Recommendation, World Wide Web

Consortium.

http://www.pointcast.com
http://www.pointcast.com

22 RELATED WORK

cations, but rather for asynchronous delivery, where it

is acceptable that the delivery of a publication may be

considerably later than the publication time. The SIFT

Information Dissemination System [140] utilizes tradi-

tional Boolean and Vector Space Model querying, but

indexes the subscriptions instead of the documents.

As the documents stream in, those publications with

a similarity to a subscription above a specified thresh-

old are delivered to the respective subscriber. Load

distribution is considered, but not as detailed as in the

distributed content-based systems presented in Sec-

tion 3.3.1.

�

The decision what kind of subscription language

to support, is only one of the issues in a publish-

subscribe system. In [12] two key issues with par-

ticular impact on the efficiency and scalability of a

publish-subscribe system are identified:

(1) The problem of efficiently matching a publica-

tion against a large number of subscriptions. Obvi-

ously, the selection of an appropriate subscription lan-

guage, as discussed above, is part of an answer to this

problem.

(2) The problem of when and where to perform this

matching. Essentially, there are three approaches, as

shown in Figure 3.1, where to perform the matching.

— The straightforward solution is to filter at the

end-points of the communication: Either as in Fig-

ure 3.1(a), all publications (often referred to as mes-

sages or events) are sent to each subscriber that can

decide which messages are relevant leading to large

amounts of unnecessary transmissions, if many sub-

scribers are interested only in few messages. On the

other hand, the filtering can take place at the pub-

lisher, cf. Figure 3.1(b). If most messages are of no

interest for any user, this approach can lead to accept-

able behavior.

— The most common approach is to allow a sin-

gle centralized mediator, as shown in Figure 3.1(c).

All messages are transmitted to the mediator which

routes them to the subscribers according to the pre-

[140] Yan, T. W. and Garcia-Molina, H. 1999. The sift informa-

tion dissemination system. ACM Transactions on Database

Systems (TODS) 24, 4, 529–565.

[12] Banavar, G., et al. 1999. An efficient multicast protocol for

content-based publish-subscribe systems. In Proc. of the

International Conference on Distributed Computing Systems

(ICDCS). 262–272.

viously specified subscriptions. Obviously, the scala-

bility of a centralized solution is limited by the (com-

munication and processing) capabilities of the central

system.

— A distributed mediation promises the highest scal-

ability of all approaches at the cost of an increasingly

complex routing. A network of mediators or brokers

(cf. Figure 3.1(d)) is responsible for efficient multicast-

ing of messages from publishers to subscribers. Novel

techniques, such as query merging [36], enable such

efficient multicasting. Distributed mediation can be

further distinguished by the topology of the mediator

network, in particular some approaches assume a hi-

erarchical division of the network into subnets.

Table 3.1 gives a classification of various publish-

subscribe systems according to the point of filter-

ing and the expressiveness of their subscription lan-

guage. Note, that research on distributed systems has

almost exclusively focused on channel- and content-

based publish-subscribe systems. Where these results

can be applied to XML-based systems, is an open issue.

Based on the characteristics established in this

section, the following two sections present a con-

cise overview over the most relevant proposals for

content- and XML-based publish-subscribe systems, as

these share some characteristics with our work.

3.3.1 Content-based

Where early systems, such as the Elvin notification ser-

vice [121; 122], have been based on end-point filtering

or centralized filtering [118], it is widely accepted that

a scalable publish-subscribe system requires apart of

an efficient matching algorithm a distributed media-

tion service, as pictured in Figure 3.1(d). Before some

of the proposed matching algorithms shall be dis-

cussed in greater detail, a short overview over the var-

ious approaches for a distributed mediation service is

presented.

Most of the recent research on content-based

publish-subscribe systems is focused on efficient ar-

chitectures and algorithms for a distributed system

[36] Crespo, A., et al. 2003. Query merging: Improving query

subscription processing in a multicast environment. IEEE

Transactions on Knowledge and Data Engineering (TKDE).

[122] Segall, B., et al. 2000. Content based routing with elvin4. In

Proc. of AUUG2K (Australian Unix and Open Systems User

Group).

[118] Reiss, S. P. 1990. Connecting tools using message passing

in the field environment. IEEE Software 7, 4, 57–66.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 23

1:
n
ma
tchi
ng
 e
ngin
e:

—subscriber:
 si
ngle query against m
ulti
pl
e st
re
am
s

—pub
li
sher
: m
ul
ti
pl
e queries
ag
ai
ns
t
si
ng
le
 s
trea
m

n:m
ma
tching eng
in
e:

—m
ultipl
e queries against mult
ip
le strea
ms

Su
bs
cr
ib
er
Pu
blishe
r

Su
bs
cr
ib
er
Pu
blishe
r

(a) End-point Filtering at Subscriber

Su
bs
cr
ib
er
Pu
blishe
r

Su
bs
cr
ib
er
Pu
blishe
r

(b) End-point Filtering at Publisher

Su
bs
cr
ib
er

Su
bs
cr
ib
er

Pu
blishe
r

Pu
blishe
r

Pu
blishe
r

(c) Centralized Mediator

Su
bs
cr
ib
er

Su
bs
cr
ib
er

Pu
blishe
r

Pu
blishe
r

Pu
blishe
r

(d) Distributed Mediator

Figure 3.1: Topologies of Publish-subscribe Systems

Topology

End-point Mediator

Centralized Hierarchical client/server Peer-to-peer

Channel

Field [118]

CORBA Event Service [103]

JINI Distributed Event Specifica-

tion [129]

Java Message Service [130]

CORBA Event Service [103]

NNTP [76]

IP multicast [39]

SoftWired’s iBus

Content Elvin [121]

Yeast [81]

CORBA Notification Service [104]

Le Subscribe [114; 115; 47]

READY [57; 58]

Yu et al. [143]

Siena [25; 26]

READY [57; 58]

Gryphon [12; 2]

Siena [25; 26]

Rebeca [97]

XML

Xyleme [102]

XFilter [4], YFilter [42; 41]

XTrie [28]

MatchMaker [83]

WebFilter [113]

Snoeren et al. [3]

Retrieval SIFT [140]

Table 3.1: Classification of publish-subscribe systems (cf. [26]).

24 RELATED WORK

(cf. Table 3.1), where the publications are routed from

the publishers to the subscribers over several medi-

ators according to sophisticated routing algorithms.

In this field, publish-subscribe systems are sometimes

also referred to as event notification systems, where

publications are messages and subscriptions are noti-

fication request. With the advent of the CORBA Event

Service and the extended Notification Service [103;

104], providing notification channels with event fil-

tering, durable connections and delivery-guarantee se-

mantics (raising specific issues for designing such a

notification service, cf. [52]), the JINI [129] Platform

for dynamic distributed systems and the Java Message

Service [130] publish-subscribe systems are expected

to be deployed in increasing numbers as enterprise

messaging applications (e.g., iBus Message Server,

http://www.softwired-inc.com). Such messaging

middle-ware (referred to as Message Oriented Middle-

ware or MOM) provides a reliable architecture for mes-

saging between distributed, decoupled components

where publishers and subscribers require no knowl-

edge about one another. Though the CORBA Noti-

fication Service allows some content-based filtering,

most current enterprise messaging applications are

channel-based publish-subscribe systems.

Building on the centralized event notification sys-

tem Yeast [81], READY [57; 58] provides a general ar-

chitecture for distributed mediation, where matching

starts at subscriber, but parts of the subscription are

placed upstream towards the suppliers on the media-

tors, if a part has a high selectivity. This hybrid ap-

proach is necessary in the READY system to reduce

[103] Object Management Group, Inc. 2001. Event Service Specifi-

cation, 1.1 ed. Object Management Group, Inc.

[104] Object Management Group, Inc. 2002. Notification Service

Specification, 1.0.1 ed. Object Management Group, Inc.

[52] Gore, P., et al. 2001. Designing and optimizing a scalable

CORBA notification service. ACM SIGPLAN Notices 36, 8,

196–204.

[129] Sun Microsystems, Inc. 2001. JiniTM Technology Core Plat-

form Specification, 1.2 ed. Sun Microsystems, Inc.

[130] Sun Microsystems, Inc. 2002. Java Message Service API

Specification, 1.1 ed. Sun Microsystems, Inc.

[81] Krishnamurthy, B. and Rosenblum, D. S. 1995. Yeast: A

general purpose event-action system. IEEE Transactions on

Software Engineering (TSE) 21, 10, 845–857.

[57] Gruber, R. E., et al. 1999. The architecture of the READY

event notification service. In Proc. of the ICDCS Workshop

on Electronic Commerce and Web-Based Applications.

[58] Gruber, R. E., et al. 2000. READY: A high performance event

notification service. In Proc. of the International Conference

on Data Engineering (ICDE). 668–669.

the load on the mediators. In the Gryphon [2; 12] and

the Siena system [25; 26] more elaborate routing al-

gorithms for multicast transmission of subscriptions

are employed. Where the Gryphon system focuses on

an efficient matching algorithm (discussed below) us-

ing global knowledge of all subscriptions, the Siena

system uses a clever promotion strategy for subscrip-

tions, only promoting the most general subscriptions

from subscriber towards the publishers. [26] is an

elaborate discussion of the design issues for a large-

scale publish-subscribe system. The Rebeca [97] sys-

tem developed at the University of Darmstadt com-

bines improved multicasting techniques based on the

Siena system with a technique for incorporating more

general constraints than in previous approaches. Fi-

nally, Crespo et al. present in [36] a formalization

of the query merging problem, allowing several sub-

scriptions at intermediary systems (mediators) to be

merged into a single one that can be propagated to

the neighboring systems and used for routing, thus

limiting the publications send to a subscriber instead

of flooding every subscriber with all publications.

�

Regardless of the topology used, all publish-

subscribe systems require an efficient algorithm

for matching subscriptions to incoming publications

(messages). In [27] two broad categories for matching

algorithms in content-based publish-subscribe sys-

[2] Aguilera, M. K., et al. 1999. Matching events in a content-

based subscription system. In Proc. of the ACM Symposium

on Principles of Distributed Computing. ACM Press, 53–61.

[12] Banavar, G., et al. 1999. An efficient multicast protocol for

content-based publish-subscribe systems. In Proc. of the

International Conference on Distributed Computing Systems

(ICDCS). 262–272.

[25] Carzaniga, A., et al. 2000. Achieving scalability and ex-

pressiveness in an internet-scale event notification service.

In Proc. of the ACM Symposium on Principles of Distributed

Computing. ACM Press, 219–227.

[26] Carzaniga, A., et al. 2001. Design and evaluation of a wide-

area event notification service. ACM Transactions on Com-

puter Systems (TOCS) 19, 3, 332–383.

[97] Mühl, G., et al. 2002. Filter similarities in content-based

publish/subscribe systems. In Proc. of the International

Conference on Architecture of Computing Systems (ARCS).

Lecture Notes in Computer Science, vol. 2299. Springer

Verlag, 224–238.

[36] Crespo, A., et al. 2003. Query merging: Improving query

subscription processing in a multicast environment. IEEE

Transactions on Knowledge and Data Engineering (TKDE).

[27] Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding for

content-based networking. Tech. Rep. CU-CS-922-01, De-

partment of Computer Science, University of Colorado.

http://www.softwired-inc.com

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 25

tems are identified:

— The first approach is to start from the attribute

constraints derived from the full set of subscriptions

and move through them consulting the attributes ap-

pearing in the message. Gough and Smith [54] pro-

pose the adaption of automata-based string matching

methods by imposing some order on the attributes

and encoding an event as a string of attribute values in

that order. An NFA is constructed from the subscrip-

tions, accepting all string of attribute values matched

by a subscription.

A similar approach is detailed in [2], used as the

matching algorithm for the Gryphon system. Instead

of constructing an NFA and then translating to a DFA

as in the previous approach, a so-called matching tree

is created directly from the submissions. A careful

study of the average or expected matching time shows

that this approach has an average complexity sublin-

ear in the number of subscriptions N.

However, any approach starting with the attribute con-

straints from the subscriptions is in the worst-case

linear in the number of subscriptions, as in the worst-

case all subscriptions differ only at the last possible

attribute in the matching tree or automaton. This dis-

advantage is obvious, if one considers sparse mes-

sages, i.e., messages using only a few attributes. As

long as there are possible matches among the submis-

sions, the presented approaches have to test every sin-

gle attribute occurring in one of the submissions, in-

stead of skipping all tests on attributes not occurring

in the message.

— The opposite approach is to start from the at-

tributes of the message and move through them con-

sulting the constraints. This is the approach used in

SIFT [140], if a new document is considered to be a

“message” whose “attributes” are formed from the set

of words appearing in the document. It is also the

approach used by Le Subscribe [114; 115; 47]. Le

[54] Gough, J. and Smith, G. 1995. Efficient recognition of events

in a distributed system. In Proc. of the Australasian Com-

puter Science Conference.

[140] Yan, T. W. and Garcia-Molina, H. 1999. The sift informa-

tion dissemination system. ACM Transactions on Database

Systems (TODS) 24, 4, 529–565.

[114] Pereira, J., et al. 2000. Publish/subscribe on the web at

extreme speed. In Proc. of the International Conference on

Very Large Databases (VLDB). 627–630.

[115] Pereira, J., et al. 2000. Efficient matching for web-based

publish/subscribe systems. In Proc. of the International

Conference on Cooperative Information Systems. Lecture

Subscribe goes beyond the SIFT indexing scheme by

providing a main-memory matching algorithm that is

“processor cache conscious” and by providing heuris-

tic optimizations based on a clustering of subscrip-

tions that share the same constraints over the same

attributes, similar to the predicate index of [62], thus

creating a highly scalable system capable of filtering

for millions of subscriptions. The matching algorithm

first determines which predicates are matched by the

events and then matches the predicates to subscrip-

tions. To improve the matching of predicates to sub-

scriptions from a naive algorithm linear in the num-

ber of subscriptions simply counting for each sub-

scription the satisfied predicates, the subscriptions

are clustered by their size and a characteristic pred-

icate, that is the most selective predicate of every sub-

scription in the cluster. Only subscriptions in clusters

whose characteristic predicates have been matched by

the message are considered further. Moreover, in [47]

a dynamic clustering algorithm is proposed, adapting

to changes in the subscriptions, similar to adaptiv-

ity in continuous query systems, as discussed in Sec-

tion 3.2.1. Another variant of this approach is pre-

sented in [27] where a more powerful subscription lan-

guage supporting disjunction is employed. Further-

more, a selectivity table is employed to efficiently de-

termine the predicates using a certain attribute, thus

allowing to filter out all predicates for attributes not

occurring in the message.

These approaches share the common characteristic

that their complexity is roughly bound to the num-

ber of attributes appearing in the message and not

to the number of subscriptions. Hence, for publish-

subscribe systems where large number or subscrip-

tions have to be matched at the same time, the sec-

ond approach is clearly more appropriate. Note, that

the second approach is not immediately applicable to

XML data, as an XML element (a data source of an XML

Notes in Computer Science, vol. 1901. Springer Verlag, 162–

173.

[47] Fabret, F., et al. 2001. Filtering algorithms and implemen-

tation for very fast publish/subscribe systems. In Proc. of

the ACM SIGMOD International Conference on Management

of Data. ACM Press, 115–126.

[62] Hanson, E. N., et al. 1999. Scalable Trigger Processing. In

Proc. of the International Conference on Data Engineering

(ICDE). IEEE Computer Society Press, 266–275.

[27] Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding for

content-based networking. Tech. Rep. CU-CS-922-01, De-

partment of Computer Science, University of Colorado.

26 RELATED WORK

message) can be selected by an infinite number of dif-

ferent paths.

3.3.2 XML-based

Often based on ideas from content-based publish-

subscribe systems, XML-based publish-subscribe sys-

tems nevertheless pose some novel challenges, most

notably the unbounded number of data sources (cor-

responding to attributes in the content-based case and

to nodes of the XML tree for XML-based systems) and

the fact that the data sources of a message can not be

considered at the same time, thus allowing random ac-

cess, but are rather streamed itself (as a message can

be unbounded in length and depth of the XML tree).

As XML-based publish-subscribe systems differ

mainly in the subscription language and the message

model (arbitrary XML data instead of simple attribute-

value pairs) from content-based approaches, finding

an efficient and scalable matching algorithm for XML

messages has been the focus in research. All XML-

based publish-subscribe systems are based on two

assumptions clearly separating them from our work.

First, consistent with content-based publish-subscribe

systems, it is assumed that a user is only interested

whether a document matches or not, but not which

parts of a document matches. Thus, these systems

use an XPath query similar to a predicate on the doc-

ument element and are not required to track which

elements actually match the query. Furthermore, the

size of the publications (documents) is assumed to be

rather small, thus enabling certain optimizations on

predicate handling. Both assumptions are not valid

for a general XPath query processor.

�

In [102] an XML-based publish-subscribe system,

called Xyleme, tailored to monitoring (HTML and) XML

documents in the web is described. This approach is

separated from traditional publish-subscribe systems

in that there is no flow of information from publish-

ers to subscribers that is mediated by the filtering en-

gine, but rather the publish-subscribe system pulls the

data from diverse sources. In contrast to our work,

this approach being focused on monitoring has a lim-

ited expressiveness in regard to structural constraints

for XML documents (only queries of the form “does a

[102] Nguyen, B., et al. 2001. Monitoring XML data on the Web.

SIGMOD (ACM Special Interest Group on Management of

Data) Record 30, 2, 437–448.

document contain an element with tag x containing

the string y” are supported). In particular, their algo-

rithm is depending on the average number of atomic

events that grows exponentially, if full path expres-

sions are allowed in the query language. Furthermore,

Xyleme is catered towards smaller documents (which

may be warehoused) and can not process data larger

than memory.

�

Most approaches for XML publish-subscribe sys-

tems share many similarities to the NFA approach in

[54] and the matching tree algorithm in [2]. Based

on the XFilter system [4], several filtering engines for

the selective dissemination of information (SDI) rep-

resented in XML have been proposed recently. These

systems are focused on efficient filtering of (relatively

small) XML messages or documents according to sub-

scriptions expressed as XPath queries. The XFilter

system establishes the use of deterministic finite au-

tomata for filtering of XML data, thus extending the

approach of [54] to XML data, and proposes a novel

query index optimizing state transitions of the DFAs:

An incoming element label is used as key in a hash

of all element labels occurring in any subscription. In

a hash bucket the states (representing a step in the

XPath expression) reachable from the current state by

the associated hash key are noted. For each such state

s in the hash bucket of the incoming element, all states

corresponding to steps following the associated step

of s in the subscription are added to the appropriate

hash bucket. For the average case this leads to a very

efficient selection of the state transitions in the DFAs.

As with any hash table the proposed query index can

degenerate to linear complexity in the number of sub-

scriptions. As shown in [28] the worst-case complex-

ity of XFilter is O(N×2d) where N is the total number

of subscriptions and d is the maximum level of the

[54] Gough, J. and Smith, G. 1995. Efficient recognition of events

in a distributed system. In Proc. of the Australasian Com-

puter Science Conference.

[2] Aguilera, M. K., et al. 1999. Matching events in a content-

based subscription system. In Proc. of the ACM Symposium

on Principles of Distributed Computing. ACM Press, 53–61.

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 27

document. This worst-case occurs for subscriptions

of the form //x[y = v1]//x[y = v2]//. . .//x[y

= vm], i.e., expressions of m steps with the same

node test and a predicate between another element

and a distinct constant value. On a document con-

sisting of a single path of x elements, the number of

states in the hash bucket for x grows exponentially in

the depth of the document.

XFilter does not perform multi-query optimization

apart of the use of the above discussed query index.

In [108] support for the construction of results is pro-

vided. Due to the small size of the documents, se-

lection (predicate evaluation) and construction can be

separated from matching in this approach, thus allow-

ing a direct application of the techniques from XFilter

for the matching part. Simple multi-query optimiza-

tion is performed by evaluating identical queries only

once. The optimization of multiple queries by shar-

ing common prefixes is the principal contribution of

YFilter [42; 41]. To enable prefix sharing, an NFA is

used instead of multiple DFAs in XFilter. The gener-

ated NFA is effectively a trie over the strings repre-

senting the structural components similar to the NFA

used for matching the regular path expression corre-

sponding to the XPath expression. As expected, ex-

perimental evaluation shows a considerable lower pro-

cessing time compared to XFilter on large number of

subscriptions. Nevertheless, the worst-case (space and

time) complexity of YFilter is exponential in the num-

ber of subscriptions, as the DFA constructed from the

NFA has an number of states exponential in the num-

ber of states in the NFA and the number of states in

the NFA is in worst-case linear in the number of sub-

scriptions. Furthermore, two optimizations for the

handling of predicates and nested path expressions

(such as in /a[b/c]/d) are proposed: Selection post-

ponement delays the evaluation of value-based predi-

cates until a structural match is reached (thus avoid-

ing the evaluation of predicates where no structural

match is reached for the remaining expression). This

[108] Ozen, B., et al. 2001. Highly personalized information de-

livery to mobile clients. In Proc. of ACM International Work-

shop on Data Engineering for Wireless and Mobile Access.

[42] Diao, Y., et al. 2002. YFilter: Efficient and scalable filtering

of XML documents. In Proc. of the International Conference

on Data Engineering (ICDE).

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted for pub-

lication, www.cs.berkeley.edu/~diaoyl/publications/

yfilter-public.ps.

approach closely resembles the handling of selections

in the Tukwila system [73]. To evaluate nested path

expressions the paths are separated (/a[b/c]/d into

/a/d and /a/b/c) and evaluated as separate queries,

recording for each match of one of the paths which

nodes in the document have been matched. These

records are consulted afterwards to find the matching

subscriptions. Both optimizations are based on the as-

sumption, that is affordable to store possibly all nodes

in a document for further processing, an assumption

invalid for unbounded streams as in our case. In [41]

the authors argue that their experimental evaluation

shows that the cost for matching a subscription is no

longer the dominant cost if compared to parsing and

further processing and thus no further optimizations

(e.g., to avoid the exponential complexity) is neces-

sary. In contrast we believe that their result strength-

ens that the expressive power of the query language

can be further improved without considerably harm-

ing the efficiency of the evaluation. In contrast to our

work, XFilter and YFilter employ a rather weak query

language restricted to child and descendant axes and

to value-based and simple structural predicates.

�

For the open-source “XML Toolkit for Scalable XML

Stream Processing” [8], another approach for effi-

ciently processing large numbers of XPath expressions

against streams has been proposed in [56]. Similar to

YFilter a single NFA for all XPath expressions is con-

structed. But instead of the construction of an ea-

ger DFA with possibly exponential number of states,

a lazy DFA is proposed. The main contribution is to

show, that under certain assumptions the space and

time complexity of the lazy DFA is independent of the

number of subscriptions. If one considers only simple

path expressions with child and descendant, the num-

ber of states in the lazy DFA is at most exponential in

the size of the schema, i.e., in the number of elements

declared in the schema, and the time for processing a

single element from the stream inside the DFA is lin-

ear in the size of the schema, as any state in the DFA

[73] Ives, Z. G., et al. 2002. An XML query engine for network-

bound data. VLDB Journal Special Issue on XML Data Man-

agement.

[8] Avila-Campillo, I., et al. 2002. XMLTK: An XML toolkit for

scalable XML stream processing. In Proc. of the Workshop

on Programming Language Technologies for XML (PLAN-X).

[56] Green, T. J., et al. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference

on Database Technology (ICDT). 173–189.

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

28 RELATED WORK

can have at most for each element in the schema a dif-

ferent outgoing transition and a hash is used for deter-

mining which transition is performed. Note however,

that naturally if each element is matched by each sub-

scription, the generation of output bindings requires

linear time in the number of subscriptions. This is,

of course, true for any XML-based publish-subscribe

system. Furthermore, for each state in the DFA a set

of corresponding NFA states with size N × l has to be

maintained.

It is important to emphasize, that these results only

hold for a rather limited query language, as similarly

stressed in YFilter [41]. Most notably, if constant val-

ues are used in the expressions (a very common occur-

rence in XPath expressions) time and space complexity

are linear in the number of subscriptions in the worst-

case. Moreover, predicate handling is not considered

thoroughly, only a naive sketch with complexity N × l

is considered. More elaborate treatment of predicates

is not discussed in [56]. As mentioned before, we be-

lieve that it is not desirable to reduce further the ex-

pressiveness of an XPath-based subscription language,

but propose efficient methods for handling a larger

subset of XPath. Indeed, recent work [60] extends this

approach to XPath expressions with predicates. Predi-

cates can be shared among queries, if they are identi-

cal, but there is no sharing between expressions inside

and outside predicates.

�

Abutted to the matching tree described in [2], in

[29; 28] a novel index structure called XTrie is pro-

posed. The XTrie indexes substring of XPath expres-

sions rather than individual steps as in XFilter or YFil-

ter. A substring of an XPath expression e is defined to

be a sequence of element labels, such that there is a

[41] Diao, Y., et al. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted for pub-

lication, www.cs.berkeley.edu/~diaoyl/publications/

yfilter-public.ps.

[60] Gupta, A. K. and Suciu, D. 2003. Stream processing of XPath

queries with predicates. In Proc. of the Proc. of the ACM

SIGMOD International Conference on Management of Data.

[2] Aguilera, M. K., et al. 1999. Matching events in a content-

based subscription system. In Proc. of the ACM Symposium

on Principles of Distributed Computing. ACM Press, 53–61.

[29] Chan, C.-Y., et al. 2002b. Efficient filtering of XML docu-

ments with XPath expressions. In Proc. of the International

Conference on Data Engineering (ICDE). 235–244.

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

path in e consisting in children steps with node-tests

corresponding to the element labels in order of there

occurrence in the sequence. Furthermore, a substring

decomposition of an XPath expression e is a set of sub-

strings of e, such that each step of e occurs in at least

one substring, and is said to be minimal, if each sub-

string s is of maximal length, i.e., there is no longer

substring containing s, e.g. the substrings a b and c

form a minimal decomposition of /a/b//c. Finally,

a “simple” decomposition of an XPath expression e is

a substring decomposition S of e, such that for each

branching step v (e.g., the /b step in /a/b[c]/d) in e

their is a maximal substring with last node v in S and

all other substrings in S are maximal. For each XPath

expression (representing a subscription) the “simple”

substring decomposition is determined and the result-

ing substrings are indexed in a traditional trie. Hence,

the space cost of an XTrie is dominated by the num-

ber of substrings in each XPath expression, while the

space cost of an approach similar to XFilter, indexing

individual steps, is dominated by the number of ele-

ment labels.

Furthermore, [28] provides sophisticated optimiza-

tions to reduce the number of unnecessary index

probes (e.g., by using a lazy XTrie) and to prune re-

dundant partial matchings. Experimental evaluation

indicate that this approach outperforms XFilter con-

sistently. A comparison between YFilter and XTrie has

not been performed. The query language is a simi-

lar subset of XPath as used in XFilter (only child and

descendant axes and simple predicates), but allows

ordered matching among siblings by support of the

following-sibling axes. Order between arbitrary nodes

in the document (i.e., following axes) is not considered

and the proposed technique for sibling order can not

trivially be extended to arbitrary nodes.

As stated above, by indexing substrings the space

and time complexity of XTrie are bounded by the num-

ber of substrings in each XPath expression rather than

by the number of elements. More precisely, let NS =∑N
i=1 S_i be the number of substrings in all simple de-

compositions Si of all N XPath expressions. Naturally,

the XTrie itself has a space complexity of O(NS), but

the algorithm also requires several other data struc-

tures with O(NS × d), where d is the maximum depth

of the document. As the algorithm considers all oc-

currences of a substring in an XPath expression, the

worst-case time complexity is O(max(l2 × d×N, NS))

with l maximum length of a subscription. Consider-

www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 29

Approach Focus (Worst-case) Complexity

Space Time

XFilter N DFAs transition index N × 2d 2d ×N ×n

YFilter NFA prefix sharing max(n, 2N×l) 2d ×N ×n

XTrie Trie substring indexing N × l× d l2 × d×N ×n

XMLTK single (lazy) DFA limited-size schema N × l× 2S min(S, N)×n

with selection on value: max(2S , N)×N × l l×N ×n

MatchMaker specific index structure max(n, N ×max(d, l)) max(d, l)×N ×n

Table 3.2: Comparison of matching engines for XML-based publish-subscribe systems. Let N be the number

of subscriptions, l the maximum length of a subscription, d the depth of the document, n the length of the

document, and S the size of the schema for the XML stream.

ing N XPath expressions with descendant axis only

and where no element label occurs twice, the number

of substrings NS is bound to the number of steps of

all XPath expressions, i.e., to l × N. Thus, the over-

all worst-case complexity for processing a node is lin-

ear in the number of subscriptions and their length,

O(l2 × L×N).

�

Based on a novel index structure, [83] presents a

system, called MatchMaker, for efficient matching of

large numbers of queries (subscriptions) against an

XML stream, where the size of the document is small

compared to the number of queries. Special con-

sideration is given to chain queries, i.e., single path

queries (without structural predicates). The matching

of (chain or tree) queries to a document is specified

as a labeling problem, where a node in the document

is labeled with all queries selecting that node. The

main contribution is a novel index structure, called

dual index, that can efficiently support the following

three types of queries for labels l1 and l2, viz., which

queries start with l1, which queries contain l1/l2, i.e.,

l1 and l2 in a parent-child relation, and which queries

contain l1//l2, i.e., l1 and l2 in an ancestor-descendant

relation (at any position). This index is implemented

using hash tables. Algorithms based on this index

for chain and tree queries are presented distinguished

from the above discussed systems in that all match-

ings of a query are determined, instead of only de-

ciding whether or not a query matches a document.

The main disadvantage is, that two passes over the

stream are required, i.e., the entire stream has to be

[83] Lakshmanan, L. V. and Parthasarathy, S. 2002. On efficient

matching of streaming XML documents and queries. In

Proc. of the International Conference on Extending Database

Technology (EDBT). 142–160.

buffered in any case. Worst-case space and time com-

plexity are given in Table 3.2. Note, that the used

query language is similar in expressiveness to the one

used in, e.g., XFilter, only supporting child and descen-

dant axes and structural predicates.

�

Apart of the aforementioned XML-based publish-

subscribe systems, summarized in Table 3.2, in [113]

a very fast XML-based publish-subscribe system called

WebFilter based on the ideas of Le Subscribe [47] (cf.

Section 3.3.1) is proposed, though no details on the

matching of event paths to subscriptions is presented.

The first XML-based distributed publish-subscribe sys-

tem is described in [3] with focus on reliable transmis-

sion. No consideration of efficient matching of XML

documents to subscriptions is provided, but a simple

XPath engine (based on the Gnome libxml library) is

used. Finally, in [77] an architecture called MDV for

distributed meta-data management is proposed. RDF

data is filtered using an approach similar to traditional

trigger systems.

In Table 3.2 important characteristics of various

XML-based publish-subscribe systems are summa-

rized. Note, that all of the systems have a limited ex-

[113] Pereira, J., et al. 2001. WebFilter: A high-throughput XML-

based publish and subscribe system. In Proc. of the Interna-

tional Conference on Very Large Databases (VLDB). 723–724.

[47] Fabret, F., et al. 2001. Filtering algorithms and implemen-

tation for very fast publish/subscribe systems. In Proc. of

the ACM SIGMOD International Conference on Management

of Data. ACM Press, 115–126.

[3] Alex C. Snoeren, Kenneth Conley, D. K. G. 2001. Mesh-based

content routing using XML. In Proc. of the ACM Symposium

on Operating Systems Principles (SOSP). 160–173.

[77] Keidl, M., et al. 2002. A publish & subscribe architecture for

distributed metadata management. In Proc. of the Interna-

tional Conference on Data Engineering (ICDE). 309–320.

30 RELATED WORK

for $X in $R/a return

for $Y in $X/b return

<res>$Y,$X</res>

Figure 3.2: Example query in [87].

pressiveness, restricting queries to child and descen-

dant axes and (if at all) to simple predicates. Further-

more, with the notable exception of XMLTK without

selections on value, all systems have space and time

complexity for matching at least linear in the number

of subscriptions. No comparison of the average per-

formance is given, as all of the more recent systems

(YFilter, XTrie, and XMLTK) provide experimental eval-

uation only in respect to XFilter.

3.4 Single Query Processors against

XML Streams

Recently, several query processors for single XPath or

XQuery expressions against XML streams have been

proposed. These proposals are set apart from the

publish-subscribe systems discussed in the previous

section by the fact, that no consideration to multi-

query optimization is given. Consequential, they are

usually tailored to support a larger subset of XPath

(or XQuery) than the previously discussed systems,

thus providing a higher expressiveness at the cost of

lower scalability. Furthermore, the material problem

is to allow an efficient evaluation over large, possibly

unbounded documents rather than a stream of small

documents. A subset of XPath that can be easily eval-

uated in a single run is identified in [40]. In [107] it

is shown, that the reverse axes of XPath can be imple-

mented using forward axes only. For an overview of

the discussed systems and their complexity refer to

Table 3.3.

In [87] an XQuery processor, called XML stream ma-

chine (XSM), based on finite state transducers com-

bined with buffers is presented. As they focus on the

evaluation of joins enabled by the use of buffers, the

supported subset of XQuery regards joins and element

[40] Desai, A. 2001. Introduction to sequential XPath. In Proc.

of the IDEAlliance XML Conference.

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).

Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

creation, but is restricted to a descendant-like axis

(with limited expressiveness, as non-recursive data is

assumed, thus precluding nested occurrences of ele-

ments) and value-based predicates, cf. Query 3.2 for

an example. The support of joins and construction

immediately mandates the use of buffers for each vari-

able in the body (return or where clause) of an FLWR

expression, that is not the loop variable of that FLWR

expression, thus leading to a space complexity linear

in the size of the stream. Furthermore, as the result of

a query can be exponential in the size of the original

stream (e.g., Query 3.2), the worst-case time complex-

ity is O(nl) where n is the size of the stream and l is

the length of the query. Experimental evaluation (with-

out nested queries) points to the expected linear time

complexity in the size of the data for queries with lin-

ear data complexity, i.e., for queries without join and

construction. We believe, that these results strengthen

our position, that (exact) joins and construction over

multiple dimensions are inappropriate for evaluation

against possibly unbounded streams.

�

The χαoς algorithm presented in [13; 14] is a

streaming algorithm for handling both forward and

reverse axes. Note however, that no horizontal axes,

such as following or preceding, are supported. Also

only simple structural predicates are considered. The

handling of the horizontal reverse axes (and the re-

sulting query tree, called X-Dag) resembles closely the

first approach presented in [107]: An expression like

/descendant::n/ancestor::m is treated by selecting the

n node by two paths, viz., /descendant::n and /de-

scendant::m/descendant::n. The presented algorithm

χαoς finds all matchings of a query in O(l×n2) space

and time for matching where n is the size of the doc-

ument and l the number of steps in the query. Ex-

perimental evaluation in [13] indicates that the χαoς

algorithm performs slightly better than a conventional

XPath engine such as Xalan.

�

Based on hierarchical pushdown transducers

(HPDT), the XSQ system [112; 111] has many simi-

[13] Barton, C., et al. 2002. An algorithm for streaming XPath

processing with forward and backward axes. In Proc. of the

Workshop on Programming Language Technologies for XML

(PLAN-X).

[14] Barton, C., et al. 2003. Streaming XPath processing with

forward and backward axes. In Proc. of the International

Conference on Data Engineering (ICDE).

[112] Peng, F. and Chawathe, S. S. 2003b. XSQ: Streaming XPath

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 31

Approach Focus (Worst-case) Complexity

Space Time

XSM FSM with buffers joins, construction n× l nl

χαoς parent, ancestor l×n2 l×n2

XSQ HDPDT simple predicates, aggregation n+ 2l n× l

SPEX network of DPDTs RPQ: generic predicates, reverse axes l×n× d n× d× l

Table 3.3: Comparison of single query processors. Always a single query is assumed. Let l be the length of the

query and n the size of the document.

larities with the fundamental approach of SPEX. The

evaluation model is based on a hierarchy of trans-

ducers similar to a network of transducers as in our

system. But there are two important differences in

the evaluation models: Most importantly the number

of transducers in the XSQ system is exponential in

the length of the query (more precisely in the number

of the predicates occurring in the query), whereas a

SPEX network is always linear in the length of a query.

Furthermore, the various pushdown transducers

constituting a hierarchy are generated in the XSQ

system based on templates for certain predicates,

whereas SPEX provides a generic method for predicate

handling. Thus, the language supported by XSQ only

provides certain predicates, viz., value-based and

simple structural predicates, in particular no nested

predicates or multi-step predicates, and no support

for horizontal or reverse axes, such as following or

parent. Some consideration for aggregations is given,

that might also be considered in future versions of

SPEX. Experimental evaluation in [112; 111] points

to significant improvements compared to traditional

XPath engines such as Xalan, but also shows that a

system with a more restricted language, in particular

without predicate handling, such as XMLTK [56] can

outperform this approach. However, the time for

evaluation of a single query is consistently lower than

the time for parsing.

�

The SPEX evaluation model this work is based upon

is discussed in Chapter 7. Here, only the complexity

queries. In Proc. of the International Conference on Data

Engineering (ICDE).

[111] Peng, F. and Chawathe, S. S. 2003a. XPath queries on

streaming data. In Proc. of the Proc. of the ACM SIGMOD

International Conference on Management of Data.

[56] Green, T. J., et al. 2003. Processing XML streams with deter-

ministic automata. In Proc. of the International Conference

on Database Technology (ICDT). 173–189.

is considered for comparison. In [106], it is shown

that the SPEX evaluation model has time and space

complexity O(n × d × l) where n is the size, d the

depth of the stream, and l the size of the query.

This overview of related work establishes that none

of the previous approaches for the optimization of

multiple queries on XML streams has considered the

sharing of operators over the entire query graph in-

stead of prefixes only. Furthermore, no systematic de-

scription of the problem and its properties has been

given so far. In the next chapter, a formal description

of logical query plans is introduced as bases for the

problem description in Chapter 5.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

32 RELATED WORK

Chapter 4

Concise Representation of XML Query Plans

As foundation for the discussion of the optimization methods proposed in the next chapters, a concise, yet pow-

erful formal representation for a (logical) query plan is established in this chapter together with its properties.

Contents

4.1 Formalization of a Query Plan . 33

4.1.1 Evaluation Model . 33

4.1.2 Query Plan . 34

4.2 Use Case: Traditional Relational Query Plans . 35

4.3 Use Case: Query Plans for XML Streams . 35

4.1 Formalization of a Query Plan

To facilitate a formal description of our problem, how

to generate an optimal query plan for several queries

or query plans, a precise definition of a query plan and

its properties is required.

4.1.1 Evaluation Model

The concrete structure and generation of a query plan

depends naturally on the query language and logical

algebra employed in the targeted evaluation engine.

In the following, the properties of an evaluation en-

gine that have influence on the definition of a query

plan, are described by means of an evaluation model

E. An evaluation model specifies the (possibly infi-

nite) sets of queries QE and query plans PE that are

considered legal together with a translation tE from

queries to query plans that gives for each query a set

of query plans that can be used to evaluate that query

in this evaluation model. In general, there are (possi-

bly infinite) many query plans associated with a single

query, so that the optimizer can select among these

query plans the one with the lowest expected cost for

evaluation. The cost of a query plan is also specified

as part of the evaluation model by means of a function

cE that assigns to each query plan the expected cost

for evaluation.

In Section 2.3.2, query plans are introduced as

graphs with operators of the logical algebra as ver-

tices. An evaluation model E specifies the set of op-

erators OE that are valid in a query plan for that eval-

uation model. Furthermore, vertices in a query plan

can have several properties (such as the actual label

of a label operator in the query plans shown in Sec-

tion 2.3.2). Therefore, the evaluation model E deter-

mines not only the set RE of valid properties under

this evaluation model, but also which properties can

be associated with an operator, and provides means

to determine, whether and how two properties can be

merged into a single one: “merging” here indicates

that the resulting property entails both original prop-

erties in such a way, that both properties can still be

evaluated (cf. Chapter 7 for a discussion of multi-

properties in SPEX).

Formally, an evaluation model E is a octuple

(QE , PE , tE , cE , OE , RE , rE , µE) where

—QE is the set of valid queries for E,

—PE is the set of valid query plans for E,

33

34 CONCISE REPRESENTATION OF XML QUERY PLANS

—tE : QE →℘(PE) associates each query with the set

of query plans that evaluate the query,

—cE : PE → R is the cost function assigning to each

query plan a cost under that evaluation model, it is

required that the cost of a query plan can be com-

puted in polynomial time,

—OE is the set of operators in query plans from PE ,

—RE is the set of properties in query plans from PE ,

—rE : OE → ℘(RE) maps each operator to the set of

properties that are allowed for that operator, and

—µE : RE × RE → RE is a partial function that as-

signs to pairs of properties the property resulting

from merging the two if they can be merged. It is

assumed, that for all p ∈ RE µE(p, p) = p.

In this section, we concentrate on the properties

of an evaluation model that define the operators and

properties of vertices in a query plan. The characteri-

zation of valid queries and query plans, as well as their

relation is not detailed in this work, except exemplar-

ily in Chapter 7 on the SPEX evaluation model, but it

is assumed, that there is some way to determine the

valid queries and query plans, in particular whether a

query plan can be used to evaluate a given query.

4.1.2 Query Plan

Based on such an evaluation model, it is now easy to

formally define a query plan: A query plan P for an

evaluation model E is a quadruple (G, τ, π, q) where

—G = (V , E) is a directed graph with vertices V and

edges E,

—τ : V → OE assigns to each vertex in G an operator,

—π : V → RE is a partial function, that associates to

some vertices in G a property, such that, for all ver-

tices v , if there is a property r ′ ∈ RE with r ′ = π(v)

then r ′ ∈ rE(τ(v)), i.e., each vertex can have at

most one property assigned to it and that property

must be allowed for the operator the vertex repre-

sents (for ease of notation, we understand in the

following, for all vertices v, w ∈ V , π(v) = π(w) as

(∃r ∈ REr = π(v) =⇒ ∃r ′ ∈ REr ′ = π(w) ∧ r =
r ′)∨ (6 ∃r ∈ REr = π(v) =⇒ 6 ∃r ′ ∈ REr ′ = π(w)),

otherwise π(v) ≠ π(w)),

—q : E → ℘(QE)\∅ maps each edge in G to a non-

empty set of queries this edge is part of,

Each vertex has an operator type, but not all ver-

tices have a property assigned to it. Only edges are

assigned to queries as the incident vertices of an edge

are naturally relevant for all queries that edge is part

of. Therefore, it is sufficient to assign queries to edges

(with the slight exception of isolated vertices, which,

for reasons of conciseness, are not considered here).

For convenience, we extend q to vertices in the follow-

ing way: Let edges(v ∈ V) = {e ∈ E : ∃y ∈ V : e =
(x, y) ∨ e = (y, x)} be the incident edges of a vertex

v), then

q′ : V ∪ E →℘(QE) :

x ∈ V ∪ E 7→

q(x) x ∈ E⋃
e∈edges(x) q(e) x ∈ V

Unless mentioned otherwise, this extension of q is

used in the following.

To ease the discussion of query plans for multi-

ple queries, two further definitions are helpful: First,

we naturally extend the notion of isomorphism from

graphs to query plans, i.e., two query plans P1 =
(G1, τ1, π1, q1) and P2 = (G2, τ2, π2, q2) for the same

evaluation model E are isomorphic, denoted by P1 '
P2, if there is a bijection φ : VG1 → VG2 such that for

all x and y ∈ VG1

—(x, y) ∈ EG1 is equivalent to (φ(x), φ(y)) ∈ EG2 ,

(the images of vertices adjacent in G1 are adjacent

in G2),

—τ(x) = τ(φ(x)) (the operator assigned to a vertex

and its image are identical),

—either π(x) and π(φ(x)) are both undefined or

π(x) = π(φ(x)) (the property assigned to a vertex

and its image are coherent),

—if (x, y) ∈ EG1 , q((x, y)) = q((φ(x), φ(y))) (the

queries assigned to corresponding edges in the two

graphs are identical).

Second, the restriction of a query plan P =
(G, τ, π, q) to a query Q is defined as a query plan

P |Q = (GP |Q , τP |Q , πP |Q , qP |Q) where

—GP |Q = (V ′, E′) with E′ = { e ∈ EG | Q ∈ q(e) } and

V ′ = { v ∈ GV | Q ∈ q(v) } (the graph G restricted

to those edges that are assigned to Q and their ad-

jacent vertices),

—τP |Q = τ|V ′ (ordinary restriction on functions),

—πP |Q = π|V ′ (ordinary restriction on functions),

—q : E′ →℘(QE)\∅ is now a constant function map-

ping all edges e ∈ E′ to the singleton set {Q}.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 35

×

RS

S.b = R.a

S.b

R.c = “
v”

Figure 4.1: Query plan for SELECT S.b FROM S, R

WHERE S.b = R.a AND R.c = "v"

�

It is crucial to observe that the definitions of eval-

uation model and query plan given above do not re-

strict the shape and properties of a query plan in any

way except that they require that a query plan can

be represented as a digraph. Since any undirected

graph can be represented as a directed graph (with

double the number of edges), this requirement is actu-

ally no restriction. The information about the kind of

graphs that are valid as query plans for a specific eval-

uation model is contained in the translation function

tE that associates queries with valid query plans for

evaluating them. When discussing the problem, how

to find an optimal query plans for multiple queries,

and heuristics for solving it, more specific knowledge

about the characteristics of a valid query plan under a

certain evaluation model will prove very beneficial, cf.

Chapter 6.

For this reason and for illustrating the just intro-

duced formal notions of evaluation model and query

plan, a closer look at two concrete examples for eval-

uation models and the kind of query plans they allow

is indicated.

4.2 Use Case:

Traditional Relational Query Plans

Figure 4.2 shows the initial query plan for the re-

lational query πS.b(σS.b=R.a(σR.c=“v”(R × S))) as dis-

cussed in Section 2.1.1.

Formally, this query plan P is defined as the quadru-

ple (G, τ, π, q), where G = (V , E) is the graph de-

picted, with six vertices V = {v1, . . . v6} and five edges

E = {(v1, v3), (v2, v3), (v3, v4), (v4, v5), (v5, v6)}. For

the definition of τ, π , and q the evaluation model this

query plan is based on is required: Informally, a pos-

sible evaluation model for relational queries R uses

the set of operators of the relational algebra plus an

access operator for accessing relations. Each opera-

tor has different properties, e.g., projection operators

have the property on which set of attributes to project,

selection operators carry the selection expression, and

access operators the relation accessed by them. Using

the textual representation of an operator or property

as identifier, τ : {v1 7→ acccess, v2 7→ access, v3 7→
×, v4 7→ σ , v5 7→ σ , v6 7→ π} and π : {v1 7→ R, v2 7→
S, v4 7→ R.c = “v”, v5 7→ S.b = R.a, v6 7→ S.b}. q maps

each edge to the singleton set containing only the

query shown above. The graphical representation

used for relational query plans so far can therefore

easily be mapped to a more formal specification as in-

dicated here.

One might observe, that the query plans under this

evaluation model R can be characterized by the prop-

erties of the underlying graph: Actually, any graph is

a valid query plan for some relational query, if it ad-

heres to the following four restrictions:

—the graph is acyclic,

—the graph is connected, if the query plan as in the

examples evaluates a single query only,

—its vertices can be assigned to operators and prop-

erties in a way consistent with R, and

—all sources of the graph (i.e., vertices without incom-

ing edge) are access operators and access operators

are assigned to sources only,

These conditions are sufficient and required for any

graph to be a query plan under R for some relational

query (to which the edges of the query plan can be

assigned).

4.3 Use Case:

Query Plans for XML Streams

In Section 2.3.2 the notion of query plans for query-

ing XML streams has been introduced. Here, a formal

interpretation of the graphical representation in that

section is presented.

First, an evaluation model has to be specified. As

in Section 2.3.2, the RPQ semantics is used as basis

for that evaluation model X: The set of operators for

query plans in X is the set of operators in RPQ, i.e.,

36 CONCISE REPRESENTATION OF XML QUERY PLANS

a

“v
”
b

c
in
 ou
t
[
]

Figure 4.2: Query plan for query from Figure 2.4

all relation and property operators (label and text op-

erator), enhanced with the structural operators: the

input, output, predicate, intersection, and union op-

erator. The set of properties is the (infinite) set of

restrictions on label and text of an element allowed by

RPQ, partitioned by rX into properties assignable to

label and text operators.

Based on this evaluation model X, the query plan

for the query Q(v4) :- v0 C v1∧ a (v1)∧v1 C v2∧
b (v2) ∧ “v” (v2) ∧ v1 ≺+ v3 ∧ v3 C+ v4 ∧ c (v4)

shown in Figure 4.2, can be formally interpreted as a

quadruple P = (G, τ, π, q), where

—G = (V , E) is the graph as depicted, i.e., the graph

with 11 vertices V = {v1, . . . , v11} and 10 edges E =
{(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v7),

(v7, v8), (v4, v9), (v9, v10), (v10, v11)},

—τ maps each vertex to the operator shown, i.e.,

τ = {v1 7→ in, v2 7→C, v3 7→ label, v4 7→ [], v5 7→≺+

, v6 7→C+, v7 7→ label, v8 7→ out, v9 7→C, v10 7→
label, v11 7→ text},

—π maps vertices to the properties they carry, i.e.,

π = {v3 7→ a, v7 7→ c, v10 7→ b, v11 7→ “v”}, and

—q maps each edge to the original query.

Again, it is most revealing to note some of the prop-

erties of such a query plan:

—These query plans are by definition once more

acyclic as the underlying query language RPQ does

not entail recursive expressions.

—As in the previous case, their input operator must

be a source of the graph and any input operator oc-

curring in the graph must be a source. Furthermore,

there has to be exactly one output operator for each

query evaluated by the query plan, although the

same output operator can be part of several queries.

—Of course, there must be a way, to assign all vertices

of the graph to operators and properties in a way

consistent with X.

These properties hold for query plans evaluating

single queries such as the one discussed above, as well

as for query plans covering multiple queries, cf. Fig-

ure 2.15(a).

Any graph that respects these three properties, is

a query plan for some RPQ query in X (to which

the edges can be assigned to). Note, in particular,

that a query plan does not have to be connected, al-

though one might observe that all connected compo-

nents in the query plan have as source the same op-

erator, viz. the input operator, that has no properties

(we consider a single data source, the stream of XML

data, only), thus can be merged for all connected com-

ponents, leading to a connected graph with a single

source.

Based on the formal representation of an evalua-

tion model established in this chapter, the problem of

multi-query optimization by operator sharing as intro-

duced in Section 2.3.4 is formalized in the following

chapter.

Chapter 5

The Minimum Common Super-Plan Problem

This chapter finally formalizes the problem of finding an optimal query plan for the simultaneous evaluation

of multiple queries. The problem is formalized as an optimization problem and its properties with respect to

complexity and approximability are investigated by comparison and reduction from similar problems mostly

form graph theory.

Contents

5.1 Complexity and Approximability of Optimization Problems . 38

5.1.1 Optimization Problems . 38

5.1.2 NPO Problems . 38

5.1.3 Approximability of NP-hard Problems . 39

5.2 Minimum Common Super-Plan . 40

5.3 Related Problems . 42

In Section 2.3.4, the core objective of this work is

established: optimize multiple queries by computing

a query plan that evaluates all queries and can be eval-

uated efficiently. Extending previous work using some

form of prefix compaction for tree-shaped query plans

[4; 28], we concentrate on finding an optimal way to

share operators among the queries. Figure 2.15(a) il-

lustrates this approach with a possible common query

plan for the queries from Figure 2.4 and 2.13 based

on the query plans from Figure 2.8 and 2.14(b). Recall,

that the edges are labeled with the queries (abbrevi-

ated by 1 and 2) and that operators belonging to the

first query only are colored in blue, those part of the

second query only in red, and shared operators remain

black.

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

In this chapter, the proposed approach to optimiza-

tion of multiple queries is elaborated and formalized

as an optimization problem. The following section

provides a short reexamination of relevant definitions

and notations concerning optimization problems and

their properties.

37

38 THE MINIMUM COMMON SUPER-PLAN PROBLEM

5.1 Complexity and Approximability

of Optimization Problems

5.1.1 Optimization Problems

Following [35; 75; 7] finding a feasible solution for

any valid input instance of a certain problem is con-

sidered an optimization problem, if the sought-after

solution is optimal with respect to some measure of

quality associated with a solution and the optimiza-

tion objective. Formally, an optimization problemΠ over an alphabet Σ is described by a quadruple

(IΠ, SΠ, mΠ, goalΠ), where

(1) IΠ ⊆ Σ∗ is the space of input instances.

(2) SΠ : IΠ → Σ∗ associates with each input instance

x ∈ IΠ the space of feasible solutions for x.

(3) mΠ : IΠ × Σ∗ → R+0 is the measure or objective

function specifying for each pair (x, y) such that

x ∈ IΠ and y ∈ SΠ(x) a positive number indi-

cating the quality of the solution y under input

instance x.

(4) goalΠ ∈ {min, max} indicates whether Π is a max-

imization or a minimization problem.

For an input instance x, the set of optimal solutions

of x is denoted by S∗Π (x) = {y ∈ SΠ(x) : mΠ(x, y) =
goalΠ{ n ∈R+0

∣∣ ∃z ∈ SΠ(x) : n = mΠ(x, z) }. Obvi-

ously, all optimal solutions have the same quality that

will be denoted as optΠ(x), i.e., optΠ(x) = mΠ(x, y)

for any y ∈ S∗Π (x).

One should observe, that for each optimization

problem Π there is a corresponding decision problemΠD : The decision problem asks whether there exists

a feasible solution y of an instance x with a qual-

ity bounded by some K > 0 for a maximization or

K < 0 for a minimization problem. Furthermore, if

the optimization problem can be solved in polynomial

time by a deterministic algorithm, so can the decision

problem. In other words, if the decision problem is

already NP-complete, the optimization problem can as

[35] Crescenzi, P. and Panconesi, A. 1991. Completeness in ap-

proximation classes. Information and Computation 93, 2,

241–262.

[75] Kann, V. 1992. On the approximability of the maximum

common subgraph problem. In Proc. 9th Symp. Theoretical

Aspects of Computer Science. Number 577 in Lecture Notes

in Computer Science. Springer Verlag, 377–388.

[7] Ausiello, G., et al. 1999. Complexity and Approximation:

Combinatorial Optimization Problems and their Approxima-

bility Properties. Springer Verlag, Berlin.

well not be solved in polynomial time by a determinis-

tic algorithm unless P = NP.

5.1.2 NPO Problems

Following this observation, optimization problems

can be divided into two classes by their inherent

complexity: the class PO for which a deterministic

polynomial-time algorithm exists and the class NPO

for which a non-deterministic polynomial-time algo-

rithm is known. These classes strictly correspond to

the classes for decision problems P and NP, in par-

ticular the notion of hardness can be extended from

a decision problem to its corresponding optimization

problem. Hence, P ≠ NP implies PO ≠ NPO and vice

versa.

More formally, an optimization problem Π =
(I, S, m, goal) belongs to the class NPO and is called

an NPO problem if it is short and easy-to-recognize,

i.e., if

(1) the space of instances I can be recognized in

polynomial time,

(2) the solutions are short, i.e., the size of a solu-

tion is reasonable close to the size of the input

instance. Formally, it is required, that there ex-

ists a polynomial p such that, for any x ∈ I and

y ∈ S(x), |y| ≤ p(|x|),

(3) the solutions are easy to recognize, i.e., for any y

such that |y| ≤ p(|x|) it is decidable in polyno-

mial time whether y is a solution for x, and

(4) the objective function is computable in polyno-

mial time.

It is easy to see, that the corresponding decision

problem of an NPO problem is in NP.

An optimization problem Π is called NP-hard, if ev-

ery decision problem Π′ ∈ NP can be solved in polyno-

mial time by an algorithm which uses an oracle that,

for any instance x ∈ IΠ, returns an optimal solution

y ∈ S∗Π (x) together with its value optΠ(x). Therefore,

if the corresponding decision problem ΠD of an NPO

problem Π is NP-complete, Π is NP-hard, since ΠD can

be solved in the above described manner and all other

NP problems can be solved by an algorithm that solvesΠD .

An NPO problem Π is said to be polynomially

bounded if a polynomial p exists such that, for any in-

stance x and for any solution y ∈ IΠ(x), mΠ(x, y) ≤
p(|y|). The class NPO PB is the set of polynomially

bounded NPO problems.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 39

5.1.3 Approximability of NP-hard Problems

Since the optimization problems discussed later in

this chapter prove to be NP-hard, a closer look at this

class of problems is indicated. As there is no deter-

ministic polynomial-time algorithm known for solving

problems from this class, we sacrifice optimality and

start looking for approximate solutions computable in

polynomial time. Of particular interest is the ques-

tion, how well such a problem can be approximated,

i.e., whether an approximate solution can be guaran-

teed to be still reasonably close to an optimal solution.

The following notations are based on [67; 6; 7].

To measure the quality of an approximation algo-

rithm, several notions can be used (e.g., absolute or

relative error). Following [6; 7], the performance ra-

tio of an approximation algorithm is employed here

for determining the quality of the approximation pro-

vided.

For an optimization problem Π, the performance

ratio R(x, y) of a solution y under an input instance

x for Π is the ratio of the quality of the solution to the

quality of the optimal solution for x, i.e.,

R(x, y) =max

(
mΠ(x, y)
optΠ(x)

,
optΠ(x)

mΠ(x, y)

)
.

By definition, the performance ratio of a solution

is always ≥ 1. Furthermore, this definition allows a

unified treatment of minimization and maximization

problems with regard to the performance ratio of a

solution.

Based on the performance ratio of the solution

an approximation algorithm computes, the quality of

that algorithm can now be judged: An approximation

algorithm A for an optimization problem Π is called

r (n)-approximate algorithm for P where r : N0 →
R
+
0 is a function, if, for any instance x such that

SΠ(x) ≠ ∅, the performance ratio of the feasible so-

lution A(x) with respect to x is bounded by r (|x|),

i.e.,

R(x,A(x)) ≤ r (|x|).

If an optimization problem admits an r (n)-

approximate deterministic polynomial-time algorithm

we say that it is approximable within r (n).

[67] Hochbaum, D., Ed. 1996. Approximation Algorithms for

NP-hard Problems, 1st ed. Brooks Cole.

[6] Arora, S. 1998. The approximability of NP-hard problems.

In Proc. of the ACM Symposium on Theory of Computing.

337–348.

Finally, an algorithm A for an optimization prob-

lem Π is said to be an approximation scheme for Π, if

it returns, for any instance x ∈ IΠ and for any rational

ε > 1, feasible solution of x whose performance ratio

is at most ε.

�

These definitions can be used to classify optimiza-

tion problems based on their approximability, i.e.,

on whether there is a (deterministic) approximation

scheme or an r (n)-approximate algorithm with poly-

nomial complexity for that problem (all the subset re-

lations are strict if P ≠ NP):

(1) APX ⊆ NPO is the class of NPO problems,

such that there exists a deterministic r (n)-

approximate algorithm for some constant func-

tion r (naturally, r (n) ≥ 1 for all n ∈ N.

Similarly, one can define classes log-APX ⊆
poly-APX ⊆ exp-APX ⊆ NPO where r is a logarith-

mic, polynomial, or exponential function.

(2) PTAS ⊆ APX is the class of NPO problems that ad-

here to an deterministic approximation scheme

with polynomial complexity in the size of the in-

put instance, i.e., an deterministic approximation

scheme with time complexity bounded by p(|x|)
for some polynomial p and all input instances x.

Note, that the approximation scheme can still be

exponential in the approximation bound ε, i.e., it

can be 21/(ε−1)p(|x|) or |x|1/(ε−1).

(3) FPTAS ⊆ PTAS is the class of NPO problems

with a fully polynomial deterministic approxi-

mation scheme, i.e., an deterministic approxima-

tion scheme with time complexity bounded by

p(|x|, 1/(ε− 1)) for some polynomial p.

Even more interesting, than the mere inclusion of a

problem in some of these classes, is naturally the neg-

ative result, that a problem can not be approximated

better than any problem in a certain class. This leads

to the notion of completeness in the different approx-

imability classes. To that end, a reduction of one opti-

mization problem to another is needed that preserves

the approximability features. Several such reductions

are proposed in the literature (gap-preserving reduc-

tion [67], AP- or PTAS-reduction [7], E-reduction [78],

F- and P-reduction [35]), here the L-reduction [110] is

[78] Khanna, S., et al. 1999. On syntactic versus computational

views of approximability. SIAM Journal on Computing 28, 1,

164–191.

[35] Crescenzi, P. and Panconesi, A. 1991. Completeness in ap-

40 THE MINIMUM COMMON SUPER-PLAN PROBLEM

employed, that represents essentially the strictest no-

tion of reduction, since it requires that the relative er-

ror of an approximated solution in comparison to an

optimal solution for one problem is linearly related to

the relative error for the other problem:

Let A and B be two optimization problems in NPO.

A is said to be L-reducible to B, in symbols A ≤L B, if

two functions f and g and two positive constants α

and β exist such that,

(1) f : IA → IB maps instances of A to instances of

B, such that for any x ∈ IA, if SA(x) ≠ ∅ then

SB(f (x)) ≠∅.

(2) g : IA × SB → SA maps instances of A and solu-

tions for B to solutions from A, i.e., for any x ∈ IA

and any y ∈ SB(f (x)), g(x, y) ∈ SA(x).

(3) f and g are computable in polynomial time in the

size of their input parameters.

(4) For any x ∈ IA, optB(f (x)) ≤ α optA(x), i.e.,

the quality of the optimal solutions is linearly re-

lated.

(5) For any x ∈ IA and for any y ∈ SB(f (x)), the

relative error of the solutions is linearly related:

|optA(x)−mA(x, g(x, y))| ≤

β |optB(f (x))−mB(f (x), y)|.

It follows from the definition, that if A ≤L B and

B ∈ APX (respectively, B ∈ PTAS), then A ∈ APX (re-

spectively, A ∈ PTAS).

Based on this notion of reducibility, we can now de-

fine the classes of problems that are in one of the

approximation classes and can not be approximated

better: Given a class C of NPO problems (where C

can be the entire class of NPO problems, the class of

polynomial-bounded NPO problems NPO PB, or one of

the approximation classes defined above), a problemΠ is C-hard (with respect to the L-reducibility) if, for

any Π′ ∈ C , Π′ ≤L Π. A C-hard problem is C-complete

(with respect to the L-reducibility) if it belongs to C .

In [7] it is shown that an NPO-complete problem (an

NPO PB-complete problem) can not be approximated

within 2nε
(nε) for any ε > 0 unless P = NP.

proximation classes. Information and Computation 93, 2,

241–262.

[110] Papadimitriou, C. H. and Yannakakis, M. 1991. Optimiza-

tion, approximation, and complexity classes. Journal of

Computer and System Sciences 43, 425–440.

[7] Ausiello, G., et al. 1999. Complexity and Approximation:

Combinatorial Optimization Problems and their Approxima-

bility Properties. Springer Verlag, Berlin.

5.2 Minimum Common Super-Plan

The previous section establishes a framework in which

the problem how to find an optimal query plan for

the simultaneous evaluation of multiple queries can

be formalized and investigated:

The problem to find the optimal query plan for the

simultaneous evaluation of multiple queries under a

given evaluation model E, referred to as minimum

common super-plan for a set of queries, is formally

defined as an optimization problem MCSP = (I =
℘(QE), S, cE , min) comprised by

(1) the input instances I = ℘(QE) for the problem,

i.e., all sets of valid queries x ∈ E,

(2) the function S associating with each input set of

queries x ∈ ℘(QE) the set of feasible solutions

of the MCSP problem under that input, i.e., the set

of query plans that evaluate exactly all queries

from x, formally, for all x ∈ I, S(x) ⊆ PE and for

each p ∈ S(x) and for all q ∈ x, p ∈ tE(q) and

there exists no q′ ∈ QE\x such that p ∈ tE(q′),

(3) the objective function cE assigns to each query

plan (and thus to each solution) a cost used to

judge the quality of several query plans evaluat-

ing the same queries, and,

(4) the optimization objective min indicating that the

optimal solution has minimal cost with respect to

the objective function cE among all solutions for

a certain input.

A solution for the MCSP is a query plan that allows

the simultaneous evaluation of all queries in the in-

put set with a cost optimal under the cost function

cE of the evaluation model E. Although this defini-

tion seems very natural, the use of queries as input

instances has severe consequences: Each query in the

input instance can be evaluated in multiple ways, re-

flected by the query plans that are associated to it

via the translation function tE of the corresponding

evaluation model E. The number of query plans per

query (representing different strategies for the evalu-

ation of a query) can be in general very large (possibly

even infinite), e.g., for relational queries the number

of (logical) query plans is roughly exponential in the

size of the query as any reasonable order of operators

has to be considered. [120] expands a conventional

[120] Roy, P., et al. 2000. Efficient and extensible algorithms for

multi query optimization. SIGMOD (ACM Special Interest

Group on Management of Data) Record 29, 2, 249–260.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 41

C

A

B
CA B

Figure 5.1: Expanded query plan (cf. [120])

query plan for a relational query to contain all possi-

ble orders of operators as shown in Figure 5.1. This

expanded query plan is exponential in the size of the

original query plan (and therefore in the size of the

query). Based on this expanded query plan a simple

but effective greedy heuristic is proposed to compute

those prefixes of the query plans that are common in

the query set and therefore should be materialized.

Since we are not only interested in common pre-

fixes, but rather in any commonalities among the

queries, the complexity of the problem further in-

creases. As discussed in the following section, for

the evaluation models of interest as proposed in Chap-

ter 4, the complexity of detecting these commonalities

is exponential in the size of the input, hence increas-

ing the complexity of the problem exponentially in the

number of queries, if we assume that there are roughly

exponentially many query plans per query.

Therefore, we believe that it is preferable to con-

sider not all evaluation strategies for a query, but

rather to restrict oneself to a single such strategy rep-

resented by a query plan per query. Although this al-

lows local optimization on the query plans, it is ob-

vious that it precludes certain global optimizations:

Consider e.g., the case where A ö B is very common

among the queries, but without global knowledge an

optimizer can not know whether to join A and B or B

and C first in a query such as A ö B ö C depicted in

Figure 5.1. Even in this simple case, global knowledge

would clearly be helpful. Nevertheless, considering

the inherent complexity of the problem (and in face

of the experimental results shown in Chapter 9) the

restriction to a single evaluation strategy per query is

considered essential in all practical cases.

In the following, we will therefore only consider

this simplified problem, the stable minimum com-

mon super-plan SMCSP problem: The problem to find

the optimal query plan for the simultaneous evalua-

tion of multiple queries according to some evaluation

strategies specified as query plans under a given eval-

uation model E, is formally defined as an optimization

problem SMCSP = (I = ℘(QE × PE), S, cE , min) com-

prised by

(1) the input instances I for the problem, i.e., I =
℘(QE × PE), i.e., an input instance is a set of

queries together with their query plan (for rea-

sons of clarity, it is assumed that the query plans

are evaluating the corresponding query only, i.e.,

that for all instances x ∈ I and for all queries

q, q′ and query plans p with (q, p) ∈ x, p ∈
tE(q′) implies q′ = q).

(2) the function S associating with each input in-

stance x ∈ I the set of feasible solutions of the

MCSP problem under that input, i.e., the set of

query plans that evaluate exactly all queries from

x according to the specified query plan for that

query. Formally, for all instances x = (p, q) ∈ I

and all solutions σ ∈ S(x) ⊆ PE , σ ∈ tE(q),

σ |q ' p, and there exists no q′ ∈ QE\x such

that p ∈ tE(q′).

(3) the objective function cE assigns to each query

plan (and thus to each solution) a cost used to

judge the quality of several query plans evaluat-

ing the same queries,

(4) the optimization objective min indicating that the

optimal solution has minimal cost with respect to

the objective function cE among all solutions for

a certain input.

It is worth noting, that the difficulty of finding a so-

lution for the SMCSP depends noticeably on two ques-

tions:

—How hard is it, to find feasible solutions? The an-

swer to this question depends on the properties of

the underlying graphs of valid query plans. One

can roughly say, the more restricted the structure of

these graphs is, the easier to find feasible solutions.

—How hard is it, to find among these feasible solu-

tions an optimal solution, i.e., what properties does

the cost function adhere to? Under trivial cost func-

tion (e.g., a cost function assigning to all query plans

the same cost) the optimization problem is trivial

once a feasible solution has been found. Interest-

ing cost functions on the other hand, such as a cost

function that assigns cost based on the number of

vertices in the underlying graph of a query plan, lead

to considerable complexity for finding the optimal

solution.

42 THE MINIMUM COMMON SUPER-PLAN PROBLEM

Based on these observations, the following section

provides a classification of problem instances based

on the properties of the underlying graphs allowed in

query plans by the evaluation model and shows well-

studied problems mostly from graph theory that pro-

vide insight in the different complexities of the prob-

lem instances.

5.3 Related Problems

Finding a maximum common substructure of a set

of structures (be it a graph, tree, string, etc.) and

the dual problem of finding a minimum common su-

perstructure, i.e., a structure entailing all the input

structures as substructures, has been investigated for

some time now: Starting from the famous problems of

graph and subgraph isomorphism (e.g., [134; 93]), the

problem of finding the maximum common subgraph

(mcs) of two graphs has received considerable atten-

tion and is proven not only to be NP-hard but also to

be hard to approximate. [75] shows several variants

of this problem together with their approximability

properties. In particular, the general maximum com-

mon subgraph problem is shown to be as hard to ap-

proximate as the maximum clique problem, i.e., APX-

hard. The best known approximation algorithm for

mcs is O(n/ log n2)-approximate. Restricting the fea-

sible solutions to connected subgraphs, the problem

becomes even harder to approximate [142]: In [75] it

is shown that the maximum connected common sub-

graph (mccs) is NPO PB-complete, i.e., cannot be ap-

proximated within nε for any ε > 0 (unless P = NP).

[22] introduces the notion of the minimum common

super-graph (MCS) of two graphs, i.e., a graph that con-

tains both graphs as subgraphs and is minimal among

such graphs. It is shown that the general MCS problem

[134] Ullmann, J. R. 1976. An algorithm for subgraph isomor-

phism. Journal of the ACM 23, 1, 31–42.

[93] McGregor, J. J. 1982. Backtrack search algorithms and the

maximal common subgraph problem. Software-Practice

and Experience 12, 23–34.

[75] Kann, V. 1992. On the approximability of the maximum

common subgraph problem. In Proc. 9th Symp. Theoretical

Aspects of Computer Science. Number 577 in Lecture Notes

in Computer Science. Springer Verlag, 377–388.

[142] Yannakakis, M. 1979. The effect of a connectivity require-

ment on the complexity of maximum subgraph problems.

Journal of the ACM 26, 4, 618–630.

[22] Bunke, H., et al. 2000. On the minimum common super-

graph of two graphs. Springer Computing 65, 1, 13–25.

can be reduced to the mcs problem and is therefore

at least as difficult to approximate as the mcs prob-

lem. Being already NP-hard for two graphs, it is obvi-

ous that finding a minimum common super-graph is

also NP-hard for a set of graphs.

Since finding a minimum common subgraph has

proven to be intractable and even hard to approx-

imate, more restricted structures, such as trees or

graphs, have been investigated: The problem of find-

ing a shortest common super-string of a set of strings

is known to be NP-complete [90] and APX-complete

[16], but several approximation algorithms have been

proposed [132; 133; 5], the best of which achieves a

2.5 performance guarantee. While the smallest super-

tree problem for two trees can be computed in poly-

nomial time [139; 59], the problem for more than two

trees is NP- and APX-complete [7].

Table 5.1 summarizes the related problems to-

gether with their complexity if the size of an input in-

stance is 2 or unbounded respectively. Note, that even

for rather simple structures, the problem of finding a

common substructure becomes NP-hard when the in-

put size is not bounded.

In the following, it will be shown that the mccs prob-

lem can be reduced to a certain instance of the SMCSP

with a specific cost function. Therefore, the SMCSP is

NP-hard and NPO PB-complete as well, if the evalua-

tion model does not restrict the structure of the query

plans. The same results hold also if only acyclic query

[90] Maier, D. and Storer, J. A. 1977. A note on the complexity

of the superstring problem. Tech. Rep. 233, Princeton

University. Oct.

[16] Blum, A., et al. 1994. Linear approximation of shortest

superstrings. Journal of the ACM 41, 630–647.

[132] Turner, J. S. 1989. Approximation algorithms for the short-

est common superstring problem. Information and Compu-

tation 83, 1 (Oct.), 1–20.

[133] Ukkonen, E. 1990. A linear-time algorithm for finding ap-

proximate shortest common superstrings. Algorithmica 5,

313–323.

[5] Armen, C. and Stein, C. 1994. A 2 3
4 -approximation algo-

rithm for the shortest superstring problem. Tech. Rep. PCS-

TR94-214, Department of Computer Science, Dartmouth

College, Hannover (NH).

[139] Yamaguchi, A., et al. 1997. An approximation algorithm for

the minimum common supertree problem. Nordic Journal

of Computing 4, 3, 303–316.

[59] Gupta, A. and Nishimura, N. 1998. Finding largest subtrees

and smallest supertrees. Algorithmica 21, 2, 183–210.

[7] Ausiello, G., et al. 1999. Complexity and Approximation:

Combinatorial Optimization Problems and their Approxima-

bility Properties. Springer Verlag, Berlin.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 43

|x| = 2 |x| unbounded
problem complexity complexity approximability

shortest common super-string [90; 132; 133; 16; 5] linear NP-hard APX-hard
minimum common super-tree [139; 59] polynomial NP-hard APX-hard
minimum common super-graph [22] reducible to maximum common subgraph
maximum common subgraph [75] NP-hard NP-hard APX-hard
maximum common connected subgraph [142; 75] NP-hard NP-hard NPO PB-hard

Table 5.1: Related problems (let |x| be the size of an input instance)

plans are allowed, as in the relational and the SPEX

evaluation model. It is important to stress, however,

that these reductions are based on choosing the cost

function in a particular way and therefore do not ap-

ply, if the cost function used is of another kind. It

remains an open issue, whether interesting non-trivial

classes of cost functions can be identified, that allow

to approximate the SMCSP problem within a bounded

performance guarantee.

As stated above, to reduce the mccs to the SMCSP

problem, the evaluation model must be chosen care-

fully. First, it is required that arbitrary graphs are al-

lowed as query plans. The graphs may be restricted to

be acyclic (since the acyclicity does neither harm the

reduction, nor the complexity and approximability of

the mccs, as shown in [141]) or connected, but may

not be restricted to, e.g., planar graphs, trees, or path

graphs. Both evaluation models described in Chap-

ter 4 fall into this class, since the only substantial re-

striction on the kind of graphs allowed is in both cases

the acyclicity.

Second, the cost function of the evaluation model

has to ensure that the maximum common connected

subgraph of the set of input graphs is always included

in an optimal solution (we understand “G1 includes

G2” in the following as: there is a subgraph in G1 that

is isomorphic to G2), i.e., any solution not containing

it must be of penalized. In the case, where arbitrary

graphs are allowed as query plans, it can be guaran-

teed, e.g., by a cost function κvertices that assigns to

each query plan the number of vertices it contains as

cost, that an optimal solution is a solution containing

the mcs. For acyclic graphs, such a cost function is

not guaranteed to include the mcs in an optimal solu-

tion: Figure 5.2 shows such a case: Both query plans

P1 and P2 include the connected graphs A, B, and C

with 3, 2, and 2 vertices respectively, but in P1 there

is an edge from a vertex in A to one in B and another

[141] Yannakakis, M. 1978. The node-deletion problem for hered-

itary properties. Tech. Rep. 240, Computer Science Labora-

tory, Princeton University.

A

B

3

C

2
 2

(a) P1

A

B

3

C

2
 2

(b) P2

B
 B

2
 2

A

3

A

3

(c) SMCSP

Figure 5.2: Example for a SMCSP not entailing the mccs

of two graphs

edge from a vertex in A to one in C , whereas in P2 the

edges run in opposite direction. Therefore, either A

or B and C can be part of a feasible solution of SMCSP

of P1 and P2, since including both A and B or A and

C leads to a cyclic graph. The optimal solution under

κvertices is depicted in Figure 5.2(c): since including A

precludes including both B and C it is preferable un-

der such a cost function to include B and C but not A,

although A is clearly the mccs of the two graphs (since

it is connected).

To insure for acylic as well as for cyclic graphs,

that the mccs is always included in the solution of the

SMCSP requires a slightly different cost function: κmccs

assigns to each query plan a cost based on the inverse

of the number of vertices in the largest subgraph that

is connected and shared by all queries that evaluate

the query plan. Formally, under an evaluation model

E let C(G) be the largest connected component of the

graph G, edges(v ∈ V) = {e ∈ E : ∃y ∈ V : e =
(x, y) ∨ e = (y, x)} the incident edges of a vertex v ,

and Q =
⋃

e∈Ex qx(e) then

κmccs :(Gx = (Vx , Ex), τx , πx , qx) ∈ PE 7→

1/(1+
∣∣C(({v ∈ Vx | ∃e ∈ edges(v)∀q ∈ Q :

p ∈ tE(q) =⇒ q ∈ qx(e))},

{e ∈ Ex | ∀q ∈ Q :

p ∈ tE(q) =⇒ q ∈ qx(e)}))
∣∣).

This cost function guarantees that the mccs of a set

44 THE MINIMUM COMMON SUPER-PLAN PROBLEM

of graphs is always included in an optimal solution

of the SMCSP under κmccs: the graph constructed by

sharing the mccs and adding all remaining edges and

vertices from the original query plans without sharing

is acyclic and therefore a query plan (if the query map-

pings of the edges are adapted accordingly) and has

the lowest possible cost, since there can be no larger

connected component shared among all query plans.

Under these cost functions guaranteeing that an op-

timal solution for the SMCSP always includes the mccs

shared among all queries, i.e., in such a way that all

edges of the mccs are assigned to all queries from

the input, it is possible to extract the mccs from an

optimal solution of the SMCSP in polynomial time: it

is the largest connected component in the SMCSP of

the subgraph of an optimal solution of the SMCSP that

is obtained if only edges in the solution are retained,

that are assigned to all queries from the input. Note,

that the largest connected component of a graph can

be obtained in time quadratic in the graph size and

constructing the subgraph containing only edges as-

signed to all input queries is quadratic in the size of

the graph and the input.

This reduction provides that the SMCSP in general

(i.e., for non-restricted evaluation models) is as hard

to solve as the mccs, i.e., NP-hard. Moreover, under

the cost function κmccs, it should be fairly clear that

this reduction is the basis for an L-reduction from

the mccs to the SMCSP. Since a maximization prob-

lem is reduced to a minimization problem, either the

cost function has to be inverted as part of the reduc-

tion or the corresponding maximization problem of

the SMCSP under the inverted cost function has to be

considered. It is easy to convince oneself, that any al-

gorithm providing a solution of the SMCSP with a per-

formance guarantee ε can be used to solve the mccs

within εα for some rational α. Therefore, under the

κmccs the SMCSP also inherits the approximability re-

sults of the mccs problem, i.e., is NPO PB-complete or

not approximable by a (deterministic) polynomial al-

gorithm within nε for any ε > 0 unless P = NP.

Summing up, the comparison with related prob-

lems in the field of graph theory shows that the gen-

eral SMCSP problem is NP-hard and NPO PB-complete.

But theses results depend on choosing an evaluation

model with very specific properties, in particular with

a special purpose cost function. Under more reason-

able cost function, such as κvertices the problem can

only be shown to be NP- and APX-hard, as the mcs

problem can be reduced to it. Whether there are

classes of cost functions, that allow a better approx-

imation or restrictions is an open issue. Further im-

provements might be achieved if one restricts the kind

of query graphs that are valid under a certain eval-

uation model, although this might severely limit the

expressiveness of the corresponding queries. There-

fore, neither of the two evaluation models discussed

in Chapter 4 restricts the query graphs beyond the

acyclicity requirement, that does not affect the com-

plexity or approximability results presented in this

chapter.

Based on these results and the definition of the

problem above, the next chapter proposes several

heuristics for solving the SMCSP. The quality of these

approximation algorithms is evaluated experimentally

in Chapter 9, since no reasonable theoretical bounds

for the approximation of the SMCSP can be estab-

lished.

Chapter 6

Heuristics for the Stable Minimum Common

Super-Plan Problem

In this chapter, heuristics for the stable minimum common super-plan problem as defined in the previous

chapter are described and compared with respect to their complexity. In particular, two sets of heuristics are

investigated each based on different assumptions about the evaluation model and therefore the query plans to

be optimized.

Contents

6.1 Strategies for the SMCSP . 45

6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans . 47

6.2.1 Incremental Pair Mergers . 47

6.2.2 Local Search Pair Mergers . 56

6.3 Set Mergers: Algorithms for Merging Sets of Query Plans . 60

6.3.1 Pairwise Set Merger: Example for the Clustered Strategy . 61

Founded on the definition of the stable minimum

common super-plan SMCSP problem presented in the

previous chapter, the following illustrates several

heuristics for finding a solution for the SMCSP that is

hopefully near the optimal one. Recall, that the SMCSP

can not be approximated within nε for any ε > 0,

therefore no performance guarantees for the quality

of the heuristics discussed here are given. In Chap-

ter 9 the heuristics are however extensively evaluated

under a realistic evaluation model, in particular for re-

alistic cost functions as established in Chapter 8.

Before the actual heuristics can be discussed, the

steps of the optimization process are sketched in the

following section.

6.1 Strategies for the SMCSP

Given a set of queries, we apply the following steps to

optimize them into a single query plan that allows the

efficient evaluation of all the input queries simultane-

ously:

(1) First the queries are translated into a (local)

query plan and optimized. As discussed in the pre-

vious chapter, a solution to the SMCSP will be sta-

ble in respect to the original query plan for a query,

i.e., the order and type of operators in a query will

not be changed. Although, this precludes certain opti-

mizations on the queries based on global knowledge,

it makes the problem far more feasible for practical

cases. Consequentially, one might often be better of,

not to perform optimizations on the queries that are

based on local heuristics. For the SMCSP problem, it

is often more important that the initial query plans

provide retain as much as possible any similarities in

the queries. Therefore, a good choice proves to be

a rather canonical form of a query plan, that might

not be the optimal query plan for a query based on

isolated knowledge about the query, but increases the

45

46 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

chance that similarities in the queries are reflected in

the query plan. Such a canonical form can, e.g., elim-

inate syntactical variants of the same semantic con-

struct. Constructing a canonical form does not, how-

ever, preclude all local optimizations, e.g., the com-

paction of common prefixes of branches shown in Fig-

ure 2.14 can be applied safely, since it applies in all

cases.

(2) To lower the number of query plans that have to

be merged with each other, one can reduce the number

of query plans or cluster the query plans in such a way

that only query plans that are sufficiently similar will

be merged with each other:

In particular, if it is known that the query plans are

likely to be very similar, identical query plans or query

plans that are subgraphs of another one should be de-

tected a priori. Note, that detection of identical query

plans is based on graph isomorphism, for which no

polynomial time algorithm is known, but can be ap-

proximated efficiently. The detection of query plans

that are subgraphs of another one is even NP-hard,

since it is based on subgraph isomorphism. Never-

theless, this duplicate merging becomes even more

promising, if one realizes, that many query plans

might differ only in certain properties of some ver-

tices, but not in the operators assigned to the vertices.

E.g., query plans often differ only in the constant value

within a selection or label operator. In such a case,

if the evaluation model allows the merging of these

properties, even such query plans can be merged a pri-

ori.

Clustering the query plans into sets of sufficiently sim-

ilar query plans and solving the SMCSP for the entire

set of query plans, by constructing a solution from so-

lutions on the clusters without sharing among these

solutions can reduce the processing time by the num-

ber of clusters obtained. This is especially promising,

if the input queries are known to adhere to a clus-

tered distribution. Clustering of graphs in general, has

been received some attention in recent years, in partic-

ular in the context of biological data and non-standard

databases, cf. [21].

(3) This reduced set of canonical query plans can

now be merged. There are essentially three different

strategies to merge a set of query plans:

Sequential strategy. All query plans are considered

[21] Bunke, H. 2000. Recent developments in graph matching. In

Proc. of the International Conference on Pattern Recognition

(ICPR). Vol. 2.

sequentially and merged one after another into an

ever growing (multi-) query plan. For each query

plan, all operators originating from one of the already

merged queries are considered.

Clustered strategy. Instead of considering for all

query plans all other (already merged) query plans,

query plans are merged only with query plans of suffi-

cient similarity. The extreme case is that a query plan

is only merged with the query plan where the expected

gain (measured by means of the objective function of

the SMCSP) is the highest.

Global strategy. Instead of considering the query

plans isolated from each other as in the previous

cases, it might be more efficient to detect subgraphs

that are frequently occurring among the query plans.

Based on these frequent subgraphs, an (approximate)

solution of the SMCSP can be constructed. Frequent

subgraph or substructure discovery has been investi-

gated quite extensively [82; 70; 69; 68], in particular

in the context of biological data and semi-structured

data [135].

In this work, we concentrate on the sequential strat-

egy, although an algorithm based on the clustered

strategy is discussed shortly in the following section.

To define the strategy for merging a set of query plans

sequentially in an increasing multi-query plan, two

questions have to be answered: In which order will

the query plans be considered and how is a query plan

merged into the query plan resulting from the merg-

ings of the previous query plans. An exact solution

based on the sequential strategy would therefore re-

quire to merge the n query plans of average size l in

all possible n! permutations, where for each permuta-

tion the merging requires roughly O(n×(n×l)l) steps.

[82] Kuramochi, M. and Karypis, G. 2002. An efficient algorithm

for discovering frequent subgraphs. Tech. Rep. 02-026,

Computer Science Departement, University of Minnesota.

[70] Inokuchi, A., et al. 2002. General framework for mining fre-

quent patterns from structures. In Proc. of the International

Workshop on Active Mining (AM 2002). 23–30.

[69] Inokuchi, A., et al. 2003. Complete mining of frequent

patterns from graphs: Mining graph data. Machine Learn-

ing 50, 3, 321–354.

[68] Inokuchi, A., et al. 2000. An apriori-based algorithm for

mining frequent substructures from graph data. In Proc.

of the European Conference on Principles and Practice of

Knowledge Discovery and Data Mining (PKDD2000). 13–23.

[135] Wang, K. and Liu, H. 1999. Discovering structural associ-

ation of semistructured data. IEEE Transactions on Knowl-

edge and Data Engineering (TKDE).

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 47

Clearly, such an exact solution is feasible only for very

small numbers of query plans and very small query

plans. Therefore, in the following several approxima-

tion algorithms for both problems are proposed and

discussed based on their complexity and properties.

In Chapter 9 an experimental evaluation of these ap-

proximation algorithms based on the SPEX evaluation

engine discussed in Chapter 7 shows that in practical

cases at least some of the heuristics can give good so-

lutions in reasonable time, in particular if compared

to a tree prefix merger as used in previous work.

The following discussion is grouped into algorithms

that are used to determine the order in which the

query plans from the input are considered and algo-

rithms that merge a query plan into another query

plan (that might be already a query plan for evaluat-

ing multiple queries). The first group of algorithms is

referred to as set mergers, the second as pair mergers

corresponding to the number of query plans they op-

erate on. Since each set merger uses an (arbitrary) pair

merger to perform the actual merging of the query

plans, once the order is determined, the pair mergers

are presented first.

6.2 Pair Mergers: Algorithms for

Merging Pairs of Query Plans

As stated above, a pair merger is an algorithmA that

takes as input two query plans N and M evaluating

disjunct sets of queries QN and QM and constructs

a new query plan P that is a feasible solution for the

SMCSP with input { (q, p)
∣∣ q ∈ QN∪QM ∧ (p ' N|q ∨

p ' M|q) }. If both QN and QM are singleton sets,

the algorithm constructs a solution of the SMCSP with

input N and M . In the following, we assume without

loss of generality that |N| ≤ |M|.
In the following, two classes of pair mergers are pre-

sented differing in what operations must be supported

by the evaluation model the input plans are part of:

—Pair merger that construct a solution by merging

vertices from the input plans step-by-step are called

incremental pair mergers. There are two assump-

tions underlying these heuristics: First, during the

sequential processing of the vertices, it must at any

time be possible, to decide, whether a partial solu-

tion can be completed to a full solution by consid-

ering the remaining vertices only. In other words, it

must be decidable in polynomial time in the size of

the input, given a partial solution, whether there is

some valid query plan that is a full solution and that

this partial solution can be completed to. Further-

more, the cost function used as objective function

of the SMCSP must provide means to compute the

cost of a partial solution.

—The other class of pair mergers proposed here is

based on the idea to start from a random solution

searching in the “neighborhood” of that solution for

a better one. The “neighborhood” of a solution are

all solutions that can be constructed from the orig-

inal one by applying some transformation function.

Following common notation [99], these algorithms

are called local search pair mergers. The main ad-

vantage of this strategy is that at any time only

full solutions are considered overcoming the restric-

tions discussed for incremental pair merger. How-

ever, there must be some meaningful way to trans-

form a solution into another one. If either the eval-

uation model used does not adhere to the require-

ments of the incremental pair mergers or construct-

ing a random solution is clearly easier than con-

structing a good solution by means of an incremen-

tal pair merger, a local search pair merger is prefer-

able to an incremental one.

In Chapter 9 one other pair merger is used for rea-

sons of comparisons: the trivial or plain pair merger

that constructs the solution P by simply copying all

vertices and edges together with their respective map-

pings for τ , π , and q from P1 and P2 into P . The result-

ing query plan obviously evaluates all queries from Q1

and Q2, but there is no sharing of operators between

queries from the two sets.

Table 6.1 gives an overview over all pair mergers

with a short characterization and their complexity.

6.2.1 Incremental Pair Mergers

As discussed above, an incremental pair merger

merges vertices from the input plans N and M incre-

mentally into a solution P . The general idea of these

algorithms is to consider for each vertex v from N

“interesting” vertices w in M that can be merged with

v .

The variants proposed in the following mostly dif-

fer with respect to the following two questions: in

[99] Michalewicz, Z. and Fogel, D. B. 2000. How to Solve It: Mod-

ern Heuristics, 1st ed. Springer Verlag.

48 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

pair merger principle complexity

exhaustive computes all solutions O(χ(N, M)|N|×(T (cost)+T (merge)+
T (validCandidates)))

tree prefix tree-shaped plans, prefixes only O(N × (max(deg(M), |S|)+ T (cost)+
T (merge)))

graph prefix acyclic plans, prefixes only O(max(deg(M), |S|)|N| × (T (cost) +
T (merge)))

initial greedy best gain heuristic, considers ver-

tices from N and candidates sepa-

rately

O
(
N × (χ(N, M) × (T (cost) +

T (merge))+ T (validCandidates))
)

progressive greedy best gain heuristic, considers pairs

of vertices from N and candidates

O
(
N2 × (χ(N, M) × (T (cost) +

T (merge))+ T (validCandidates))
)

random selects random vertex from N and

random candidate

O
(
N × (T (cost) + T (merge) +

T (validCandidates))
)

deterministic hill-climber local search, deterministic neigh-

bor selection

O
(
τ× ι× (Trandom+ν(N, M)× (Ttrans+

T (cost)))
)

stochastic hill-climber local search, probabilistic neighbor

selection

O
(
τ× ι× (Trandom+ν(N, M)× (Ttrans+

T (cost)))
)

simulated annealer local search, probabilistic neighbor

selection with decreasing probabil-

ity

O
(
τ × rmax × (Trandom + ν(N, M) ×

(Ttrans + T (cost)))
)

Table 6.1: Comparison of pair mergers (for the notations, refer to the specific sections)

what order are the vertices of N considered and what

are “interesting” vertices for merging with a vertex

from N and how are these vertices ordered? Aside

of these differences, all incremental pair merger have

a very similar structure shown in Figure 6.1: The

pair-smcsp function takes as input two query plans

N and M and returns a query plan P that is a fea-

sible solution for the SMCSP with input { (q, p)
∣∣ q ∈

QN∪QM ∧ (p ' N|q ∨p ' M|q) } as stated above. The

actual search is performed by findCommonPlan which

takes as input two query plans N and M and a list of

vertices R ⊂ VN . It returns a query plan M′ obtained

by merging all vertices from R with “interesting” ver-

tices from M according to the specific heuristic.

In the following, we denote a sequence similar

to a set but with angle brackets and enhanced by

the order in which the elements are ordered, e.g.,

〈 v | v ∈ VN 〉≤ is the sequence of all vertices in N

topologically sorted by some partial order ≤. If no

order is given for the sequence, the elements are ar-

bitrarily ordered. 〈〉 denotes the empty sequence.

To access the first element (respectively the remain-

ing elements) of a sequence S, head(S) (respectively

tail(S)) is used.

cost denotes some implementation of the cost

function cE part of the evaluation model E used. It is

assumed that cost can compute not only the cost of

full solutions but also the cost of partial solutions, as

discussed above. Chapter 8 details several cost func-

tions with different complexities.

Finally, the merge function describes how a vertex

v ∈ N is merged with a vertex w ∈ M ∪ {v}. For

ease of presentation, the case where v is not merged

with any vertex in M but rather added as a new ver-

tex is represented by merging v with v . Figure 6.2

shows an outline of the actual merging algorithm: The

query plan M′ containing the merging from v to w is

constructed by adding all edges between v and a ver-

tex z ∈ N that is already merged as edges between w

and −→z updating also the queries that edge is part of.

Only if the v = w a new vertex with the same opera-

tor and properties as v is inserted into the resulting

query plan at the beginning of the construction. In

that case, also the edges are added to the new vertex.

Given constant access to −→z for any vertex z and an ef-

ficient representation of the graph structure of a query

plan with linear-time iteration over the incident edges

of a vertex and constant or amortized constant test

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 49

1 funct pair-smcsp(N, M) ≡
2 findCommonPlan(〈 v | v ∈ VN 〉 , N, M) .

3

5 funct findCommonPlan(R, N, M) ≡
6 if (R = 〈〉)
7 then M

8 else Mbest ← N ∪M

9 v ← head(R)

10 while (not all “interesting” vertices in M for merging with v have been considered) do

11 w ← next “interesting” vertex in M for merging with v

12 M′ ← merge(v, w, N, M)

13 M′ ← findCommonPlan(tail(R), N, M′)

14 if (cost(M′) < cost(Mbest))

15 then Mbest ← M′ fi

16 od

17 Mbest

18 fi .

Figure 6.1: Skeleton of an incremental pair merger

whether two given vertices are adjacent as described

in Chapter 10, this function can be implemented in

O(deg(N) ≤ |N|) where, for a query plan P , deg(P) is

the degree of underlying graph.

For convenience, we abbreviate the test whether two

vertices v and w can be merged by a boolean function

mergeable that returns true if the same operators are

assigned to v and w and their properties, if they exist,

can be merged into a new one:

1 funct mergeable(v, w) ≡
2 τ(v) = τ(w)∧π(v) = π(w)∧
3

(
∃r ∈ RE : r = π(v) =⇒

4 ∃r ′ ∈ RE : r ′ = µE(π(v), π(w))
)

.

Assuming merging two properties is a constant op-

eration, this test can be performed in constant time.

Based on the skeleton from Figure 6.1, the follow-

ing sections detail the four incremental pair mergers

that are each using different answers to the questions

discussed above: (1) the exhaustive pair merger, that

considers all possible mergings from N into M , the

prefix pair merger for which only common prefixes

are interesting for merging, (2) the greedy pair merger

who tries to approximate a good solution by merging

always those vertices next that deliver the best gain

if merged, and, for comparison, (4) the random pair

merger choosing mergings arbitrarily.

The differences between the algorithms

are described by means of two functions,

sortVertices(N, M) that returns a sequence

of vertices from N ordered according to the

specific heuristic of the specific algorithm and

interestingCandidates(v, N, M) that returns a

sequence of vertices from M that are “interesting” for

merging with v ∈ VN . Note, that any vertex that is

“interesting” for merging with v must be allowed for

merging with v .

As detailed above, it is required that there is some

means specific to the evaluation model, to determine

whether the incomplete query plan resulting from a

merging of v with some vertex in M can still be

completed to a full solution. This is facilitated here

by means of a function validCandidates(v, N, M)

that returns all vertices in M that can be merged

with v such that the result can be completed to a

full solution. χ(N, M) = max{ n ∈N | ∃v ∈ N :

n = |validCandidates(v, N, M)| } ≤ |M| denotes the

maximum number of vertices in M valid for merging

with a vertex in N and is bounded by |M|.

To illustrate this function, recall the query plans for

the XML streams proposed in Section 2.3.2 and 4.3 to-

gether with their evaluation model X. Only acyclic

graphs can constitute a valid query plan for X. For a

query plan P whose underlying graph is acyclic, let <P

be a partial order on the vertices of P , such that, for

all vertices v, w ∈ VP , v <P w ≡ ∃n ∈ N, v1, . . . , vn :

v = v1 ∧w = vn ∧ (v1, v2), (v2, v3), . . . , (vn−1, vn) ∈

50 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

1 funct merge(v, w, N = ((VN , EN), τN , πN , qN), M) ≡
2 M′ = ((VM′ , EM′), τM′ , πM′ , qM′)← M

3 if v = w

4 then let v′ be a new vertex

5 VM′ ← VM′ ∪ {v′}
6 τM′ ← τM′ ∪ {v′ 7→ τN (v)}
7 if (∃r ∈ RE : r = πN (v))

8 then πM′ ← πM′ ∪ {v′ 7→ r} fi

9 v ← v′

10 fi

11

13 for each z ∈ { y ∈ VN
∣∣ (v, y) ∈ EN } do

14 if (∃y ∈ VM′ : −→z = y)

15 then if (w, −→z) ∈ EM′

16 then qM′((w, −→z))← qM′((w, −→z))∪
17 qN (v, z)

18 else EM′ ← EM′ ∪ {(w, −→z)}
19 qM′((w, −→z))← qN (v, z)

20 fi

21 fi

22 od

23

25 for each z ∈ { y ∈ VN
∣∣ (y, v) ∈ EN } do

26 if (∃y ∈ VM′ : −→z = y)

27 then if (−→z , w) ∈ EM′

28 then qM′((−→z , w))← qM′((−→z , w))∪
29 qN (z, v)

30 else EM′ ← EM′ ∪ {(−→z , w)}
31 qM′((−→z , w))← qN (z, v)

32 fi

33 fi

34 od

35 M′ .

Figure 6.2: Algorithm for merging two vertices

1 funct validCandidatesX(v, N, M) ≡
2 C ← { w ∈ M | mergeable(v, w) }
3 for each w ∈ { x ∈ N | ∃y ∈ M : y = −→x } do

4 if w <P v

5 then C ← C\{ y ∈ M
∣∣ y ≤M

−→w } fi

6 if v <P w

7 then C ← C\{ y ∈ M
∣∣ −→w ≤M y } fi

8 od

9 C ← C ∪ {v} .

Figure 6.3: Finding vertices in M valid for merging

with v under the evaluation model X

EP , i.e., v <P w, if there is a path from v to w.

For this evaluation model validCandidates is

shown in Figure 6.3: The valid vertices w for merg-

ing with v are initialized to all vertices that have the

same type as v and the property assigned to w can be

merged with the one assigned to v , if there are prop-

erties assigned to them at all. Among these vertices

only those vertices w are retained such that a merg-

ing of v with w does not create a cycle in the graph.

This can be ensured, if all ancestors of vertices −→w ∈ M

that are merged to an ancestor w ∈ N of v and all

descendants of vertices −→z ∈ M that are merged to an

descendant z ∈ N of v are removed from the initial

set as illustrated in Figure 6.4, where black indicates

the initial setup, blue possible mergings for v , and

red the consequential cyclic additions. The lines end-

ing in dots indicate mergings and the gray triangles

the descendants resp. ancestors of z and w. Neither
−→v 1 nor −→v 2 in Figure 6.4 are valid for merging with v ,

since either of the two mergings results eventually in

a cycle. It is important to notice, that conventional

cycle detection algorithms, such as [125], can not be

applied since the cycle might be created only later in

the processing. In the example, only once the vertex

x ∈ N is also merged to a vertex in M a cycle occurs

regardless of how x is added to M (even if it is added

without sharing). This cycle avoidance algorithm can

be implemented linear in the number of vertices in M

(by tagging all vertices in M that have been considered

once as descendant or ancestor of some merged ver-

tex) and is therefore as efficient as the best dynamic

cycle detection algorithms [125], i.e., cycle detection

algorithms in face of changing graphs as in this case.

Nevertheless, it is rather costly, since it is linear in

M and M increases with the number of query plans

merged as discussed in Section 6.3.

It should be emphasized again, that this method

of determining a valid pair of vertices for merging is

specific to the case, where the only restriction on the

structure of a query plan is, that it is acyclic. For evalu-

ation models, that use other means to determine what

a valid query plan is, different methods for determin-

ing these pairs are required, if there are any.

[125] Shmueli, O. 1983. Dynamic cycle detection. Information

Processing Letters 17, 4, 185–188.

[125] Shmueli, O. 1983. Dynamic cycle detection. Information

Processing Letters 17, 4, 185–188.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 51

w

x

v

z

w

v
1

x

v
2

z

N M

Figure 6.4: Avoiding cycles

Exhaustive Pair Merger

The only pair merger that computes the optimal so-

lution, is the exhaustive pair merger. Following chap-

ter 5, the SMCSP is NP-hard, therefore any determin-

istic algorithm returning an optimal solution for the

SMCSP is exponential. As the name indicates, this pair

merger exhaustively computes all possible mergings

from N into M and selects the best.

Since all mergings are computed, the order in which

the vertices are considered is not relevant. Therefore,

the exhaustive variant of sortVerticesexh(N, M) ≡
〈 w | w ∈ VN 〉 returns the vertices in no particular

order.

For the same reason, the implementation

of interestingCandidatesexh(v, N, M) ≡
〈 w | w ∈ validCandidates(v, N, M) 〉 is simi-

larly trivial returning an arbitrary-ordered sequence

of those vertices that can be merged with v .

With these implementations for sortVerticesexh

and interestingCandidatesexh, the skeleton algo-

rithm from Figure 6.1 computes an optimal solution

in time

O(χ(N, M)|N| × Tbase)

where Tbase = T (validCandidates) + T (cost) +
T (merge) and, for an algorithm A, T (A) is the time

complexity of A. In practical cases, one can observe

that the number of valid merge candidates for most

vertices from N is clearly smaller than |M|, since only

vertices assigned to the same operator and a property

that can be merged with the property of the vertex

from N are valid. Assuming an equal distribution of

the types and no properties assigned to the vertices,

the complexity shrinks to roughly

O
(
|M|
|OE|

|N|
× Tbase

)
,

where OE is the set of operators in the evaluation

model E. If only acyclic query plans are considered

valid (as in the evaluation models shown in Chapter 4),

this number shrinks even more, as some vertices are

not any more valid candidates for merging, since such

mergings would result in cycles.

One of the more important optimizations on ex-

haustive algorithms is the branch-and-bound tech-

nique, where branches of the search tree for which

a partial solution has already higher cost than the

best known full solution are skipped. But branch-and-

bound optimization can only be applied if the cost

function used is monotonic in the sense, that adding

additional mergings to a partial solution can not re-

sult in lowering the cost, but either leaves the cost

unchanged or increases it. If the cost function ad-

mits to this criteria, a simple branch-and-bound test

can be inserted before line 13 of findCommonPlan:

if cost(M′) > cost(Mbest) then continue fi. Such

a branch-and-bound optimization can be further im-

proved, if one considers both the vertices from N and

the candidates for merging in such an order that solu-

tions that are likely to have a low cost are generated

early. The same heuristics for ordering the vertices in

a promising way can be used as for the greedy pair

merger discussed below.

Prefix Pair Merger

In contrast to the exhaustive pair merger discussed

previously, the prefix pair merger is very efficient but

produces in most cases equally poor solutions. As the

name suggests, the prefix merger merges only com-

mon prefixes of the input plans. There are two vari-

ants of this merger differing in the assumptions they

make about the structure of the query plans:

The first variant, similar to previous optimization

techniques for multiple XML queries [4; 28], is referred

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of informa-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[28] Chan, C.-Y., et al. 2002a. Efficient filtering of XML docu-

ments with XPath expressions. The VLDB Journal (Special

Issue on XML Data Management).

52 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

to as tree prefix pair merger and assumes that a query

plan is tree-shaped and at any branch it is assumed

that for each child vertex in the first query plan N

there is either no or a unique child vertex in M that can

be merged with it. Whether there is such a child ver-

tex and which it is, can be determined in time at most

linear in the number of children, in particular without

descending into the branches beyond the level of the

children. Furthermore, it is assumed that a query plan

constructed by using these kind of mergings only is

always valid.

Figure 6.5 shows how these assumptions trans-

late into an algorithm for selecting the vertex

from M to be merged with a vertex v ∈ N.

interestingCandidatestree prefix returns always a

singleton sequence that is the only vertex that v will

be merged to. This reflects the determinism in the se-

lection of the vertex w, that v is to be merged into. w

is determined by testing whether the first parent p (it

is assumed there is only one parent, since the query

plans are assumed to be tree shaped, so P should

always either be empty or a singleton set) is already

merged into a −→p . If that is the case, the prefixes of

N and M ending in p respectively −→p are merged and

v can be merged with a child of −→p that is mergeable

to v if there exists such a child. If either the parent

is not merged or there is no such child, the singleton

sequence 〈v〉 is returned, indicating that v is to be

merged into a new vertex in M . There is one special

case, that needs to be treated: a source of the graph

(i.e., the root of the tree). A source vertex of N is

merged with the first source vertex of M found that

is mergeable with it. Again, if the query plans are

tree shaped, there is only one source vertex in M that

is mergeable with a given source vertex in N.

This algorithm is only correct, if the vertices of N

are considered in a topological order, guaranteeing

that a parent is always merged before its children. So

sortVerticestree prefix(N, M) ≡ 〈 v | v ∈ VN 〉<N

orders the vertices in the topological order <N as de-

scribed above.

Observe, that the tree prefix pair merger as de-

scribed above can not be applied to cyclic graphs,

since it relies on the existence of a topological order

on the vertices. But on acyclic query plans the algo-

rithm actually succeeds, but generates solutions that

are in general not optimal, even if one restricts sharing

among query plans to sharing of prefixes. This is due

to the fact that this algorithm assumes that for each

vertex v ∈ N, child of a vertex p ∈ N that is merged

to −→p ∈ M , there is only a single children of −→p that is

mergeable with v (the same applies for the case of the

source vertex).

Better solutions can be produced, if all such chil-

dren are considered. This is the strategy implemented

by the graph prefix pair merger shown in Figure 6.6.

Once again the vertices from N are assumed to be pro-

cessed in topological order (precluding cyclic graphs),

but now all vertices c that are children of a vertex −→p
that is merged to a parent p of v are considered can-

didates for merging with v , if mergeable(c, v). The

special case of the source vertices is handled analo-

gously. Clearly, this algorithm leads to exponential

complexity. On the same lines as the exhaustive pair

merger, the graph prefix pair merger can be improved

by adding a branch-and-bound test and considering

the candidates for a vertex from N in an order such

that promising solutions are generated first, if the un-

derlying cost functions is monotonic with respect to

adding new mergings.

More precisely, let S = { v ∈ M | ¬∃p ∈ M :

(p, v) ∈ EM } be the set of sources of M , then the

complexity of the graph prefix pair merger is

O(max(deg(M), |S|)|N| × (T (cost)+ T (merge)))

in contrast to the quadratic complexity of the tree pre-

fix pair merger

O(N × (max(deg(M), |S|)+ T (cost)+ T (merge)))

Note, that in contrast to all other pair mergers, nei-

ther of the prefix mergers uses validCandidates,

since they assume that the prefix mergings performed

always generate valid query plans, as stated above.

If this restriction does not hold, the selected candi-

date has furthermore to be tested for validity using

validCandidates increasing the complexity accord-

ingly.

As discussed, the main restriction of the tree prefix

pair merger is the poor quality of the solutions it gen-

erates once the query plans do not adhere closely to

the requirements posed by the algorithm. The graph

prefix pair merger on the other hand provides only a

slight improvement over the exhaustive pair merger

with respect to complexity but constructs far infe-

rior solutions. But, if the evaluation model used ad-

mits to the requirements posed by the tree prefix pair

merger, in particular if all query plans that use only

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 53

1 funct interestingCandidatestree prefix(v, N, M) ≡
2 C ← 〈v〉
3 P = 〈 w ∈ VN | (w, v) ∈ EN 〉
4 if P ≠∅
5 then p ← head(P)

6 if (∃w ∈ VM : w = −→p)

7 then for each c ∈ { w ∈ VM | (−→p , w) } do

8 if mergeable(c, v) then C ← 〈c〉
9 break fi

10 od

11 fi

12 else for each c ∈ { w ∈ VM | ¬∃p ∈ VM : (p, w) ∈ EM } do

13 if mergeable(c, v) then C ← 〈c〉
14 break fi

15 od

16 fi

17 C .

Figure 6.5: Finding interestingCandidates in the tree prefix pair merger

1 funct interestingCandidatesgraph prefix(v, N, M) ≡
2 C ← {v}
3 P = 〈 w ∈ VN | (w, v) ∈ EN 〉
4 if P ≠∅
5 then for each p ∈ P do

6 if (∃w ∈ VM : w = −→p)

7 then for each c ∈ { w ∈ VM | (−→p , w) } do

8 if mergeable(c, v) then C ← C ∪ {c} fi

9 od

10 fi

11 od

12 else for each c ∈ { w ∈ VM | ¬∃p ∈ VM : (p, w) ∈ EM } do

13 if mergeable(c, v) then C ← C ∪ {c} fi

14 od

15 fi

16 〈 v | v ∈ C 〉 .

Figure 6.6: Finding interestingCandidates in the graph prefix pair merger

54 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

prefix merging are valid, the tree prefix merger can of-

ten produce reasonable solution in an extremely short

time compared to other heuristics.

Greedy Pair Merger

Implementing a simple greedy heuristic, the greedy

pair merger proves in practical cases to provide a rea-

sonable compromise between the quality of the con-

structed solution and the time for the construction,

cf. Chapter 9.

The greedy pair merger chooses for a vertex v ∈ N

the vertex w from M that is to be merged with v based

on greedy heuristic: Only that w ∈ M , where the cost

of M increases the least, if v and w are merged, is

actually merged with v .

In Figure 6.7, an implementation of the

interestingCandidates function for the greedy

pair merger is shown: It returns the singleton se-

quence containing a valid candidate for merging with

v that has minimal cost among all such candidates.

But in which order should the vertices of N be

considered in such a case? Differing in their answer to

this question, we propose two variants of the greedy

pair merger: The first variant, called initial greedy

pair merger, computes an order among the vertices

of N initially. Therefore, it is assumed that there is

some way to measure the cost of a vertex v ∈ N and

that cost is used as an indication of the expected

gain when v is merged with some vertex in M . In

other words, this variant requires that there is some

function cost(v, N, M), such that cost(v, N, M) ≈
max{ n ∈N0 | ∃w ∈ validCandidates(v, N, M) :

|cost(M) − cost(merge(v, w, N, M))| = n }.
cost(v, N, M) is not required to compute the

exact maximum, just to give an estimation of the best

expected gain for merging v with any vertex from

M . The initial greedy pair merger orders by the value

returned by cost(v, N, M) in descending order, i.e.,

the vertex with the highest value first.

This variant can however not ensure that always the

next best pair of vertices is considered, since the or-

der of the vertices is based on the valid candidates in

the initial graph M only. So if due to some prior merg-

ings, certain vertices are no longer candidates this is

not reflected in the order: E.g, if there are two vertices

v′, v′′ ∈ M that can be merged in the initial graph M

with a vertex v ∈ N, such that the gain when merg-

ing with v′ is γ and the gain when merging with v′′ is

δ < γ, the position of v is determined by γ. Assume

that there are vertices x, y , such that cost(x, N, M) >

cost(v, N, M) = γ > cost(y, N, M) > δ. Then first

x, then v and finally y is merged by the initial greedy

pair merger. If the merging of x now invalidates v′ as

a candidate for merging with v (e.g., as the resulting

query plan could not anymore be complete to a full so-

lution), v is still considered before y and merged with

v′′ since that is the best merging candidate that is still

valid. Merging v and v′′ in turn might invalidate the

best merging of y which would have provided a gain

higher than δ.

Therefore, a more elaborate version of the greedy

pair merger, referred to as progressive greedy pair

merger, is provided in Figure 6.8: It does not com-

pute the order how the vertices in N are to be merged

initially, but rather after each merging the next best

merging is determined by considering all remaining

vertices N with their respective candidates from M .

Note, that this algorithm as well as all the other pair

mergers with the exception of the exhaustive pair

merger can be as easily formulated using iteration in-

stead of recursion but are given in a recursive variant

for ease of presentation.

The disadvantage of the progressive greedy pair

merger is naturally the increased complexity. Whereas

the initial greedy pair merger has the quadratic com-

plexity

O
(
N× (χ(N, M)× (T (cost)+ T (merge))+

T (validCandidates))
)
,

where χ and T are used as above, for the progressive

variant the complexity increases by a factor |N| to

O
(
N2 × (χ(N, M)× (T (cost)+ T (merge))+

T (validCandidates))
)
,

since in all |N| steps all remaining vertices from N are

considered.

The initial variant has a similar complexity as the

tree prefix pair merger except that in each step the

valid candidates have to be computed. Experimental

evaluation (cf. Chapter 9) points to the fact that with

reasonable cost functions under the evaluation model

from Section 4.3, the initial variant provides the better

trade-off between construction time and result of the

constructed solution.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 55

1 funct interestingCandidatesgreedy(v, N, M) ≡
2 var best candidate best, cost of best candidate costbest ←∞
3 for each w ∈ validCandidates(v, N, M) do

4 M′ ← merge(v, w, N, M)

5 if cost(M′) < costbest then

6 costbest ← cost(M′)

7 best← w

8 fi

9 od

10 〈best〉 .

Figure 6.7: Finding interestingCandidates in the greedy pair merger

1 funct findCommonPlan(R, N, M) ≡
2 if (R = 〈〉)
3 then M

4 else Mbest ← N ∪M

5 nbest ← head(R)

6 for each v ∈ R do

7 for each w ∈ validCandidates(v, N, M) do

8 M′ ← merge(v, w, P, M)

9 if (cost(M′) < cost(Mbest))

10 then Mbest ← M′

11 nbest ← v

12 fi

13 od

14 od

15 Mbest ← findCommonPlan(R\{nbest}, N, M)

16 Mbest

17 fi .

Figure 6.8: Progressive greedy pair merger

56 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

Random Pair Merger

The final pair merger proposed in this section is for

comparison only: the order of the vertices as well

as the selection of a candidate among the valid can-

didates for a vertex is randomized. More precisely,

orderVertices(N) returns random sequence of the

vertices in N and interestingCandidate(v, N, M)

returns a singleton sequence containing a random ver-

tex from validCandidates(v, N, M).

The complexity of the random merger differs from

the complexity of the initial greedy pair merger in the

fact that the random choice is assumed to be constant,

therefore the maximum number of valid candidates

χ(N, M) is not influencing the complexity:

O
(
N× (T (cost)+T (merge)+T (validCandidates))

)
Interestingly, for an evaluation model such as X,

presented in Section 4.3, the random pair merger

has the same worst-case complexity as the tree pre-

fix merger, as both T (validCandidates) and deg(M)

are bounded by M , but in most cases the tree prefix

merger actually performs better, as deg(M) is usually

clearly smaller than M whereas T (validCandidates)

is often very near to M for the evaluation model X.

6.2.2 Local Search Pair Mergers

As mentioned above, the incremental pair mergers

(with the exception of the exhaustive merger) require a

way to determine the cost and the validity of a partial

solution, i.e., if a partial solution can be completed to

a full solution. In contrast, the pair mergers discussed

in this section operate on full solutions only, but re-

quire a means to find solutions that are similar to a

given solution.

Basically, these pair mergers are local search algo-

rithms [99], i.e., algorithms that start from several ran-

domly generated solutions and improve these random

solutions by considering other solutions that are suffi-

ciently similar. Two similar solutions are also referred

to as “neighbors” and the set of similar solutions for

a solution as “neighborhood” of that solution.

Figure 6.9 sketches the skeleton of the local search

pair merger: A common query plan for N and M

is computed by generating MAX-TRIES random solu-

tions. Each such solution S is improved by select-

ing an “interesting” neighbor S′ of S and continuing

[99] Michalewicz, Z. and Fogel, D. B. 2000. How to Solve It: Mod-

ern Heuristics, 1st ed. Springer Verlag.

1 funct pair-smcsp(N, M) ≡
2 findCommonPlan(N, M) .

3

5 funct findCommonPlan(N, M) ≡
6 Sbest ← N ∪M

7 r ← 0

8 while r < MAX-TRIES do

9 S ← random solution

10 t ← 0

11 while t < MAX-ITERATIONS-PER-TRY do

12 S′ ← interestingNeighbour(S, M, N)

13 if S′ = S then break

14 else S ← S′ fi

15 t ← t + 1

16 od

17 if cost(S) < cost(Sbest)

18 then Sbest ← S fi

19 r ← r + 1

20 od

21 Sbest .

Figure 6.9: Skeleton of a local search pair merger

the search from S′. This process is repeated until

no further “interesting” neighbor can be found (i.e.,

S′ = S), but at most MAX-ITERATIONS-PER-TRY times

for a single randomly generated solution.

The difference in the local search algorithms pre-

sented in the following, is the definition of an “in-

teresting” neighbor: the deterministic hill-climber se-

lects among all neighbors of a solution the one with

the lowest cost, the stochastic hill-climber selects the

first neighbor that is acceptable with respect to some

acceptance probability based on the relative merit of

the solution, i.e., the difference between the cost of

the neighbor and the base solution. The simulated

annealing algorithm further improves the stochastic

hill-climber by decreasing the acceptance probability

the longer the search takes.

The definition an “interesting” neighbor for a solu-

tion S under input M and N, specified by means of

interestingNeighbour(S, M, N), is clearly depend-

ing on the question how to compute a neighbor. As

discussed above, there must be some way in the

evaluation model to compute, for a given solution,

all solutions that are similar with respect to some

transformation between solutions. In the following,

this transformation is used to provide a function

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 57

1 funct neighbours(S, M, N) ≡
2 N ←∅
3 for each v ∈ VN do

4 x ← −→v
5 S′ ← unmerge(v, x, S, N)

6 for each w ∈
7 validCandidates(v, N, S′)\{x} do

8 S′′ ← merge(v, w, N, S′)

9 N ←N ∪ {S′′}
10 od

11 od

12 N .

Figure 6.10: Computing the neighbors of a solution

using validCandidates

neighbours(S, M, N) that computes the set of neigh-

bors of the solution S for the input N and M .

To illustrate this function, we give a definition

based on validCandidates from the previous sec-

tion. This definition has the virtue of being applicable,

whenever it is possible to test the validity of partial so-

lutions, i.e., if a partial solution can still be completed

to a full one and therefore can be applied to each eval-

uation model that adheres to the requirements posed

by the incremental pair mergers. In Figure 6.10 this

implementation is detailed: Each vertex v from N is

un-merged in S, which is the reverse operation of the

merge function specified in Figure 6.2, so that S′ is

identical to S except for −→v . In S′ all candidates for

merging with v except the vertex originally merged

with v are considered and merged with v resulting in

new solutions that are added to the set of neighbors.

In the following, we denote the maximum size of

the set of neighbors of a solution with input N and

M as ν(N, M) and Ttrans as the time for computing

a single neighbor of a solution. Using this notation,

T (neighbours) = O(ν(N, M) × Ttrans) and, for the

implementation of neighbours from in Figure 6.10,

Ttrans = O(T (merge) + T (validCandidates) +
T (unmerge)).

Deterministic Hill-Climber

The basic local search algorithm, referred to as deter-

ministic hill-climber, uses a non-probabilistic accep-

tance criteria for selecting the “interesting” neighbor:

As Figure 6.11 shows, a solution S′ among all neigh-

bors of S (generated by neighbours) is selected, if it

1 funct interestingNeighbourdet.(S, M, N) ≡
2 Sbest ← S

3 for each S′ ∈ neighbours(S, M, N) do

4 if cost(S′) < cost(Sbest)

5 then Sbest ← S′ fi

6 od

7 Sbest .

Figure 6.11: Finding the “interesting” neighbor for the

deterministic hill-climber

has the lowest cost among all neighbors including S

itself.

The worst-case complexity for a single improve-

ment iteration of the inner loop of the deterministic

hill-climber is the maximum number of solutions in

the neighborhood for a solution under input N and M

times the time Ttrans for constructing a neighbor for

a given solution times T (cost). The inner loop is ex-

ecuted for each of the τ = MAX-TRIALS independent

trials at most ι = MAX-ITERATIONS-PER-TRIAL times.

For each independent trial also a random solution is

generated in time Trandom. If one uses the random pair

merger to generate these random solutions, Trandom =
O(N×(T (cost)+T (merge)+T (validCandidates))).

Therefore, the overall complexity of the deterministic

hill-climber is

O
(
τ × ι× (Trandom + ν(N, M)× (Ttrans + T (cost)))

)
.

The advantage of the algorithm is that it improves

a given solution very quickly, if possible. The down-

side of this quick improvement is that this algorithm

is prune to become stuck inside local optima. Since

never a neighbor with higher or same cost as S is se-

lected, even if the difference in cost is very low, there

is no chance to escape from a local optima in the cost

function.

Stochastic Hill-Climber

This disadvantage is addressed by the remaining two

local search mergers. The stochastic hill-climber im-

proves the deterministic one, by accepting a solution

as “interesting” even if the cost of that solution is

somewhat higher than the cost of the initial solution.

In Figure 6.12, the stochastic variant of

interestingNeighbour is shown. It has an ad-

ditional parameter, here assumed to be a constant,

that is used to determine how much influence the

58 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

1 funct interestingNeighbourstoch.(S, M, N, T) ≡
2 Sbest ← S

3 for each S′ ∈ neighbours(S, M, N) do

4 if random[0, 1) < 1

1+e
cost(S′)−cost(S)

T

5 then Sbest ← S′

6 break

7 fi

8 od

9 Sbest .

Figure 6.12: Finding the “interesting” neighbor for the

stochastic hill-climber

relative merit of a solution S′ with respect to the

original solution S has on the acceptance of S′ as

“interesting”: The higher T is the less influence the

relative merit cost(S′) − cost(S) has, for very high

values of T the stochastic hill-climber degenerates to

a random search. On the other hand, a very low T ,

e.g., T = 1, a neighbor S′ is only accepted if it has a

lower cost than S as in the deterministic hill-climber.

[99] provides a more detailed discussion of the

influence of T . It should be noted, that the choice

of T is clearly not independent of the cost function

used.

The stochastic hill-climber has the same worst-case

complexity as the deterministic hill-climber, i.e.,

O
(
τ × ι× (Trandom + ν(N, M)× (Ttrans + T (cost)))

)
.

But in contrast to the deterministic hill-climber it will

in most practical cases not consider all neighbors of

a solution but only a smaller number, whereas the de-

terministic hill-climber always traverses all neighbors.

A serious problem of the stochastic hill-climber is

often that the acceptance probability remains con-

stant over the entire run of the algorithm. Even at last

step it can happen, that a solution is accepted that is

clearly worse than the current one.

Simulated Annealing

In [80] a technique borrowed from observations on

statistical mechanics, called simulated annealing has

been proposed. The derived local search algorithm im-

proves the stochastic hill-climber by reducing T and

[80] Kirkpatrick, S., et al. 1983. Optimization by simulated an-

nealing. Science 220, 4598, 671–680.

1 funct findCommonPlan(N, M) ≡
2 Sbest ← N ∪M

3 r ← 0

4 T ← Tmax

5 while r < MAX-TRIES do

6 S ← random solution

7 t ← 0

8 repeat

9 T ← Tmax · e−t·c

10 S′ ← interestingNeighbour(S, M, N, T)

11 if S′ = S then break

12 else S ← S′ fi

13 t ← t + 1

14 until T < Tmin

15 if cost(S) < cost(Sbest)

16 then Sbest ← S fi

17 r ← r + 1

18 od

19 Sbest .

Figure 6.13: Skeleton of a simulated annealing

thereby the acceptance ratio over the run of the al-

gorithm. In analogy to statistical mechanics, T is re-

ferred to as temperature of the algorithm and there

are three more parameters, the initial Tmin and the end

temperature Tmax together specifying the temperature

range considered in the algorithm and the cooling ra-

tio c that influences, as the name indicates, the way T

is lowered during runtime.

The general skeleton for a local search merger has

to be slightly adapted as shown in Figure 6.13: The ter-

mination condition of the inner loop is not any more

based on the constant MAX-ITERATIONS-PER-TRY, but

rather on the current temperature in comparison to

the minimal temperature. Furthermore, the tempera-

ture is cooled down after each iteration using a cool-

down formula depending on the number of the itera-

tion t and the cooling ratio c, proposed in [127]

T = Tmax · e−tc .

For interestingNeighbour the same implementa-

tion as for the stochastic hill-climber can be employed.

[127] Spears, W. M. 1996. Cliques, Coloring, and Satisfiability:

Second DIMACS Implementation Challenge. DIMACS Series

in Discrete Mathematics and Theoretical Computer Science,

vol. 26. American Mathematical Society, Chapter Simulated

Annealing for Hard Satisfiability Problems, 533–558.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 59

Again, selecting the parameters Tmax, Tmin and c

is far from trivial. Quoting [127] “these choices in

parameters will entail certain tradeoffs. For a given

setting of MAX-TRIES, reducing Tmin and/or increasing

Tmax will allow more ... [iterations] to be made per

independent attempt, thus decreasing the number ...

[of independent tries]. A similar situation occurs if we

decrease or increase the decay rate. Thus, by increas-

ing the temperature range (or decreasing the decay

rate) we reduce the number of independent attempts,

but search more thoroughly during each attempt. The

situation is reverse if one decreases the temperature

range (or increases the decay rate). Unfortunately it is

not at all clear whether it is generally better to make

more independent attempts, or to search more thor-

oughly during each attempt.”

The complexity of the simulated annealer depends

therefore on these three parameters. More precisely,

the inner loop of the algorithm shown in Figure 6.13

is executed

rmax =max{ n ∈N | Tmin ≤ Tmax · e−nc } =

 ln Tmin
Tmax

c


times for each independent trial.

This leads to a complexity for the simulated anneal-

ing algorithm presented here of

O
(
τ×rmax×(Trandom+ν(N, M)×(Ttrans+T (cost)))

)
.

Again, the simulated annealer seldomly actually tra-

verses all neighbors of a solution, in contrast to the

deterministic hill climber.

�

The above described algorithms could be further

improved, e.g., adapting research on problems from

graph theory, where improved versions of the sim-

ulated annealing approach are considered [138] to

SMCSP problem. This remains for future work.

�

Recalling the traditional set of techniques for solv-

ing hard problems, one might notice that one of the

more prominent techniques has not been considered

here: solving a problem by solving smaller instances

of the problem first and combining the results to solve

a larger instance, core strategy of divide-and-conquer

or dynamic programming algorithms. Actually, there

happens to be a reason for this omission: There is

[138] Xu, L. and Oja, E. 1990. Improved simulated anneal-

ing, boltzmann machine, and attributed graph matching.

L. Almeida, Ed. LNCS 412. Springer Verlag, 151–161.

no easy way to combine the solutions produced for

smaller problem instances into a solution of the larger

problem. More precisely, note that even an optimal

solution of the SMCSP for a set of n query plans of

size m has in worst case a size of n × m. Further-

more, solving the SMCSP problem for a set of n query

plans of size m is almost as hard as solving the SMCSP

problem for a set of l query plans of size (n/l) ×m.

Therefore, combining the solutions obtained for sub-

sets of the input is in this case almost as hard as

solving the problem directly. Due to this reason, no

heuristics based on the divide-and-conquer technique

are presented here.

Another obvious area of optimization techniques

not covered in this work, are genetic algorithms and

evolutionary programs [98]. In particular, genetic al-

gorithms for structural matching [37] might provide

a good starting point for deriving evolutionary pro-

grams that solve the SMCSP problem. However, any

genetic algorithm is based on mutation, crossover and

selection. While we have given a transformation func-

tion between solutions, that could be extended for mu-

tation, and selection can be based on the cost of a so-

lution, a crossover operation between solutions that

are general graphs seems to be hard to find. Finding

such a crossover operation, has to be left for future

work.

Table 6.1 sums up the various pair mergers together

with their complexities. Note, that for the evaluation

models that this work is primarily concerned about,

such as the ones presented in Chapter 4, the assump-

tions the incremental pair mergers are based on are

fulfilled and the local search pair merger are generally

more expensive than the heuristics incremental pair

merger, such as the variants of the greedy pair merger,

as the maximum size of a neighborhood of a solution

ν(N, M) is in this case |N| × |M|. The experimental

evaluation presented in Chapter 9 confirms these the-

oretical observations.

[98] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures

= Evolution Programs, 2nd ed. Springer Verlag.

[37] Cross, A. D. J., et al. 1996. Genetic search for structural

matching. In Computer Vision – ECCV ’96, R. C. B. Buxton,

Ed. LNCS 1064. Springer Verlag, 514–525.

60 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

1 funct set-smcsp(P,A) ≡
2 M ← empty query plan

3 O ← orderQueries(P,A)

4 for each P ∈ O do

5 M ←A(P, M)

6 od

7 M .

Figure 6.14: General skeleton for a set merger

6.3 Set Mergers: Algorithms for

Merging Sets of Query Plans

Based on the pair mergers proposed in the previous

section, we can now define how a set of query plans

can be merged into a large plan. The essential idea

is that the query plans are merged incrementally, i.e.,

a set of query plans {P1, . . . , Pn} is merged by using

a pair merger A to merge P1 and P2 into A(P1, P2)

that in turn is merged with P3 and so on. At the end,

we obtain A(A(A(P1, P2), P3), . . . , Pn) which is a so-

lution for the SMCSP with input {P1, . . . , Pn} and their

corresponding queries.

The obvious questions raised are (1) whether the or-

der in which the query plans are considered affects the

outcome and, if so, (2) how to determine the best or-

der. The answer to the first question is positive. In

general, the order of mergings can affect the result, in

particular if the pair merger used computes only an

approximate solution.

Since finding the best order in which to consider

the query plans is exponential in the number of

query plans, we propose four heuristics for determin-

ing a sufficiently good order among the query plans.

These heuristics follow mostly the skeleton for a set

merger shown in Figure 6.14 differing only in the way

the query plans are ordered. Let in the following

P = {P1, . . . , Pn} be the set of query plans consid-

ered, M the pair merger employed with complexity

T (M, n, m) for merging two query plans with size n

and m, and l = max{ |P | | P ∈ P } the maximum size

of a query plan:

(1) The arbitrary order set merger processes the

query plans in no particular order. The ad-

vantage is the low overhead over the complex-

ity of M, resulting in an overall complexity of

O(n × T (M, n × l, l)). This is paid for by a poor

quality of the solution in the many cases. Note,

that the complexity of A might depend on the

size of its input which here is n× l.

(2) The initial separate order set merger orders the

query plans initially by their cost in descending

order based on the assumption that the query

plans with the highest cost have the highest po-

tential for a large gain from merging. The com-

plexity of this merger is O(n × (T (M, l, n × l) +
T (cost))).

(3) The second set merger that determines the or-

der of the query plans initially, is the initial pair-

wise order set merger. Instead of using the

cost of a query plan, for each query plan P

the highest relative gain g(P) if merged with

any other query plan is used to determine its

priority for merging. More precisely, g(P) =
max{ r ∈R | ∃Q ∈ {P1, . . . , Pn} : r = (cost(P ∪
Q)−cost(M(P, Q))) } is used to order the query

plans in descending order. The initial pairwise

order merge has therefore a complexity at least

quadratic in the number of query plans, viz.

O(n2 × (T (M, l, l)+ T (cost))+n× (T (M, l, n×
l)+ T (cost))).

(4) Finally, the progressive pairwise order merger

implements another greedy heuristic, differing

from the previous two ones: Before each merg-

ing, the next query plan to merge into the re-

sult of the previous mergings is determined by

actually merging all query plans into that result

and retaining the best such merging as shown

in Figure 6.15. This results in a complexity of

O(n2×T (M, l, n× l)+T (cost)). Whether this or

the previous algorithm is faster, depends on the

influence the size of the input has on the perfor-

mance ofA.

The experimental evaluation in Chapter 9 actually

shows that for the setup considered there, the order

in which the query plans are considered has almost no

influence on the quality of the result, allowing the fast

arbitrary order optimizer to be employed.

This short discussion of extending the pair merg-

ers proposed in the previous section to merging sets

of query plans is concluded by an outlook on an algo-

rithm based on the clustered strategy discussed at the

begin of this chapter.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 61

1 funct set-smcsp(P,A) ≡
2 M ← empty query plan

3 while P ≠∅ do

4 Pbest ← empty query plan

5 costbest ←∞
6 for each P ∈A do

7 M′ ←A(P, M)

8 if cost(M′) < costbest

9 then costbest ← cost(M′)

10 M ← M′

11 Pbest ← P

12 fi

13 od

14 P ← P\{Pbest}
15 od

16 M .

Figure 6.15: Progressive pairwise order set merger

6.3.1 Pairwise Set Merger:

Example for the Clustered Strategy

The pairwise set merger is based on the assumption,

that the query plans are clustered with respect to their

similarity. In other words, it is assumed that there are

sets of very similar query plans such that the query

plans inside of one of these sets are rather similar but

the similarities among query plans in different such

sets is very small.

This intuition can be translated into an algorithm

as shown in Figure 6.16: For each query plan P , the

query plan Q ≠ P is computed where the relative gain,

i.e., the gain compared to the case where Q and P are

not merged, viz. cost(P ∪ Q) − cost(A(P, Q)). Q

is considered the query plan that is most rewarding

to merge P with. Together with Q also the mapping

from vertices in P to vertices in Q is determined from

A(P, Q).

Based on this information, the common super-plan

M is constructed in the following manner: For each

query plan P the just computed best partner for merg-

ing Q is considered. If Q has not yet been processed,

it is added without merging into M , and P is merged

into M using the mapping computed above, i.e., each

vertex v ∈ VP is mapped to the vertex z ∈ M mapped

to the vertex w ∈ Q that v has been assigned by the

mapping computed in the first step. Q will not be pro-

cessed any more, if encountered later.

Consider, as an example, four query plans

{P1, . . . , P4}. Assume that the first step (line 6–16

in Figure 6.16) results in partners : P1 7→ P2, P2 7→
P3, P3 7→ P1, P4 7→ P3. Such a result can occur, e.g.,

if cost(A(P, Q)) = cost(A(Q, P)) does not hold in

general. The second step (line 19–29 in Figure 6.16)

constructs M based on these assignments for partners

by adding P2 without merging into the empty query

plan and mapping P1 into the result as specified

by maps. Since P2 has already been processed, it

is skipped and P3 is merged into M according to

the mapping to vertices from P1 (which are already

mapped into M) computed in the first step. P4 is

merged analogously.

To further illustrate this example, assume P1, . . . , P4

as in Figure 6.17(a). Then the following can be ob-

served if we assume a simple cost function based on

the operators the vertices use (cf. Chapter 8):

—Both P2 and P3 have three vertices with P1 in com-

mon. If we assume that the cost for C+ is higher

than the cost for b, P2 becomes the most promising

query plan for merging with P1.

—With P2 again both P1 and P3 have the same num-

ber of vertices in common, but if we assume ≺+ has

higher cost than C, P3 is the most promising query

plan for merging with P2.

—P3 has as discussed three vertices in common with

P2 and P1. Is the cost of b higher than the cost of b,

P1 is preferable to P2 for merging with P3.

—Finally, P4 has only two vertices in common with P1

and with P3. Again we assume a higher cost for ≺+

than for C and select P3 as the best query plan for

merging with P4.

Based on these mappings, the query plan shown in

Figure 6.17(b) is constructed, that is a solution for the

SMCSP with input {P1, . . . , P4}.
The disadvantage of this algorithm can also be de-

rived from Figure 6.17: The constructed shares con-

siderably less vertices than the optimal query plan

shown in Figure 6.17(c) under a cost function that as-

signs to a query plan a cost based on the number of its

vertices. This is due to the fact, that vertices from one

query plan are only shared with vertices from a single

other query plan, but not from multiple query plans.

Therefore, e.g., the ≺+ from P3 is not shared with the

≺+ from P2, as vertices from P3 are only shared with

vertices from P1.

62 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

1 funct set-smcsp(P,A) ≡
2 partners : P → P
3 maps : P →mapping from vertices of one query plan to vertices of another one

4

6 for each P ∈ P do

7 gainbest ←∞
8 for each Q ∈ P\{P} do

9 M′ ←A(P, Q)

10 if cost(P ∪Q)− cost(M′) > gainbest

11 then gainbest ← cost(P ∪Q)− cost(M′)

12 partners(P)← Q

13 maps(P)← get map v ∈ VP 7→ −→v ∈ VQ ∪ VP from M′

14 fi

15 od

16 od

17

19 M ← empty query plan

20 processed : P → {true, false}
21 for each P ∈ P do

22 processed(P)← false

23 od

24 for each P ∈ P do

25 if processed(P) then continue fi

26 Q ← partners(P)

27 if ≠ processed(Q)

28 then processed(Q)← true

29 M ← M ∪Q

30 fi

31 M ←merge all vertices v from P with vertices in M that are merged with the

32 vertex from Q that v is mapped to v by maps(P)

33 processed(P)← true

34 od

35 M .

Figure 6.16: Pairwise set merger

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 63

a
in
 b
 ou
t
P
1
:

P
2
:

P
3
:

P
4
:

a
 c
 ou
t
in

a
 b
in

in

ou
t

c
 b
 ou
t

(a) Input plans P1, . . . , P4

in

1,
2

a

1,2,
3

c

2
2

b

1

c

4

ou
t

1,3,
4

3 3
,4

1

2

3

1,
2

4

4

(b) Result of pairwise merger

in

c

1,
2
 1
,
2
,
3
 a
 b

1
1

c

2
4
4

1,
2

3

2,
3
 3,
4

ou
t

1,3,
4

2

(c) More compact query plan

Figure 6.17: Example for pairwise merger

The clear advantage of this algorithm is that it uses

A only with input of size l, where l is the maximum

size of a query plan in the input, whereas all other set

mergers proposed above useA with input up to n× l

where n is the number of query plans from the input.

The construction phase of the pairwise set merger can

be implemented linear in n and l, so that the overall

complexity is roughly

O(n2 × T (A, l, l)+n× l).

�

The discussion of the pairwise set merger concludes

our set of algorithms proposed for merging sets or

pairs of query plans into a solution of the SMCSP. The

last remaining corner stone in solving the SMCSP is

a consideration of the cost functions used to evaluate

the cost of a query plan. Such a consideration requires

some knowledge about the underlying evaluation en-

gine. Therefore, the next chapter presents a concise

overview of the SPEX evaluation engine and how it can

be adapted to process multiple queries. Based on the

SPEX engine, Chapter 8 specifies several classes of cost

functions together with concrete examples tailored in

most parts to the SPEX engine. Using these cost func-

tions, the algorithms proposed in this chapter can fi-

nally be evaluated in Chapter 9.

64 HEURISTICS FOR THE STABLE MINIMUM COMMON SUPER-PLAN PROBLEM

Chapter 7

Use Case: SPEX

In this chapter, it is shown how to extend the SPEX evaluation engine to support the evaluation of query

plans for evaluating multiple queries as constructed by the algorithms in the previous chapter. After a short

introduction into SPEX, the evaluation of a query plan for multiple queries is detailed, in particular for query

plans with shared operators that are not part of a prefix of the query plan.

Contents

7.1 SPEX in a Nutshell . 65

7.2 Evaluating Query Plans for Multiple Queries . 67

To facilitate the definition and analysis of reason-

able cost functions in Chapter 8 and as basis for the

experimental evaluation presented in Chapter 9, we

give here a short introduction to the SPEX engine re-

ferring to [105; 106] for a more detailed description.

7.1 SPEX in a Nutshell

In [79; 105], a novel evaluation engine for streamed

and progressive evaluation of X ML queries against

streams, called SPEX, has been introduced: A query

is translated into a network of transducers closely re-

sembling a query plan as presented in Section 2.3.2.

The presented network of transducers combines a

worst-case complexity close to the optimal complex-

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.

M.S. thesis, University of Munich, Institute of Computer Sci-

ence.

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

ity for evaluating queries against XML data in main-

memory shown in [53] with several strong advan-

tages over conventional approaches for querying XML

streams

— The main feature aside from the good complex-

ity is the high extensibility and flexibility of the ap-

proach. As emphasized by the ease of extending

SPEX to multiple queries presented in Section 7.2, the

network-based approach combined with highly inde-

pendent transducers provides a framework that can

be easily extended with new transducers implement-

ing additional operations or with new methods for

combining existing components. This enables the (log-

ical) optimizer as discussed in Chapter 2.3 to freely

choose from a large number of different evaluation

strategies the preferred way of evaluating a query

based, e.g., on estimations about the expected eval-

uation time.

— Furthermore, [106] proposes a layered approach

[53] Gottlob, G., et al. 2003. The complexity of XPath query

evaluation. In Proc. of the ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems (PODS). 179–

190.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

65

66 USE CASE: SPEX

to querying XML streams based on the expressive-

ness of the queries supported: Several classes of

queries are identified, differentiated by the manner in

which they relate different constraints expressed in

the query into path, tree, and graph queries (cf. Sec-

tion 2.2), or by the operators allowed in such a query.

For graph queries, the worst-case complexity of evalu-

ating a query containing only C and C+ together with

the corresponding inverse relations is better than if

also horizontal relations among elements, such as ≺+,

are used.

— Finally, the SPEX components of the SPEX net-

work are simple deterministic push-down transducers

with very low computational requirements that can

be implemented on simple devices with low CPU uti-

lization. The communication among these transduc-

ers is similarly well suited for low-end devices as a

transducer only annotates certain elements in the XML

stream, resulting in at most a constant overhead over

the original input stream.

For further details on the features and properties of

SPEX, please refer to [79; 105; 106] and to the graphi-

cal front-end [126] that allows to observe a prototype

implementation in detail.

To facilitate the description, how query plans for

multiple queries can be evaluated by the SPEX engine,

a closer look at certain concepts and components of

the SPEX network is required. In the following, we

present a slightly simplified view of a SPEX network

closely resembling the query plans used in this work

leaving out certain technical details of no concern to

the issue at hand that are discussed in [106].

The essential idea of the SPEX engine is that each

operator of a query plan is implemented by a spe-

cific transducer. These transducers are connected

as specified by the query plan, so that an element

from the stream flows through the transducers in the

same order as the query plan dictates. Consider, e.g.,

the query plan from Figure 2.9 for the path query

Q(v2) :- a (v1) ∧ v1 C v2 ∧ b (v2). Starting from

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.

M.S. thesis, University of Munich, Institute of Computer Sci-

ence.

[126] Spannagel, M. 2003. SPEX Viewer: A graphical user interface

for SPEX. Project thesis, University of Munich, Institute for

Computer Science.

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

in
 [
]
 a

b

ou
t
 ?
1
 1

Figure 7.1: Query plan with simple predicate extended

by determination network

the stream access operator in, an element is first pro-

cessed by the a label operator, then by the C relation

operator, the b label operator, and finally the output

operator out. When the element passes an operator it

is determined, whether the element is selected by that

operator. If that is the case, the element is annotated

as selected. In the sample query plan from Figure 2.9,

the in operator selects all elements encountered in the

stream, the (transducer corresponding to the) a label

operator retains from these only the elements with la-

bel a as selected, all other elements are not any more

selected. The C operator selects for each such a its

children. So after the C operator only the children

of an a are selected and then restricted by the b la-

bel operator. The out operator does not change the

selected elements but rather considers all selected el-

ements encountered as part of the result of the query.

So far the evaluation can only handle path queries.

To support tree queries resulting in tree-shaped query

plans, a means for connecting results of separate

parts of the network is needed. Recall, that a tree

query results in a predicate operator labeled with [].

Figure 7.1 shows a query plan that is extended by a so-

called determination network depicted in gray. This

determination network closely resembles the struc-

ture of the query plan, but is inverted. For each predi-

cate operator in the query plan there is a correspond-

ing determination operator, here depicted by a box la-

beled with ?.

To see, why this determination network is intro-

duced, recall the semantic of the query plan shown:

It selects all following-siblings with label a of an ele-

ment if that has also a descendant b. When evaluating

such a query plan the problem arises that when an

a element is encountered that is a following-sibling of

some element, it must be determined, whether there is

also a b descendant of the same element. This test is

performed by the determination operator that corre-

sponds to the predicate operator: Whenever a selected

element passes the predicate operator, it is annotated

with a (unique) condition. This condition is retained

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 67

a

ou
t
in

b

[
]

[
]

b

a

?

ma
p
 ?

1

2

3

3
to
 2

3
to
 1

ma
p
 1

2

Figure 7.3: Query plan with intersection extended by

determination network

a

in

b

b

1,
2
 1,
2

a

b

ou
t
1

2

1

2

1 1

2

ou
t

2

Figure 7.4: Query plan for two queries 1 and 2

when other operators change the selected elements

until the element passes the corresponding determi-

nation operator. When the determination operator en-

counters selected elements from both branches that

are annotated with the same condition, that condition

is determined to be fulfilled and the corresponding re-

sult can be generated.

If there are nested predicates in a query plan, the

picture gets slightly more complex as shown in Fig-

ure 7.2: At the second predicate the conditions for the

first predicate are replaced, but a mapping between

the conditions for the two predicates is retained, so

that after the determination operator for the second

predicate, the conditions for the outer first predicate

can be obtained by a new operator labeled with map.

[106] shows how these mappings can be created and

that they have no impact on the complexity for evalu-

ating a query with a SPEX network.

Finally, graph queries can as well be handled by this

approach. Consider, e.g., the query plan and deter-

mination network shown in Figure 7.3. At the inter-

section operator, elements from both incoming edges

carry conditions. To keep the annotation of elements

in the stream constant, the intersection operator cre-

ates a new condition if from both incoming edges a

selected element is encountered. This condition has

to be mapped back to the original conditions in the

determination network as shown in Figure 7.3.

a

in

b

b

1,
2
 1,
2

a

b

1

2

1

2

1

S
 1,
2

?

ou
t
1

2

ou
t

i

i

2

1
 ?
 i

1

2
2

Figure 7.5: Query plan for two queries 1 and 2

7.2 Evaluating Query Plans for Multi-

ple Queries

The extension to multi-query plans proves to be

very natural and easy: Consider the multi-query plan

shown in Figure 7.4. In this query plan the two queries

1 and 2 share a common path in the middle of the

query plan.

In such a query plan, a new operator, referred to as

shared path begin operator and depicted as a box la-

beled S, is introduced at the point where the shared

path starts. When a selected element flows through

this operator from one of the incoming edges it is an-

notated with a condition. It is furthermore recorded

for which of the incoming edges (or queries), a se-

lected element is encountered, since it is very possible

(in the case of Figure 7.5 actually guaranteed) that the

element is selected only on one of the incoming edges.

Here, an element is selected either by query 1, if it is

a a element, or by query 2, if it is an b element, or by

none of them.

In the determination network at the end of the

query plan, shown in Figure 7.5 the queries are sep-

arated again if they are not already as in this case and

for each query a determination operator is used that

determines a condition only, if a selected element has

been encountered for that query by the corresponding

shared path begin operator when the condition was

created.

Interestingly, this extension to the SPEX network

proves to be very efficient: The overhead introduced

by sharing a path is not larger than the cost of a pred-

icate operator and occurs only at the beginning of the

path. The more costly the shared path is (e.g., if it

is long or entails expensive operators), the lower is

the overhead of sharing per operator. To reflect this

overhead, a cost function κmerging is defined in the fol-

lowing section that penalizes vertices with incoming

edges that are assigned to different sets of queries,

i.e., the cost of vertex at the begin of a shared path is

increased roughly by the cost of a predicate operator.

68 USE CASE: SPEX

in
 [
]
 a

b

ou
t

[
]
 c

d

?

?

ma
p

1

2

1

2

2
to
 1

Figure 7.2: Query plan with nested predicate extended by determination network

Chapter 8

Cost Estimation in a Streamed Environment

As the final part of the optimization framework, this chapter discusses the cost estimation of query plans. Cost

functions are classified by their complexity with respect to the size of a query plan and for each of the classes

a generic cost function as well as a cost function specific to SPEX is proposed.

Contents

8.1 Classes of Cost Functions . 69

8.1.1 Independent Cost Functions . 70

8.1.2 Local Cost Functions . 70

8.1.3 Global Cost Functions . 72

Recall, that part of an evaluation model as defined

in Chapter 4 is a cost function that assigns a cost to

each valid query plan. In this chapter, a natural class

of cost functions, called vertex-based cost functions,

is investigated characterized by the assumption, that

a cost function can be extended to the vertices of a

query plan such that the cost of that query plan can

be computed from the costs of the vertices in linear

time. In other words, we assume that for an evaluation

model E with a cost function cE , there is a function

cvertex : VP →R+0 where P is a query plan from E, such

that cE(P) = α+β
∑

v∈VP cvertex(v) for some constants

α, β ∈R+0 .

In the following, we extend cE to vertices such that

for all vertices v in a valid query plan of E, i.e., for all

v ∈
⋃

p∈PE VP , cE(v) = cvertex(v).

The advantage of such cost functions is that they

are easy to define, allow to compare vertices based

on their cost (as required, e.g., by the initial greedy

merger discussed in Section 6.2.1), and can naturally

be broadened to partial solutions (as demanded, e.g.,

by the incremental pair mergers proposed in Sec-

tion 6.2.1.

In the following sections, this class of cost functions

is further investigated.

8.1 Classes of Cost Functions

In Section 6.2 several pair mergers for merging two

query plans have been proposed. The complexity of

all mergers depends among other factors also on the

time required for computing the cost of a query plan,

denoted there as T (cost). Based on this observation,

we distinguished here the vertex-based cost functions

further by the manner in which they compute the cost

of a vertex:

Independent vertex-based cost function. A vertex-

based cost function is called independent, if the cost

of a vertex is depending on properties of that vertex

only and is independent of the rest of the graph.

Furthermore, the cost of the vertex is unaffected if

other vertices or edges in the graph are changed. The

time for computing the cost of a vertex with a such a

cost function is constant with respect to the number

of vertices in a query plan.

Local vertex-based cost function. If at most the local

neighborhood of a vertex in the query plan, e.g., inci-

dent edges or adjacent vertices, can affect the cost of

a vertex, the cost function is referred to as local cost

function. The time for computing the cost of a ver-

69

70 COST ESTIMATION IN A STREAMED ENVIRONMENT

tex with a local cost function is, with respect to the

number of vertices in the query plan, bounded by the

degree of the query plan.

Global vertex-based cost function. Finally, a global

cost functions does not restrict the number of vertices

that the cost of a single vertex might depend on. The

time for computing the cost of a vetex with a global

cost function is linear in the number of vertices in the

query plan. Under such a cost function, any change in

the graph can affect the cost of any vertex.

In the following, each of the classes is detailed with

concrete examples for cost functions used in the ex-

perimental evaluation presented in Chapter 9. The

different cost functions are motivated with examples

based on the query plans introduced in Section 2.3.2.

Recall, that the corresponding evaluation model X, cf.

Section 4.3, allows only acyclic query plans.

8.1.1 Independent Cost Functions

The most basic independent cost function, denoted as

κvertices, assigns to each vertex the same constant cost

α, i.e., for all vertices v , κvertices(v) = α. Note, that a

solution of the SMCSP under this cost function is the

valid query plan with the smallest number of vertices.

Under an evaluation model E, such that for any graph

G there are π, τ, q such (G, π, τ, q) is a valid query

plan for E, the SMCSP with κvertices as objective func-

tion resumes to the minimum common super-graph

problem.

But in most practical cases, such a cost function

does not provide a good estimate for the expected cost

of evaluating a query plan. Consider, e.g., for evalu-

ation model X the two query plans P1 and P2 from

Figure 8.1(a). Recall, that only acyclic query plans are

valid in X. Therefore, either the two C or the two

C+ vertex from P1 and P2 can be shared but not both,

since the resulting query plan is acyclic. κvertices gives

no indication which of the two query plans from Fig-

ure 8.1(b) and 8.1(c) is preferable, they are assigned

the same cost. For the SPEX engine, the evaluation of

a C+ operator however proves to be more expensive

than a C operator, therefore a cost function should be

able to express that the alternative solution is prefer-

able.

For a query plan P = ((V , E), τ, π, q) under an eval-

ou
t
in
P
1
:

ou
t
in
P
2
:

(a) Input plans P1, P2

in

1,
2

1,
2
 ou
t

1,
2

1,
2

1,
2

1,
2

(b) First solution

in

1,
2

1,
2
 ou
t

1,
2

1,
2

1,
2

1,
2

(c) Alternative solution

Figure 8.1: Relevance of edge count

uation model E, let

τ′ : V → RE ∪ {⊥}

v ∈ V 7→

τ(v) if ∃r ∈ RE : τ(v) = r

⊥ otherwise

where ⊥ 6∈ RE represents the case where no property

is assigned to a vertex.

Using this definition, we define a new cost function

κoperators that is based on a characterization of the op-

erators and properties of the corresponding evalua-

tion model. Let f : OE × RE ∪ ⊥ → R+0 be a func-

tion specific to the evaluation model E that assigns to

each pair of operator and property a cost for evaluat-

ing such an operation. Then the cost of a vertex v is

κoperators(v) = f (π(v), τ′(v)).

Table 8.1 shows a part of an exemplary mapping

f based on analytical and experimental evaluation of

the SPEX evaluation engine. Note, that the costs are

relative, i.e., for comparing operator-property pairs

among each other.

8.1.2 Local Cost Functions

Local cost functions allow to take the neighborhood

of a vertex, i.e., the incident edges and adjacent ver-

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 71

operator o property r f (o, r)

C ⊥ 5

C+ ⊥ 5+ 10

≺ ⊥ 5+ 2

≺+ ⊥ 5+ 2+ 10

label string s s/8+ 10

in ⊥ 0

Table 8.1: Relative cost for evaluating operator-

property pairs in SPEX

tices, into consideration when computing its cost. As

discussed in the previous section, whenever the in-

coming edges of a vertex are shared among different

sets of queries, certain costly measures must be taken

in SPEX to ensure the correct evaluation of the query

plan. This is likely to be true for many other evalua-

tion engines. Therefore, cost functions that are con-

cerned about the vertices only can in many cases not

reflect the expected cost for evaluation of a query plan

accurately enough.

Consider, e.g., the two identical query plans P1 and

P2 from Figure 8.2(a). Cost functions such as κvertices or

κoperators assign the same cost to the two query plans

shown in Figure 8.2(b) and 8.2(c) although for SPEX the

second alternative is clearly preferable.

A first attempt, to address this issue, is κedges that

assigns to each vertex a cost based on the number of

incident edges, i.e., κedges(v) = α+β|edges(v)| where

edges is defined as in Section 4.3 and α, β are some

constants. If α = β = 1, the query plan from Fig-

ure 8.2(b) has a cost of 23, whereas the alternative so-

lution has only a cost of 21.

κedges allows to affect the cost of a vertex by the

number of incident edges, but is still not able to cope

with the initial problem that the cost of vertex with in-

coming edges shared among different sets of queries

must be clearly higher than for a vertex where the

edges are shared among the same set of queries. For

illustration, consider the query plans P1 and P2 to-

gether with two possible common super-plans shown

in Figure 8.3. The first solution has actually better

cost under κedges for α = β = 1. But for the SPEX

engine, the alternative solution performs often better

since the shared vertices (the C and the out operator)

are rather cheap, so that sharing them does not jus-

tify the cost introduced by the fact that they have now

both incoming edges shared among different sets of

queries.

a

a

ou
t

in

a

a

ou
t

in

P
1
:

P
2
:

(a) Input plans P1, P2

ou
t

in

1,
2

1

2

1

1,
2

1,
2
 a

a

1
2

2

(b) First solution

a

a

ou
t

in

1,
2

1,
2

1,
2

1,
2

1,
2

1,
2

(c) Alternative solution

Figure 8.2: Relevance of edge count

c
 ou
t
in
P
1
:

P
2
:

a

d
 ou
t
in
 b

(a) Input plans P1, P2

ou
t
in

1,
2

b

a

d

c
1

2

1

2

1

2

1

2

(b) First solution

ou
t

in

1,
2

b

a

d

c
1

2
 ou
t

1

2

1

2

1

2

(c) Alternative solution

Figure 8.3: Relevance of continuity

72 COST ESTIMATION IN A STREAMED ENVIRONMENT

a
 ou
t
in
P
1
:

P
3
:
 a
 ou
t
in
 a

a
 ou
t
in
P
2
:

A B

Figure 8.4: Relevance of selectivity

Therefore, we introduce a second local cost func-

tion, κmerging that penalizes vertices with incoming

edges assigned to different sets of queries. More

precisely, for a vertex v in a query plan P =
((V , E), τ, π, q), let γ = |{ Q | ∃e ∈ E : ∃w ∈ V :

(w, v) = e ∧ q(e) = Q}| be the number of different

sets of queries assigned to an incoming edge of v and

α, β some constants, then

κmerging(v) = κoperators(v)+

0 if γ = 1

α+ β · γ otherwise
.

8.1.3 Global Cost Functions

The final class of vertex-based cost function may con-

sider the entire graph for computing the cost of a ver-

tex. Here, we present only one example for this class

of cost functions, the selectivity based cost function

κselectivity that is based on κmerging but introduces an

additional bias based on the estimated selectivity of a

vertex based on the operator-property pair assigned to

it. Figure 8.4 shows three query plans P1, P2, and P3. A

common super-plan of P1 and P3 or P2 and P3 can con-

tain the C–a subgraph from P1 respectively P2 shared

with position A or B in P3 assuming the two C+ op-

erators are not shared. Under κmerging both positions

yield the same cost for the common super-plan. Ob-

serve, that the difference between P1 and P2 lies in the

second vertex, where P1 uses a C+ operator and P2 a

C. Furthermore, note that in P3 there is C+ before B.

Therefore, the C–a subgraph in P1 and B process both

a far large number of a elements in the stream, than

the subgraph in P2 or A. Sharing the subgraph from P2

with B therefore will affect the processing time more

than sharing with A.

The selectivity of an operator-property pair is es-

timated similar to the cost estimation for relation

queries without statistics on the data, cf. [51]. Such

[51] Garcia-Molina, H., et al. 2001. Database systems: the com-

plete book, 1st ed. Prentice Hall, Upper Saddle River, New

Jersey.

an estimation can approximate the selectivity of many

operators only very poorly, but has the advantage that

it does not require knowledge about the stream and its

characteristics during optimization.

Using statistics about the stream is not considered

here and left for future work. Based on statistical data

collected either a-priori or during the processing, the

cost estimation could be further refined as shown in

[109; 1; 84; 116; 137].

Based on the cost functions proposed in this chap-

ter, Chapter 9 finally provides an experimental evalu-

ation of the techniques and algorithms proposed.

[109] Ozkan, C., et al. 1995. A heuristic approach for optimiza-

tion of path expressions. In Proc. of the International Con-

ference on Database and Expert Systems Applications. 522–

534.

[1] Aboulnaga, A., et al. Estimating the selectivity of XML path

expressions for internet scale applications. In Proc. of the

International Conference on Very Large Databases (VLDB).

2001.

[84] Lim, L., et al. 2002. XPathLearner: An on-line self-

tuning markov histogram for XML path selectivity estima-

tion. In Proc. of the International Conference on Very Large

Databases (VLDB).

[116] Polyzotis, N. and Garofalakis, M. 2002. Statistical synopses

for graph-structured XML databases. In Proc. of the ACM

SIGMOD International Conference on Management of Data.

[137] Wu, Y., et al. 2002. Estimating answer sizes for XML

queries. In Proc. of the International Conference on Extend-

ing Database Technology (EDBT). 590–608.

Chapter 9

Experimental Evaluation

Based on the evaluation model of the SPEX engine and the cost functions defined in previous chapters, the

algorithms can now be evaluated thoroughly. In this chapter, it is shown that there are several pair mergers

that if combined with a set merger produce good solutions in an acceptable amount of time. In particular,

the initial greedy merger proves to construct solutions that are at least as good as the solutions of most of the

more expensive pair mergers for the kind of queries considered here. Finally, the results on the complexity of

the pair and set mergers discussed in Chapter 6 are confirmed by the presented experiments.

Contents

9.1 Setup . 73

9.1.1 Workloads . 74

9.2 Assessing the Feasibility of the Approach . 80

9.2.1 Comparing the Cost . 80

9.2.2 Comparing the Time . 85

9.2.3 Comparing the Results . 85

9.3 Comparison of Local Search Pair Mergers . 85

9.4 Comparison of Set Mergers . 94

In this chapter, the algorithms presented in Chap-

ter 6 are finally evaluated for a large set of RPQ query

plans, cf. Section 2.2. Extensive test have been per-

formed for most of the proposed pair and set mergers

against several query workloads with varying charac-

teristics. To illustrate the results, the following sec-

tion introduces the setup of the experiments, in partic-

ular the different query workloads together with their

properties.

9.1 Setup

A prototype implementation of the proposed query

plans and algorithms for solving the SMCSP in Java

[74] is described in Chapter 10: Based on a graph li-

[74] Joy, B., et al. 2000. The Java Language Specification, 2nd

ed. Addison-Wesley.

brary specifically optimized for efficient iteration over

the incident edges of a vertex, efficient implementa-

tions of the most important graph operations for a

query plan are provided. The cost functions proposed

in the previous chapter are implemented using mem-

orization, allowing an incremental update of the cost

of a graph upon change.

The following tests have all been performed using

Sun Hotspot JRE 1.4.1 under Linux 2.2 running on a

AMD Athlon with 1, 3 GHz and 500 MB of main mem-

ory.

The basis for all tests is the SPEX evaluation engine

reviewed in Chapter 7. Therefore the evaluation model

X, defined in Section 4.3, is employed: Recall, that

X restricts query plans to acyclic graphs. In Chap-

ter 6, an implementation of validCandidates for X
is given, that allows, given a valid partial solution, to

determine pairs of vertices such that merging one of

73

74 EXPERIMENTAL EVALUATION

these pairs does not violate the validity of the partial

solution. Combined with one of the vertex-based cost

functions in Chapter 8 that all naturally extend to par-

tial solutions, the two requirements for incremental

pair mergers are fulfilled by X.

Actually, the initial greedy pair merger, an incre-

mental pair merger, proves to give the best trade-

off between solution quality and time for computing

a good solution outperforming the more costly local

search pair merger. Note, that this result can not

be generalized to arbitrary evaluation models, that do

not admit to the above requirements for incremental

pair mergers.

9.1.1 Workloads

As input for the test, we use five different workloads

each consisting in 10.000 query plans based on X.

When testing algorithms with high complexity, only

smaller subsets of these workloads are considered.

The five workloads differ with respect to the charac-

teristics of the contained query plans.

The query plans contained in the workloads have

been generated by a query generator based on a DTD.

The query generator ensures that all the generated

query plans confirm with a given DTD, i.e., contain

only structural and label constraints allowed by the

DTD. It can be configured with a large number of pa-

rameters affecting the structure of the query plans

constructed from the generated query plans. In par-

ticular, the number and distribution of relation oper-

ators and the shape of the query plans can be deter-

mined by appropriate parameter settings. If no DTD

is provided, random query plans are generated where

the label constraints are random strings and the rela-

tion operators are chosen according to the specified

distribution. In these tests, we have configured the

generator to generate tree-shaped query plans with a

low (5) maximum degree for a vertex. The relation op-

erators are distributed equally, where possible (i.e., if

the DTD allows a choice among several relations, each

of these relations is selected with the same probabil-

ity). Since the generator is based on DTDs only, no

text operators are created.

NITF-workload. The first workload is based on the

NITF-DTD [71], defining a commonly used format

[71] International Press Telecommunications Council. News in-

dustry text format (NITF). http://www.nitf.org.

for encoding and exchange of news related informa-

tion. This DTD is rather large (roughly 200 elements

defined), richly structured, highly recursive, and al-

lows very heterogenous instances, with a high de-

gree of freedom similar to the HTML-DTD. Figure 9.1

shows several exemplary query plans from the NITF-

workload. In general, these query plans are rather di-

verse just like the NITF documents they are to be eval-

uated against. Therefore, the NITF-workload provides

a good approximation of querying document-centric

XML.

COURSES-workload. In contrast to the NITF-

workload, the second workload, referred to as

COURSES-workload, is meant to mimic applications

involving data-centric XML. The base DTD of this

workload is designed for encoding information about

university courses (cf. [100]). It is very small (only 16

elements defined), slightly recursive, and very rigid

with respect to the allowed structure of an instance.

This is reflected in the query plans, cf. Figure 9.2, by

a higher similarity within the workload compared to

the NITF-workload. Whereas the distribution of the

relation operators is comparable to the NITF case,

the query plans differ considerably with respect to

the label operators. Most of the query plans in this

workload contain, for example, several courses label

operators.

RANDOM-workload. Where the NITF- and the

COURSES-workload should provide sets of query plans

similar to practical cases, the RANDOM-workload and

the following REPEATED-workload represent extreme

cases. The query plans in the RANDOM-workload are

not based on a DTD but rather generated entirely ran-

dom based only on the specified distribution of the

relation operators, here an equal distribution among

C, C+, ≺, and ≺+. The resulting query plans shown

exemplary in Figure 9.3, are extremely diverse and

contain almost no label operators with the same la-

bel. Therefore, the gain by sharing operators among

these query plans is expected to be extremely low.

REPEATED-workload. The converse case is repre-

sented by the REPEATED-workload, that exists in two

variants. The first variant, REPEATED-1x10000, re-

peats the same query plan 10, 000 times, the second

[100] Miklau, G. XML data repository. http://www.cs.

washington.edu/research/xmldatasets/, University of

Washington.

http://www.nitf.org
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 75

DESCENDANT

media

DESCENDANT

FOLLOWING-SIBLING

nitf-table

FOLLOWING-SIBLING

DESCENDANT

region

[]

CHILD

alt-code

FOLLOWING-SIBLING

alt-code

FOLLOWING-SIBLINGS

region

HEAD

CHILD

DESCENDANT

DESCENDANT

hl2

DESCENDANT

denom

HEAD

CHILD

nitf

DESCENDANT

CHILD

body

[]

body.end

DESCENDANT

chron

FOLLOWING-SIBLING

copyrite

DESCENDANT

em

CHILD

CHILD

virtloc

CHILD

alt-code

body.head

FOLLOWING-SIBLING

HEAD

CHILD

nitf

DESCENDANT

DESCENDANT

function

CHILD

alt-code

FOLLOWING-SIBLING

alt-code

FOLLOWING-SIBLING

alt-code

[]

FOLLOWING-SIBLING

alt-code

FOLLOWING-SIBLINGS

FOLLOWING-SIBLINGS

alt-code

FOLLOWING-SIBLINGS

alt-code

HEAD

CHILD

DESCENDANT

DESCENDANT

frac-sep

FOLLOWING-SIBLING

denom

HEAD

Figure 9.1: Sample query plans from NITF-workload

76 EXPERIMENTAL EVALUATION

CHILD

root

DESCENDANT

CHILD

course

[]

FOLLOWING-SIBLING

course

DESCENDANT

FOLLOWING-SIBLING

sect

CHILD

crse

DESCENDANT

FOLLOWING-SIBLING

sect

FOLLOWING-SIBLING

units

FOLLOWING-SIBLINGS

FOLLOWING-SIBLING

place

HEAD

CHILD

root

DESCENDANT

CHILD

course

FOLLOWING-SIBLING

course

[]

FOLLOWING-SIBLINGS

course

CHILD

place

FOLLOWING-SIBLING

CHILD

course

DESCENDANT

start_time

HEAD

CHILD

root

DESCENDANT

DESCENDANT

CHILD

room

HEAD

CHILD

CHILD

DESCENDANT

course

FOLLOWING-SIBLINGS

course

FOLLOWING-SIBLINGS

course

FOLLOWING-SIBLING

course

DESCENDANT

reg_num

FOLLOWING-SIBLING

subj

FOLLOWING-SIBLINGS

instructor

[]

FOLLOWING-SIBLING

days

FOLLOWING-SIBLINGS

days

HEAD

Figure 9.2: Sample query plans from COURSES-workload

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 77

CHILD

.rnd.

DESCENDANT

FOLLOWING-SIBLINGS

.rnd.

[]

CHILD

.rnd.

FOLLOWING-SIBLING

.rnd.

FOLLOWING-SIBLING

.rnd.

DESCENDANT

CHILD

.rnd.

.rnd.

HEAD

.rnd.

CHILD

.rnd.

CHILD

.rnd.

FOLLOWING-SIBLINGS

.rnd.

FOLLOWING-SIBLING

.rnd.

FOLLOWING-SIBLINGS

.rnd.

CHILD

.rnd.

HEAD

.rnd.

FOLLOWING-SIBLING

.rnd.

[]

CHILD

.rnd.

FOLLOWING-SIBLINGS

.rnd.

DESCENDANT

.rnd.

HEAD

CHILD

.rnd.

DESCENDANT

[]

DESCENDANT

.rnd.

CHILD

.rnd.

FOLLOWING-SIBLINGS

.rnd.

DESCENDANT

.rnd.

DESCENDANT

.rnd.

HEAD

Figure 9.3: Sample query plans from RANDOM-workload (.rnd. indicates a random label)

78 EXPERIMENTAL EVALUATION

variant, REPEATED-100x100, contains for each of one

hundred original query plans one hundred duplicates

of that original. In both cases, the original query plans

are from the NITF-workload. The REPEATED-workload

is therefore used to test how good the different heuris-

tic algorithms recognize identical query plans.

DEVIATED-workload. The final workload is similar

to the REPEATED-workload in that it contains repe-

titions of the same query plans. But this time, the

query plans are not repeated exactly, but rather each

time slightly deviated. Such a deviation can entail that

a relation operator is changed to another relation op-

erator or a label is changed to a random string. The

number of deviation from the base query is, for each

deviated query, random in the range of [0, 5]. Fig-

ure 9.4 shows a base query and two deviations. As in

the repeated case, there are two variants, DEVIATED-

1x10000 and DEVIATED-100x100, with 10, 000 query

plans based on the same query and 100 query plans

based on 100 different base queries, respectively.

As mentioned above, all workloads have in common

that the query plans are tree-shaped and do not con-

tain vertices where two children of that vertex have

operator-property pairs that can be merged. There-

fore, the queries adhere to all requirements of the

tree prefix pair merger. Despite the favorable work-

load, the experiments show that the initial greedy pair

merger, although outperformed by the tree prefix pair

merger, can produce clearly superior solutions except

on the REPEATED-workload (see Section 9.2) in reason-

able time compared to the tree prefix pair merger.

Another commonality among the workloads is that

the query plans within a single workload differ only

in a limited range. E.g., the queries in all workloads

have at most 30 vertices and very seldom less than

10. Furthermore, the maximum degree of the vertices

is by choice rather low.

Further studies with more diverse workloads, in

particular with graph-shaped queries, where the tree

prefix pair merger is presumed to perform far worse,

are left for future work.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 79

CHILD

event

DESCENDANT

DESCENDANT

[]

alt-code

FOLLOWING-SIBLING

FOLLOWING-SIBLINGS

alt-code

DESCENDANT

sublocation

FOLLOWING-SIBLINGS

FOLLOWING-SIBLING

CHILD

alt-code

function

DESCENDANT

FOLLOWING-SIBLINGS

alt-code

HEAD

CHILD

event

DESCENDANT

FOLLOWING-SIBLING

[]

CHILD

alt-code

FOLLOWING-SIBLING

FOLLOWING-SIBLINGS

alt-code

DESCENDANT

sublocation

FOLLOWING-SIBLING

CHILD

alt-code

function

DESCENDANT

FOLLOWING-SIBLINGS

alt-code

HEAD

CHILD

event

DESCENDANT

FOLLOWING-SIBLING

[]

CHILD

alt-code

DESCENDANT

FOLLOWING-SIBLINGS

alt-code

DESCENDANT

sublocation

FOLLOWING-SIBLINGS

FOLLOWING-SIBLING

CHILD

alt-code

function

DESCENDANT

FOLLOWING-SIBLINGS

alt-code

HEAD

Figure 9.4: Sample deviated queries (first query is base)

80 EXPERIMENTAL EVALUATION

9.2 Assessing the Feasibility of the

Approach

Based on the experimental setup presented in the pre-

vious section, we present here the results of compar-

ing four pair mergers, the plain, the random, the tree

prefix, and the initial greedy pair merger, under the

arbitrary order set merger and two different local cost

functions, κmergings and κedges with α = β = 1. The

arbitrary order set merger has been chosen, as exper-

imental evaluation on the query workloads presented

here indicates that the order in which the query plans

are considered does not have a large affect on the

quality of the result, cf. Section 9.4. The choice of

the cost functions is based on the observation that

the independent cost functions fail to provide an ac-

ceptable approximation of the actual evaluation time

for the SPEX engine and that the global cost function

κselectivity is often too expensive to be used, since it

has quadratic complexity for computing the cost of

the entire query plan in contrast to the (almost) lin-

ear complexity for the local cost functions (recall, that

the maximum degree of the vertices in all workloads

is very low).

Only the above mentioned four pair mergers are

considered since the tree prefix and the initial greedy

pair merger prove to provide the best time-quality

trade-off on the setup considered here. The plain and

random pair merger are used for comparison only:

The plain pair merger illustrate the cost if there is no

sharing at all among the query plans, whereas the ran-

dom pair merger is used to gauge the other incremen-

tal pair mergers, in particular the initial greedy pair

merger. In Section 9.3 the remaining pair mergers are

evaluated on subsets of the workloads.

9.2.1 Comparing the Cost

Figure 9.5 (9.6) and 9.7 (9.8) show the absolute cost

of the solution (the average estimated cost for evalu-

ation per query) computed by the four pair mergers

versus the number of queries considered for κmerging

and κedges respectively. In both cases, the initial greedy

pair merger delivers are very good solutions over all

workloads except for the entirely random queries.

There, the delivered solution is still better than for the

remaining pair mergers tested, but very near in cost

to the solution provided by the plain merger where no

operators are shared among the query plans.

Interestingly, the relative distance of the quality of

the solutions for the initial greedy and the plain pair

merger is more than twice under κedges than under

κmerging. This can be explained by the observation, that

the query plans in the RANDOM-workload use random

strings as label constraints. Therefore, almost only

relation operators can be shared among two query

plans. Since in most query plans relation and label op-

erators are intertwined, sharing the relation operators

leads to the case where one vertex is shared, its child

(or children) are not shared, but their children might

again be shared. Recall from Chapter 8, that this case

is penalized by κmerging. The same reason explains to

the anomaly shown in Figure 9.5(c), where the solution

produced by the random pair merger is worse than the

solution where nothing is shared.

Another expected, but important observation is that

the tree prefix pair merger can only outperform the

initial greedy pair merger for the two REPEATED-

workloads and there only by a small margin. In all

other cases, the simple heuristic of the tree prefix pair

merger fails to produce solutions that have a com-

parable quality to the ones constructed by the initial

greedy pair merger. The less diverse the query plans,

the more likely the tree prefix pair merger can pro-

duce a good solution, e.g., it produces solutions that

are closer to the solution of the initial greedy pair

merger for the COURSES- than for the NITF-workload

and similarly for the DEVIATED-1x10000- than for the

DEVIATED-100x100-workload.

Note, finally, the performance of the random pair

merger: it is consistently outperformed by the initial

greedy pair merger with respect to the quality of the

solution but can provide solutions almost as good or

even better than the prefix pair merger on many work-

loads, in particular for κedges. This results from the

fact, that the random pair merger, although choosing

randomly among the validCandidates still consid-

ers for all vertices all valid candidates for merging,

whereas the tree prefix pair merger only considers the

corresponding prefix vertex, cf. Chapter 6.

Peeking at Vertices and Edges

These results on the cost of the produced solution

are further illustrated by considering the vertices and

edges of these solutions, as depicted in Figure 9.9 and

9.10 for κmerging.

Interestingly, the number of vertices in a solution

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 81

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0
500.0k

1.0M
1.5M
2.0M
2.5M
3.0M
3.5M
4.0M
4.5M
5.0M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0
500.0k

1.0M
1.5M
2.0M
2.5M
3.0M
3.5M
4.0M
4.5M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

500.0k

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

4.0M

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.5: Cost of the generated solutions under κmerging

82 EXPERIMENTAL EVALUATION

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(a) NITF-10000-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(b) COURSES-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(c) RANDOM-10000-workload

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(e) DEVIATED-100x100-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(f) REPEATED-1x10000-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.6: Average cost per query for the generated solutions under κmerging

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 83

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k
450.0k
500.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

50.0k

100.0k

150.0k

200.0k

250.0k

300.0k

350.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

600.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

50.0k

100.0k

150.0k

200.0k

250.0k

300.0k

350.0k

400.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k
450.0k
500.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

100.0k

200.0k

300.0k

400.0k

500.0k

600.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0
50.0k

100.0k
150.0k
200.0k
250.0k
300.0k
350.0k
400.0k
450.0k
500.0k

0 2k 4k 6k 8k 10k

es
tim

at
ed

 c
os

t

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.7: Cost of the generated solutions under κedges

84 EXPERIMENTAL EVALUATION

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(a) NITF-10000-workload

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(b) COURSES-10000-workload

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(c) RANDOM-10000-workload

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(e) DEVIATED-100x100-workload

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(f) REPEATED-1x10000-workload

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0

0 2k 4k 6k 8k 10k

av
er

ag
e

co
st

number of queries

plain
tree prefix

random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.8: Average cost per query for the generated solutions under κedges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 85

produced by the initial greedy pair merger and the

random pair merger are always very low and very

similar. A solution constructed by the random pair

merger includes however vastly more edges, since the

discussion which of the valid candidates for merging

with a vertex is done without considering the result-

ing cost. But also a solution produced by the greedy

pair merger contains often relatively more edges than

vertices, e.g. for the NITF- or RANDOM-workload.

The tree prefix pair merger, on the other hand, does

not show this asymmetry between edges and vertices.

Since, whenever a vertex in a prefix can not be shared

with the corresponding vertex in a prefix of the other

query plan, all remaining vertices and edges alike are

unshared.

9.2.2 Comparing the Time

The advantage the initial greedy pair merger has in so-

lution cost over the other pair mergers evaluated here

is offset to some extend if one considers the time for

constructing a solution: Figure 9.11 and 9.13 show the

absolute time for constructing a solution versus the

number of queries, Figure 9.12 and 9.14 the average

time per query.

Confirming the theoretical complexities from Chap-

ter 6, the tree prefix pair merger (and, of course, the

constant plain pair merger) outperforms the two re-

maining incremental pair merger clearly. Except for

the RANDOM-workload, the initial greedy pair merger

can construct its solution in acceptable time (clearly

lower than 1 s per query), in some cases, e.g. for the

COURSES-workload, even nearly as fast as the tree pre-

fix pair merger.

Interestingly, the random pair merger performs far

worse than the initial greedy pair merger over all

workloads. Recall, that the n query plans are com-

pacted by the arbitrary order set merger used here,

by merging the first two query plans, than merg-

ing the third query plan into the result of the first

merging, and so on. Furthermore, the complexity of

validCandidates is linear in the size of the input

query plans, as discussed in Section 6.2.1. For the ran-

dom pair merger the size of the intermediary results

increases considerably more than for the initial greedy

pair merger (as seen in the previous sections), that the

slight initial advantage is offset.

9.2.3 Comparing the Results

To illustrate this experimental evaluation Figure 9.15

to 9.18 show the resulting query plans constructed

by the initial greedy pair merger and the tree prefix

pair merger on the COURSES- and DEVIATED-1x10000-

workloads after 2, 5, and 10 query plans have been

considered. The brightness of a vertex or edge indi-

cates the fraction of query plans shared: the darker a

vertex the more queries the vertex is part of. Interest-

ingly, the initial greedy pair merger shares the almost

same prefixes as the tree prefix pair merger, but also

finds other interesting areas for sharing, in particular

towards the end of the query plans.

Clearly, the chance of finding a query plan or part

of a query plan that is very similar to a part of a query

plan that is to be added to the multi-query plan in-

creases with the number of query plans added. There-

fore, these pictures give only a rough indication of the

solutions for larger number of query plans.

9.3 Comparison of Local Search Pair

Mergers

Only four of the pair mergers proposed in Chap-

ter 6 have been evaluated in the previous section. In

this section, the local search pair mergers from Sec-

tion 6.2.2 are compared to the previously shown pair

mergers.

For the local search mergers, the following param-

eters have been used: the maximum number of ran-

domly generated solutions, i.e., number of indepen-

dent tries, is MAX-TRIES = 10, the maximum num-

ber of improvement iterations per independent try is

MAX-ITERATIONS-PER-TRY = 15.

The simulated annealing algorithm has three more

parameters, here chosen to be Tmax = 0.30, Tmin =
0.01, c = 0.05.

Under these settings, Figure 9.19 to 9.22 show ver-

tices, edges, time, and average time per query for the

NITF-, COURSES-, RANDOM-, and REPEATED-workload

with only 100 query plans each. The cost function

used is κedges.

It is striking that for the kind of query plans and

for the evaluation model considered here, the initial

greedy pair merger not only outperforms the local

search mergers with respect to the time for construct-

ing a solution, but also with respect to the quality of

86 EXPERIMENTAL EVALUATION

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k
200.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

50.0k

100.0k

150.0k

200.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.9: Vertices in the generated solutions under κmerging

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 87

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

160.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

160.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0
20.0k
40.0k
60.0k
80.0k

100.0k
120.0k
140.0k
160.0k
180.0k
200.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

160.0k

0 2k 4k 6k 8k 10k

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.10: Edges in the generated solutions under κmerging

88 EXPERIMENTAL EVALUATION

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.11: Time of the generated solutions under κmerging

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 89

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.12: Average time per query under κmerging

90 EXPERIMENTAL EVALUATION

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

1.0k

2.0k

3.0k

4.0k

5.0k

0 2k 4k 6k 8k 10k

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.13: Time of the generated solutions under κedges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 91

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(a) NITF-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(b) COURSES-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(c) RANDOM-10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(d) DEVIATED-1x10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(e) DEVIATED-100x100-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(f) REPEATED-1x10000-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 2k 4k 6k 8k 10k

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
random
initial greedy

(g) REPEATED-100x100-workload

Figure 9.14: Average time per query under κedges

92 EXPERIMENTAL EVALUATION

(a) After two query plans (b) After five query plans

(c) After ten query plans

Figure 9.15: Solution for initial greedy pair merger on COURSES-workload

(a) After two query plans (b) After five query plans

(c) After ten query plans

Figure 9.16: Solution for tree prefix pair merger on COURSES-workload

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 93

(a) After two query plans (b) After five query plans

(c) After ten query plans

Figure 9.17: Solution for initial greedy pair merger on DEVIATED-1x10000-workload

(a) After two query plans (b) After five query plans

(c) After ten query plans

Figure 9.18: Solution for tree prefix pair merger on DEVIATED-1x10000-workload

94 EXPERIMENTAL EVALUATION

that solution although in most cases only by a small

margin.

Among the local search mergers, the deterministic

hill-climber seems actually preferable, indicating that

κedges behaves rather monotonic under this setup.

The time for constructing a solution behaves as ex-

pected from the theoretical time complexities estab-

lished in Chapter 6.

9.4 Comparison of Set Mergers

Until now only the arbitrary order set merger has been

used for experimental evaluation. In this section, we

will compare solution quality and time for different

set mergers using the same pair merger, viz. the initial

greedy pair merger.

The results shown in Figure 9.23 through 9.26 in-

dicate that the order of mergings in this setup is not

affecting the quality of the generated solution at all.

Figure 9.23 shows that the solution quality for all set

mergers is almost the same.

Once again, the theoretical complexities from Chap-

ter 6 are nicely reflected in Figure 9.21 and 9.22: The

arbitrary order and the initial separate order opti-

mizer pose nearly no overhead over the pair merger

and are linear in the number of queries, whereas the

initial pairwise and progressive pairwise order opti-

mizer are clearly polynomial with the second even

more expensive than the first one.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 95

0.0
200.0
400.0
600.0
800.0

1.0k
1.2k
1.4k
1.6k
1.8k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(a) NITF-100-workload

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(b) COURSES-100-workload

0.0
200.0
400.0
600.0
800.0

1.0k
1.2k
1.4k
1.6k
1.8k
2.0k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f v
er

tic
es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(c) RANDOM-100-workload

0.0

500.0

1.0k

1.5k

2.0k

0 10 20 30 40 50 60 70 80 90 100
nu

m
be

r o
f v

er
tic

es
number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(d) REPEATED-1x100-workload

Figure 9.19: Vertices of the generated solutions under κedges

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

1.4k

1.6k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(a) NITF-100-workload

0.0

200.0

400.0

600.0

800.0

1.0k

1.2k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(b) COURSES-100-workload

0.0

500.0

1.0k

1.5k

2.0k

2.5k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(c) RANDOM-100-workload

0.0
200.0
400.0
600.0
800.0

1.0k
1.2k
1.4k
1.6k
1.8k
2.0k

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r o

f e
dg

es

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(d) REPEATED-1x100-workload

Figure 9.20: Edges of the generated solutions under κedges

96 EXPERIMENTAL EVALUATION

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 10 20 30 40 50 60 70 80 90 100

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(a) NITF-100-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 10 20 30 40 50 60 70 80 90 100

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(b) COURSES-100-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 10 20 30 40 50 60 70 80 90 100

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(c) RANDOM-100-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 10 20 30 40 50 60 70 80 90 100

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(d) REPEATED-1x100-workload

Figure 9.21: Time of the generated solutions under κedges

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(a) NITF-100-workload

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(b) COURSES-100-workload

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(c) RANDOM-100-workload

0.0

2.0k

4.0k

6.0k

8.0k

10.0k

0 10 20 30 40 50 60 70 80 90 100

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

plain
tree prefix
initial greedy
deterministic hillclimber
stochastic hillclimber
simmulated annealing

(d) REPEATED-1x100-workload

Figure 9.22: Time-Per-Query of the generated solutions under κedges

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 97

0.0

20.0k

40.0k

60.0k

80.0k

100.0k

120.0k

140.0k

0 50 100 150 200 250 300 350 400 450 500

es
tim

at
ed

 c
os

t

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(a) NITF-500-workload

0.0

10.0k

20.0k

30.0k

40.0k

50.0k

60.0k

0 50 100 150 200 250 300 350 400 450 500

es
tim

at
ed

 c
os

t

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(b) COURSES-500-workload

0.0

50.0k

100.0k

150.0k

200.0k

250.0k

0 50 100 150 200 250 300 350 400 450 500

es
tim

at
ed

 c
os

t

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(c) RANDOM-500-workload

0.0

5.0k

10.0k

15.0k

20.0k

25.0k

30.0k

35.0k

0 50 100 150 200 250 300 350 400 450 500
es

tim
at

ed
 c

os
t

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(d) REPEATED-20x25-workload

Figure 9.23: Cost of the generated solutions under κmerging

0.0

100.0

200.0

300.0

400.0

500.0

600.0

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

co
st

number of queries

arbitrary order
initial separate gain
initial pairwise gain

progressive pairwise gain

(a) NITF-500-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

co
st

number of queries

arbitrary order
initial separate gain
initial pairwise gain

progressive pairwise gain

(b) COURSES-500-workload

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

co
st

number of queries

arbitrary order
initial separate gain
initial pairwise gain

progressive pairwise gain

(c) RANDOM-500-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

co
st

number of queries

arbitrary order
initial separate gain
initial pairwise gain

progressive pairwise gain

(d) REPEATED-20x25-workload

Figure 9.24: Cost-Per-Query of the generated solutions under κmerging

98 EXPERIMENTAL EVALUATION

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(a) NITF-500-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(b) COURSES-500-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(c) RANDOM-500-workload

0.0
50.0

100.0
150.0
200.0
250.0
300.0
350.0
400.0
450.0
500.0

0 50 100 150 200 250 300 350 400 450 500

tim
e

fo
r m

er
gi

ng
 (s

)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(d) REPEATED-20x25-workload

Figure 9.25: Time of the generated solutions under κmerging

0.0

200.0

400.0

600.0

800.0

1.0k

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(a) NITF-500-workload

0.0

200.0

400.0

600.0

800.0

1.0k

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(b) COURSES-500-workload

0.0

200.0

400.0

600.0

800.0

1.0k

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(c) RANDOM-500-workload

0.0

200.0

400.0

600.0

800.0

1.0k

0 50 100 150 200 250 300 350 400 450 500

av
er

ag
e

tim
e

fo
r m

er
gi

ng
 (m

s)

number of queries

arbitrary order
initial separate gain
initial pairwise gain
progressive pairwise gain

(d) REPEATED-20x25-workload

Figure 9.26: Time-Per-Query of the generated solutions under κmerging

Chapter 10

Implementation

In this chapter, a brief overview over the implementation of the method proposed in this thesis is given. The

overview concentrates on the design of the optimization framework. A more extensive documentation of the

implementation is available in form of an documentation of the API [50].

Contents

10.1 Basic Graph Library . 99

10.2 From Graphs to Query Plans . 102

10.2.1 Computing the cost of a query plan . 104

10.3 Pair mergers . 104

10.4 Set mergers . 106

10.5 Other Components of the Optimization Framework . 106

10.6 Testing . 106

Based on the prototype of the SPEX engine pre-

sented in [79], the optimization framework proposed

in this work has been implemented. As implementa-

tion language, Java [74] has been selected, in particu-

lar to ease the migration from the previous SPEX ver-

sion. All pair and set mergers proposed in Chapter 6

have been implemented (cf. Sections 10.3 and 10.4) on

top of the optimization framework. A new graph li-

brary (cf. Section 10.1) optimized for efficient iteration

over the edges of a vertex is employed to implement

the query plans for SPEX (cf. Section 10.2) and as well

as numerous algorithms that are part of the optimiza-

tion framework (cf. Section 10.5). Finally, several tools

for automated testing and performance measurement

have been developed (cf. Section 10.6).

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.

M.S. thesis, University of Munich, Institute of Computer Sci-

ence.

[74] Joy, B., et al. 2000. The Java Language Specification, 2nd

ed. Addison-Wesley.

10.1 Basic Graph Library:

spex.util.graph

The core of the implementation, both with respect to

the class hierarchy and to performance, is the graph

library. From the set and pair merger algorithms and

a review of the shape of query plans that are to be op-

timized based on the graph library, analytical require-

ments for the graph library can be obtained:

(1) Fast iteration over the edges incident to a vertex

is needed for both for the merge function as well

as for the local cost functions.

(2) merge furthermore requires a (almost) constant-

time test whether two given vertices are adjacent.

(3) The degree of most vertices is usually very small,

in almost every case clearly smaller than the

number of vertices. Therefore, an implementa-

tion with O(V × E) space complexity such as an

adjacent list is preferable to an implementation

with O(V2) space complexity such as an adjacent

matrix.

99

100 IMPLEMENTATION

(4) Several algorithms require the ability to attach ar-

bitrary pieces of information to a vertex or edge.

(5) Efficient access to the ancestors and descendants

of a vertex.

Several existing graph libraries for Java have been

reviewed along this criteria, but none of them could

satisfy the given constraints. Most of the graph li-

braries for Java are tailored to graph visualization

[66]. This results not only in relatively heavy-weight

libraries introducing a considerable overhead into the

optimization framework, but also in their failure to

meet most of the criteria presented above as they have

other focus, as described in [91].

Therefore, a specialized graph library has been im-

plemented based on the idea of an adjacent list due

to the third observation. But instead of a simple list,

an associative storage or Map is used that uses ver-

tices as keys and edges as entries. Thereby, the test

whether two vertices are adjacent is in most cases con-

stant. To allow fast iteration over the edges, the edges

are furthermore linked like in a linked list. The JDK

recently introduced such a Map as part of the collec-

tions framework, called there LinkedHashMap, as it is

based on a hash as associative storage.

Extensive profiling of this implementation has

shown however, that (1) iteration over the elements in

a LinkedHashMap is still very inefficient compared to

iterating over the elements of a list such as LinkedList

or array and (2) the test whether two given vertices are

adjacent has far less influence on the overall run-time

than the iteration. Therefore, a second implementa-

tion of the graph library based on LinkedLists for stor-

ing the edges incident to a vertex has been provided.

It turned out, that switching from the original imple-

mentation to this second implementation improved

the time for the more expensive algorithms by up to

75%.

Figure 10.5 shows the hierarchy of the most impor-

tant classes and interfaces that are part of the (second

version of the) graph library, implemented as package

spex.util.graph.

Three interfaces are at the center of the graph li-

brary: the DirectedAcyclicGraph, Vertex, and Edge in-

[66] Herman, I., et al. 2000. Graph visualization and navigation

in information visualization: A survey. IEEE Transactions

on Visualization and Computer Graphics 6, 1, 24–43.

[91] Marshall, M. S., et al. 2001. An object-oriented design for

graph visualization. Software Practice and Experience 31, 8,

739–756.

Figure 10.1: Interface DirectedAcyclicGraph

terface, that represent a DAG, a vertex in a DAG and a

directed edge.

The DirectedAcyclicGraph interface provides access

to the vertices in the graph and several graph related

functions, such as test for graph isomorphism and

cloning of graphs. All edge related functions are con-

venient wrappers for the corresponding functions of

the vertex interface. The Vertex interface is the most

extensive interface in the optimization framework and

allows the manipulation of a vertex and its incident

edges by a plethora of operations as shown in Fig-

ure 10.2. Most notably, the edges of a vertex can be

traversed by an ListIterator.

The Edge is simple in comparison to the Vertex in-

terface, since it provides essentially only access to the

vertices adjacent to it and a convenient function for

testing whether adding that edge is part of a cyclic

path. The latter function is implemented using estab-

lished methods for dynamic cycle detection [125].

All these interfaces are inherited from Decorable,

a software pattern used to allow arbitrary attribute-

value pairs to be associated with an object, as required

by the specifications for the graph library discussed

above.

[125] Shmueli, O. 1983. Dynamic cycle detection. Information

Processing Letters 17, 4, 185–188.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 101

Figure 10.5: Hierarchy of important classes and interfaces in spex.util.graph

Figure 10.6: Hierarchy of important classes and interfaces in spex.queries

102 IMPLEMENTATION

Figure 10.2: Interface Vertex

Figure 10.3: Interface Edge

Figure 10.4: Interface Decorable

10.2 From Graphs to Query Plans:

spex.queries

Based on this graph library, query plans for the SPEX

engine are implemented. Figure 10.6 shows the full hi-

erarchy of classes and interfaces in the spex.queries

package. This hierarchy can be divided into classes

and interfaces that are used to represent query plans

or query graphs, as they are called in the implementa-

tion, vertices that occur in query plans, and edges that

occur in query plans.

Once again, the case of the edges is the simplest:

The interface Edge is implemented by SimpleEdge that

is part of the graph library. Instances of SimpleEdge

are used in general graphs but also in query plans as

long as the query plan evaluates a single query only.

The class MultiQueryEdge extends SimpleEdge by sev-

eral operations for handling the queries assigned to an

edge in a query plan (as represented by the q function

in the formal specification of a query plan).

Vertices occurring in query graphs are classified by

the operator they are assigned to. For each opera-

tor, there is a corresponding class as shown in Figure

10.7. The out operator is represented by the Head-

Vertex and the vertices for property operators are fur-

ther divided in vertices that can have a single property

assigned to them and vertices that can carry multi-

ple properties. The QueryVertex class shown in Fig-

ure 10.8 extends the AdjacentListVertex of the Ver-

tex interface provided as part of the graph library by

operations specific to a vertex in a query, such as

operations for accessing the queries a vertex is part

of. Furthermore, means to store the cost of a vertex

are provided, allowing efficient implementation of the

vertex-based cost functions discussed in Chapter 8 us-

ing memorization.

Finally, for efficiency reasons, there are two kinds

of query plans (called query graphs): query plans that

evaluate a single query only as instances of the class

SingleQueryGraph, and query plans that evaluate mul-

tiple queries as instances of the MultiQueryGraph that

provide additional methods for accessing the queries

evaluated by a query plan. Furthermore, MultiQuery-

Graph allows efficient access to its vertices by the op-

erator they are assigned to. This operation is crucial

for implementing validCandidates in the Abstract-

Merger (cf. Section 10.3). Finally, efficient access to

the mappings from vertices of one MultiQueryGraph

to another is provided as support for the pair mergers

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 103

Figure 10.7: Class hierarchy for query vertices

Figure 10.8: Class QueryVertex

Figure 10.9: Class hierarchy for query graphs

104 IMPLEMENTATION

shown in Section 10.3 as well as for the pairwise set

merger.

10.2.1 Computing the cost of a query plan:

spex.queries.optimizers.cost

All vertex-based cost functions proposed in Chapter 8

are implemented as shown in Figure 10.10 based on

the common interface CostFunction providing means

for computing the cost of a graph or a vertex. All these

implementations are required to provide means to up-

date the cost of a graph upon changes to that graph.

Thus, if e.g. a vertex is added to the graph, an in-

dependent cost function can simply increase the cost

of the graph by the cost of the new vertex. For a local

cost function, also all now adjacent vertices of the new

vertex might change their cost and therefore have to

be considered. In the case of a global cost function, all

vertices might actually be affected. Nevertheless, this

optimization together with the memorization of the

cost of a vertex allow very efficient implementations

of the cost functions, in particular of the independent

and local cost function.

The three cost functions κoperators, implemented

by the class ProcessingCostFunction, κmerging, imple-

mented by MergingCostFunction, and κselectivity, imple-

mented by SelectivityCostFunction, can be configured

with an instance of the class EvaluatorCharacteristics

that describes the mapping from operator-property

pairs to relative costs discussed in Chapter 8.

10.3 Pair mergers:

spex.queries.optimizers.merger

All pair mergers proposed in Chapter 6 have been

implemented including the various variants. Fig-

ure 10.11 shows the hierarchy of the correspond-

ing classes and interfaces. The incremental mergers

are mostly implemented slightly more efficient than

shown in Chapter 6, but without considerable change

to the worst-case time complexity. The two variants

of the greedy pair merger are implemented in the

GreedyIncrementalMerger that can be configured by

the variant to select.

The central interface of this package is the Merger,

that is implemented by the abstract class Abstract-

Merger, as shown in Figure 10.12, that is in turn

extended by all the concrete pair mergers. The

Figure 10.13: Class NeighbourIterator

Merger interface provides the single method merge

with two query plans as input that returns a Mul-

tiQueryGraph representing the result of merging

the two input plans. The AbstractMerger con-

tains implementations of operations used by all

mergers, such as validCandidates implemented by

getValidMergeCandidates or operations for adding

and removing a merging from one query plan into an-

other.

Another important class is the NeighbourIterator

that provides efficient iteration over the neighbors of a

solution. This iteration is implemented incrementally,

i.e., on each call to the next method the next neigh-

bor is generated on-the-fly thus decreasing the space

complexity dramatically.

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 105

Figure 10.10: Hierarchy of important classes and interfaces in spex.queries.optimizers.cost

Figure 10.11: Hierarchy of important classes and interfaces in spex.queries.optimizers.mergers

Figure 10.12: Interface Merger

106 IMPLEMENTATION

Figure 10.15: Interface Optimizer

10.4 Set mergers:

spex.queries.optimizers

As the pair mergers, also all set mergers discussed in

Section 6.3 have been implemented. The implementa-

tion refers to a set merger as an optimizer since it is

the interface from the multi-query optimization sub-

system to the rest of the optimization framework.

The hierarchy of classes and interfaces realizing the

set mergers from Section 6.3 is shown in Figure 10.14.

The class ExhaustiveBestOrderOptimizer provides an

exhaustive implementation of a set merger. The arbi-

trary order set merger is implemented in two variants

by ArbitraryOrderOptimizer and AlternativeArbitrary-

OrderOptimizer where only the latter is extended from

AbstractBestOrderOptimizer. AbstractBestOrderOpti-

mizer provides means to store and access sets of

queries and is extended by all the optimizers that

care about the order of queries (as they use the set

of queries to determine the best order), whereas the

ArbitraryOrderOptimizer merges each query immedi-

ately into a multi-query graph and stores only that

one. The GreedyBestOrderOptimizer implements the

initial separate, initial pairwise and progressive pair-

wise order set merger. Slightly more efficient special-

izations of the two initial set mergers are provided

in the classes InitialSeparateGainGreedyOptimizer and

InitialPairwiseGainGreedyOptimizer.

The interface Optimizer allows to add queries to a

set merger, to reset the set of queries, and to optimize

the current set into a multi-query graph as shown in

Figure 10.15. It extends the Observer interface en-

abling push-based query addition, i.e., whenever an-

other component of the optimization framework such

as a query parser of query generator, has a new query

available, the update method of all Observers regis-

tered with that component (extending Observable) are

called.

10.5 Other Components of the Opti-

mization Framework

The actual optimization framework implemented as

part of this thesis, entails numerous packages and

classes that are not discussed in this thesis. Notable

among these are classes for generating and translating

query plans. There are several kinds of translators:

in particular, parser from a serial form into a query

plan and serializer that create a serial form such as an

RPQ or XPath query from a query plan. Several such

translators have been implemented, in particular for

serializing to and parsing from RPQ, XPath, and the

dot-graph visualization language.

The second kind of translators are responsible for

generating a physical query plan from a logical query

plan represented by a QueryGraph. Two such transla-

tors with different capabilities are implemented that

generate a SPEX network for a QueryGraph.

Rewriters are components that transform one query

plan into another one. Important rewriters are e.g.,

the InverseJoinRewriter that implements one of the

rewriting algorithms for removing inverse relations

described in [107] and the BranchPrefixCompacter that

implements the prefix compaction in query plans dis-

cussed in Section 2.3.3.

For a more extensive description of the optimiza-

tion framework please refer to the API documentation

[50] provided as part of this thesis.

10.6 Testing:

spex.tests

For testing and evaluation of the method as well as the

implementation proposed in this work, several tools

for automated testing have been developed. Most no-

tably, these tools allow the generation of large sets of

query plans based on a DTD. These query plans can

then be evaluated with an arbitrary number of combi-

nations of set merger, pair merger, cost function, se-

rializer etc. in an automated process. The generation

[107] Olteanu, D., et al. 2002. XPath: Looking forward. In Proc.

of the EDBT Workshop on XML Data Management (XMLDM).

Lecture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

[50] Furche, T. MQ-SPEX: Multi-query optimization

framework for SPEX, API documentation. http:

//www.pms.informatik.uni-muenchen.de/forschung/

xpath-eval.html.

http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html

OPTIMIZING MULTIPLE QUERIES AGAINST XML STREAMS 107

Figure 10.14: Hierarchy of important classes and interfaces in spex.queries.optimizers

as well as the evaluation itself are highly parameter-

izable. For a more extensive documentation, please

refer to the documentation of the API [50] of the opti-

mization framework provided as part of this thesis.

108 IMPLEMENTATION

Chapter 11

Conclusion and Future Work

Starting from a discussion about query plans for

evaluating queries against an XML stream, an ex-

tensive investigation of the optimization of multiple

queries to be executed simultaneously is provided in

this thesis. Query plans are introduced as graphs of

operators that specify the flow of data in an evalua-

tion engine. It is emphasized, that sharing of opera-

tors becomes a critical issue for optimization against

streams, in particular for XML query plans as pro-

posed here. Where previous work in this field is con-

cerned, if at all, only with operator sharing among

common prefixes of a query plan, we show that it is

feasible to consider sharing of arbitrary operators.

The notion of a query plan and an evaluation model

is formalized to facilitate a precise definition of the

optimization problem considered. In Chapter 5 we de-

fine the minimum common super-plan problem and

its more feasible variant, the stable minimum com-

mon super-plan, formally as optimization problems:

The objective is to find, given a set of query plans, a

query plan that contains all the original query plans

as subgraphs and is cost optimal. The intuition be-

hind this problem definition is that such a query plan

evaluates all the queries that are also evaluated by the

input query plans using the same evaluation strategy

for that query as the corresponding query plan from

the input but shares operators among queries wher-

ever the underlying cost function justifies that.

By reducing the maximum common connected sub-

graph problem to the general stable minimum com-

mon super-plan problem it is proven that the stable

minimum common super-plan is NP-hard and NPO PB-

complete, i.e., it can not be approximated within nε

for any ε > 0.

Chapter 6 proposes several heuristic algorithms for

solving this problem. Algorithms (called pair mergers)

for two query plans as well as algorithms that consider

arbitrary sets of query plans are investigated and sev-

eral different heuristics are presented for both cases.

In particular, two different classes of pair mergers are

identified differentiated by what operations are sup-

ported by the kind of query plans considered. The

incremental pair merger operate on partial solutions

and therefore require that there is some way to deter-

mine the cost and validity of a partial solution. Lo-

cal search pair mergers, on the other hand, are often

less efficient but require only a transformation func-

tion that commutes from one solution to another one.

To evaluate these algorithms, an overview over the

SPEX engine, used as basis for the evaluation, is pro-

vided: SPEX is a novel evaluation engine proposed in

[79; 105] and extended in [106], based on networks of

deterministic push-down transducers. We show how

to extended this evaluation engine to the query plans

for multiple queries generated by the heuristics dis-

cussed above.

Based on this evaluation engine and one of the ap-

propriate cost functions, discussed in Chapter 8, the

heuristics are evaluated against seven diverse work-

loads of query plans mimicking common application

scenarios as well as the extreme cases. For each of

these workloads, the most promising heuristics are

[79] Kiesling, T. 2002. Towards a streamed XPath evaluation.

M.S. thesis, University of Munich, Institute of Computer Sci-

ence.

[105] Olteanu, D., et al. 2003. An evaluation of regular path ex-

pressions with qualifiers against XML streams. In Proc. of

the International Conference on Data Engineering (ICDE).

[106] Olteanu, D., et al. 2003. Advanced techniques for streamed

and progressive evaluation of XPath. Research report, Uni-

versity of Munich, Institute for Computer Science.

109

110 CONCLUSION AND FUTURE WORK

tested with up to 10, 000 query plans with an average

size of 15 as input, whereas the test for the remaining

heuristics are limited to smaller input sizes.

The experimental evaluation shows, that under the

considered cost functions and query plans, the pro-

posed method for optimization of multiple queries

can provide with the right combination of heuristics a

distinctively better cost than conventional techniques

based on prefix compaction only.

Concluding, this work shows that sharing of opera-

tors among multiple query plan can, at least for the

SPEX evaluation engine, be extended from common

prefixes to arbitrary operators in a query plan. Fur-

thermore, a simple greedy heuristic can compute solu-

tions that are clearly superior to solutions constructed

if one considers only common prefixes as in previous

work in reasonable, albeit longer time. We believe, that

the best combination of heuristics identified in Chap-

ter 9 can be employed in practial cases justifying the

larger time required for query optimization by consid-

erably reducing the query execution time.

Nevertheless, several open issues remain: In partic-

ular, only one of three strategies for solving the sta-

ble minimum common super-plan problem has been

investigated extensively. For example, adapting tech-

niques for frequent sub-structure discovery [68] in bi-

ological data to the problem at hand might prove very

beneficial. Furthermore, clustering of the queries, ei-

ther in a preprocessing step or during the construc-

tion of the super-plan, can drastically reduce the com-

plexity of the problem. Related work on graph cluster-

ing, reviewed in [21], could provide hints for such an

extension.

Genetic algorithms have shown considerable poten-

tial as heuristics for solving several graph theoretical

problems [37; 98]. Although finding a crossover oper-

ation might not be trivial, it could prove very beneficial

to investigate such a heuristic.

[68] Inokuchi, A., et al. 2000. An apriori-based algorithm for

mining frequent substructures from graph data. In Proc.

of the European Conference on Principles and Practice of

Knowledge Discovery and Data Mining (PKDD2000). 13–23.

[21] Bunke, H. 2000. Recent developments in graph matching. In

Proc. of the International Conference on Pattern Recognition

(ICPR). Vol. 2.

[37] Cross, A. D. J., et al. 1996. Genetic search for structural

matching. In Computer Vision – ECCV ’96, R. C. B. Buxton,

Ed. LNCS 1064. Springer Verlag, 514–525.

[98] Michalewicz, Z. 1996. Genetic Algorithms + Data Structures

= Evolution Programs, 2nd ed. Springer Verlag.

Finally, we have not considered combining the pro-

posed heuristics in a reasonable way, e.g., to use

certain incremental pair mergers to provide starting

points for the local search pair merger.

Aside of improving the heuristics, there is one other

important open question: Can we find classes of

cost functions that are still interesting but for which

the stable minimum common super-plan problem be-

comes easier to approximate or even easier to solve

precisely? Although we do not believe, that there is

a class of interesting cost functions where the stable

minimum common super-plan problem becomes eas-

ier to solve, i.e., not NP-hard, there might be classes,

where it is easier to approximate, i.e., one can find

a heuristic such that a solution constructed by that

heuristic has a performance ratio bounded by nε for

some ε > 0.

Appendix A

Bibliography

Contents

[1] Aboulnaga, A., Alameldeen, A. R., and Naughton, J. F.

Estimating the selectivity of XML path expressions

for internet scale applications. In Proc. of the Inter-

national Conference on Very Large Databases (VLDB).

2001.

[2] Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley,

M., and Chandra, T. D. 1999. Matching events in a

content-based subscription system. In Proc. of the

ACM Symposium on Principles of Distributed Comput-

ing. ACM Press, 53–61.

[3] Alex C. Snoeren, Kenneth Conley, D. K. G. 2001.

Mesh-based content routing using XML. In Proc. of

the ACM Symposium on Operating Systems Principles

(SOSP). 160–173.

[4] Altinel, M. and Franklin, M. J. 2000. Efficient filtering

of XML documents for selective dissemination of in-

formation. In Proc. of the International Conference on

Very Large Databases (VLDB).

[5] Armen, C. and Stein, C. 1994. A 2 3
4 -approximation al-

gorithm for the shortest superstring problem. Tech.

Rep. PCS-TR94-214, Department of Computer Sci-

ence, Dartmouth College, Hannover (NH).

[6] Arora, S. 1998. The approximability of NP-hard prob-

lems. In Proc. of the ACM Symposium on Theory of

Computing. 337–348.

[7] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,

Marchetti-Spaccamela, A., and Protasi, M. 1999. Com-

plexity and Approximation: Combinatorial Optimiza-

tion Problems and their Approximability Properties.

Springer Verlag, Berlin.

[8] Avila-Campillo, I., Gupta, A., Onizuka, M., Raven,

D., and Suciu, D. 2002. XMLTK: An XML toolkit

for scalable XML stream processing. In Proc. of

the Workshop on Programming Language Tech-

nologies for XML (PLAN-X). Proc. available at

http://www.research.avayalabs.com/user/

wadler/planx/planx-eproceed/proceed.html.

[9] Avnur, R. and Hellerstein, J. M. 2000. Eddies: Contin-

uously adaptive query processing. In Proc. of the ACM

SIGMOD International Conference on Management of

Data. ACM Press, 261–272.

[10] Babcock, B., Babu, S., Datar, M., Motwani, R., and

Widom, J. 2002. Models and issues in data stream

systems. In Proc. of the ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Sys-

tems (PODS).

[11] Babu, S. and Widom, J. 2001. Continuous queries over

data streams. SIGMOD (ACM Special Interest Group

on Management of Data) Record, 109–120.

[12] Banavar, G., Chandra, T. D., Mukherjee, B., Nagara-

jarao, J., Strom, R. E., and Sturman, D. C. 1999. An ef-

ficient multicast protocol for content-based publish-

subscribe systems. In Proc. of the International Con-

ference on Distributed Computing Systems (ICDCS).

262–272.

[13] Barton, C., Charles, P., Goyal, D., Raghavachari,

M., Fontoura, M., and Josifovski, V. 2002. An

algorithm for streaming XPath processing with

forward and backward axes. In Proc. of the

Workshop on Programming Language Tech-

nologies for XML (PLAN-X). Proc. available at

http://www.research.avayalabs.com/user/

wadler/planx/planx-eproceed/proceed.html.

[14] Barton, C., Charles, P., Goyal, D., Raghavachari, M.,

Fontoura, M., and Josifovski, V. 2003. Streaming

XPath processing with forward and backward axes.

111

http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html
http://www.research.avayalabs.com/user/wadler/planx/planx-eproceed/proceed.html

112 Bibliography

In Proc. of the International Conference on Data Engi-

neering (ICDE).

[15] Berlund, A., Boag, S., Chamberlin, D., Fernandez,

M. F., Kay, M., Robie, J., and Siméon, J., Eds. 2002.

XML path language (XPath) 2.0. Working draft, World

Wide Web Consortium. http://www.w3.org/TR/

xpath20/.

[16] Blum, A., Jiang, T., Li, M., Tromp, J., and Yannakakis,

M. 1994. Linear approximation of shortest super-

strings. Journal of the ACM 41, 630–647.

[17] Bonnet, P., Gehrke, J., and Seshadri, P. 2001. Towards

sensor database systems. In Proc. of the International

Conference on Mobile Data Management (ICMDM). 3–

14.

[18] Botts, M., Ed. 2002. Sensor model language

(SensorML) for in-situ and remote sensors spec-

ification. discussion paper 02-026r4, Open GIS

Consortium. http://www.opengis.org/techno/

discussions/02-026r4.pdf.

[19] Botts, M. and Reichardt, M. 2003. Sensor web

enablement. white paper, Open GIS Consortium.

http://www.opengis.org/pressrm/summaries/

SensorWebWhPpr030512.doc.

[20] Bray, T., Paoli, J., Sperberg-McQueen, C. M., and

Maler, E., Eds. 2000. Extensible markup language

(XML) 1.0 (second edition). Recommendation, World

Wide Web Consortium. http://www.w3.org/TR/

REC-xml.

[21] Bunke, H. 2000. Recent developments in graph

matching. In Proc. of the International Conference on

Pattern Recognition (ICPR). Vol. 2.

[22] Bunke, H., Jiang, X., and Kandel, A. 2000. On the min-

imum common supergraph of two graphs. Springer

Computing 65, 1, 13–25.

[23] Calvanese, D., Giacomo, G. D., Lenzerini, M., and

Vardi, M. Y. 2000. Containment of conjunctive reg-

ular path queries with inverse. In Proc. of the Inter-

national Conference on the Principles of Knowledge

Representation and Reasoning (KR). 176–185.

[24] Carney, D., Cetintemel, U., Cherniack, M., Convey, C.,

Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., and

Zdonik, S. 2002. Monitoring streams: A new class of

data management applications. In Proc. of the Inter-

national Conference on Very Large Databases (VLDB).

[25] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L.

2000. Achieving scalability and expressiveness in an

internet-scale event notification service. In Proc. of

the ACM Symposium on Principles of Distributed Com-

puting. ACM Press, 219–227.

[26] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. 2001.

Design and evaluation of a wide-area event notifica-

tion service. ACM Transactions on Computer Systems

(TOCS) 19, 3, 332–383.

[27] Carzaniga, A. and Wolf, A. L. 2001. Fast forwarding

for content-based networking. Tech. Rep. CU-CS-922-

01, Department of Computer Science, University of

Colorado.

[28] Chan, C.-Y., Felber, P., Garofalakis, M., and Rastogi,

R. 2002a. Efficient filtering of XML documents with

XPath expressions. The VLDB Journal (Special Issue

on XML Data Management).

[29] Chan, C.-Y., Felber, P., Garofalakis, M., and Rastogi,

R. 2002b. Efficient filtering of XML documents with

XPath expressions. In Proc. of the International Con-

ference on Data Engineering (ICDE). 235–244.

[30] Chandrasekaran, S. and Franklin, M. J. 2002. Stream-

ing queries over streaming data. In Proc. of the Inter-

national Conference on Very Large Databases (VLDB).

[31] Chen, J., DeWitt, D. J., , and Naughton, J. F. 2002.

Design and evaluation of alternative selection place-

ment strategies in optimizing continuous queries. In

Proc. of the International Conference on Data Engi-

neering (ICDE).

[32] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. 2000.

NiagaraCQ: A scalable continuous query system for

internet databases. In Proc. of the ACM SIGMOD In-

ternational Conference on Management of Data. SIG-

MOD Record 29, 2, 379–390.

[33] Cisco Systems. 2000. Cisco IOS netflow – technology

data sheet. http://www.cisco.com/warp/public/

cc/pd/iosw/prodlit/iosnf_ds.pdf.

[34] Clark, J. and DeRose, S., Eds. 1999. XML path lan-

guage (XPath) version 1.0. Recommendation, World

Wide Web Consortium. http://www.w3.org/TR/

xpath.

[35] Crescenzi, P. and Panconesi, A. 1991. Completeness

in approximation classes. Information and Computa-

tion 93, 2, 241–262.

[36] Crespo, A., Buyukkokten, O., and Garcia-Molina, H.

2003. Query merging: Improving query subscription

processing in a multicast environment. IEEE Transac-

tions on Knowledge and Data Engineering (TKDE).

[37] Cross, A. D. J., Wilson, R. C., and Hancock, E. R. 1996.

Genetic search for structural matching. In Computer

Vision – ECCV ’96, R. C. B. Buxton, Ed. LNCS 1064.

Springer Verlag, 514–525.

[38] Dayal, U., Hanson, E. N., and Widom, J. 1995. Active

database systems. In Modern Database Systems. 434–

456.

[39] Deering, S. E. and Cheriton, D. R. 1990. Mul-

ticast routing in datagram internetworks and ex-

tended LANs. ACM Transactions on Computer Sys-

tems (TOCS) 8, 2, 85–110.

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.opengis.org/techno/discussions/02-026r4.pdf
http://www.opengis.org/techno/discussions/02-026r4.pdf
http://www.opengis.org/pressrm/summaries/SensorWebWhPpr030512.doc
http://www.opengis.org/pressrm/summaries/SensorWebWhPpr030512.doc
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/iosnf_ds.pdf
http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/iosnf_ds.pdf
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Optimizing Multiple Queries against XML Streams 113

[40] Desai, A. 2001. Introduction to sequential XPath.

In Proc. of the IDEAlliance XML Conference. Elec-

tronic Proc. available at http://www.idealliance.

org/papers/xml2001/.

[41] Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., and

Fischer, P. 2002. Path sharing and predicate evalua-

tion for high-performance XML filtering. Submitted

for publication, www.cs.berkeley.edu/~diaoyl/

publications/yfilter-public.ps.

[42] Diao, Y., Fischer, P., Franklin, M. J., and To, R. 2002.

YFilter: Efficient and scalable filtering of XML docu-

ments. In Proc. of the International Conference on

Data Engineering (ICDE).

[43] Douglass, R., Mork, J., and Suresh, B. 1997. Battle-

field awareness and data dissemination (BADD for

the warfighter. In Proc. of the SPIE, B. R. Suresh, Ed.

Vol. 3080. SPIE – The International Society for Optical

Engineering, 18–24.

[44] Duffield, N. G. and Grossglauser, M. 2001. Trajectory

sampling for direct traffic observation. IEEE/ACM

Transactions on Networking (TON) 9, 3, 280–292.

[45] Eric, H., Al-Fayoumi, N., Carnes, C., Kandil, M., Liu, H.,

Lu, M., Park, J., and Vernon, A. 1997. TriggerMan: An

asynchronous trigger processor as an extension to an

object-relational DBMS. Tech. Rep. 97-024, University

of Florida, CISE Department.

[46] Eric N. Hanson, T. J. 1996. Selection predicate index-

ing for active databases using interval skip lists. In-

formation Systems 21, 3, 269–298.

[47] Fabret, F., Jacobsen, H.-A., Llirbat, F., Pereira, J., Ross,

K. A., and Shasha, D. 2001. Filtering algorithms and

implementation for very fast publish/subscribe sys-

tems. In Proc. of the ACM SIGMOD International Con-

ference on Management of Data. ACM Press, 115–

126.

[48] Finkelstein, S. J. 1982. Common subexpression anal-

ysis in database applications. In Proc. of the ACM

SIGMOD International Conference on Management of

Data. 235–245.

[49] Franklin, M. J., Ed. 1996. Special Issue on Data Dis-

semination. Data Engineering Bulletin, vol. 19, 3. IEEE

Computer Society.

[50] Furche, T. MQ-SPEX: Multi-query optimiza-

tion framework for SPEX, API documentation.

http://www.pms.informatik.uni-muenchen.de/

forschung/xpath-eval.html.

[51] Garcia-Molina, H., Ullmann, J. D., and Widom, J. 2001.

Database systems: the complete book, 1st ed. Prentice

Hall, Upper Saddle River, New Jersey.

[52] Gore, P., Cytron, R., Schmidt, D., and O’Ryan, C. 2001.

Designing and optimizing a scalable CORBA notifica-

tion service. ACM SIGPLAN Notices 36, 8, 196–204.

[53] Gottlob, G., Koch, C., and Pichler, R. 2003. The com-

plexity of XPath query evaluation. In Proc. of the ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems (PODS). 179–190.

[54] Gough, J. and Smith, G. 1995. Efficient recognition of

events in a distributed system. In Proc. of the Aus-

tralasian Computer Science Conference.

[55] Graefe, G. 1993. Query evaluation techniques for

large databases. ACM Computing Surveys 25, 2, 73–

170.

[56] Green, T. J., Miklau, G., Onizuka, M., and Suciu, D.

2003. Processing XML streams with deterministic au-

tomata. In Proc. of the International Conference on

Database Technology (ICDT). 173–189.

[57] Gruber, R. E., Krishnamurthy, B., and Panagos, E.

1999. The architecture of the READY event notifi-

cation service. In Proc. of the ICDCS Workshop on

Electronic Commerce and Web-Based Applications.

[58] Gruber, R. E., Krishnamurthy, B., and Panagos, E.

2000. READY: A high performance event notification

service. In Proc. of the International Conference on

Data Engineering (ICDE). 668–669.

[59] Gupta, A. and Nishimura, N. 1998. Finding largest

subtrees and smallest supertrees. Algorithmica 21, 2,

183–210.

[60] Gupta, A. K. and Suciu, D. 2003. Stream processing of

XPath queries with predicates. In Proc. of the Proc. of

the ACM SIGMOD International Conference on Man-

agement of Data.

[61] Hanson, E. N. 1991. The interval skip list: A data

structure for finding all intervals that overlap a point.

In Proc. of Workshop on Algorithms and Data Struc-

tures, Ottawa, Canada. Springer Verlag, 153–164.

[62] Hanson, E. N., Carnes, C., Huang, L., Konyala, M.,

Noronha, L., Parthasarathy, S., Park, J. B., and Vernon,

A. 1999. Scalable Trigger Processing. In Proc. of the

International Conference on Data Engineering (ICDE).

IEEE Computer Society Press, 266–275.

[63] Hanson, E. N. and Chaabouni, M. 1990. The IBS-

tree: A data structure for finding all intervals that

overlap a point. Tech. Rep. WSU-CS-90-11, Dept. of

Computer Science and Engineering, Wright State Uni-

versity. Available at ftp://ftp.cis.ufl.edu/cis/

tech-reports/tr94/tr94-040.ps.

[64] Hanson, E. N., Chaabouni, M., Kim, C.-H., and Wang,

Y.-W. 1990. A predicate matching algorithm for

database rule systems. In Proc. of the ACM SIGMOD

International Conference on Management of Data.

ACM Press, 271–280.

[65] Harnden, F. R., Primini, F. A., and Payne, H. E., Eds.

2001. Astronomical Data Analysis Software and Sys-

http://www.idealliance.org/papers/xml2001/
http://www.idealliance.org/papers/xml2001/
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
www.cs.berkeley.edu/~diaoyl/publications/yfilter-public.ps
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
ftp://ftp.cis.ufl.edu/cis/tech-reports/tr94/tr94-040.ps
ftp://ftp.cis.ufl.edu/cis/tech-reports/tr94/tr94-040.ps

114 Bibliography

tems X: Science Data Pipelines. ASP (Astronomical So-

ciety of the Pacific) Conference Series, vol. 238.

[66] Herman, I., Melançon, G., and Marshall, M. S. 2000.

Graph visualization and navigation in information vi-

sualization: A survey. IEEE Transactions on Visualiza-

tion and Computer Graphics 6, 1, 24–43.

[67] Hochbaum, D., Ed. 1996. Approximation Algorithms

for NP-hard Problems, 1st ed. Brooks Cole.

[68] Inokuchi, A., Washio, T., and Motoda, H. 2000. An

apriori-based algorithm for mining frequent sub-

structures from graph data. In Proc. of the European

Conference on Principles and Practice of Knowledge

Discovery and Data Mining (PKDD2000). 13–23.

[69] Inokuchi, A., Washio, T., and Motoda, H. 2003. Com-

plete mining of frequent patterns from graphs: Min-

ing graph data. Machine Learning 50, 3, 321–354.

[70] Inokuchi, A., Washio, T., Nishimura, Y., and Motoda,

H. 2002. General framework for mining frequent pat-

terns from structures. In Proc. of the International

Workshop on Active Mining (AM 2002). 23–30.

[71] International Press Telecommunications Council.

News industry text format (NITF). http://www.

nitf.org.

[72] Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2001. In-

tegrating network-bound XML data. IEEE Data Engi-

neering Bulletin 24, 2, 20–26.

[73] Ives, Z. G., Halevy, A. Y., and Weld, D. S. 2002. An XML

query engine for network-bound data. VLDB Journal

Special Issue on XML Data Management.

[74] Joy, B., Steele, G., Gosling, J., and Bracha, G. 2000.

The Java Language Specification, 2nd ed. Addison-

Wesley.

[75] Kann, V. 1992. On the approximability of the maxi-

mum common subgraph problem. In Proc. 9th Symp.

Theoretical Aspects of Computer Science. Number 577

in Lecture Notes in Computer Science. Springer Ver-

lag, 377–388.

[76] Kantor, B. and Lapsley, P., Eds. 1986. Network

news transfer protocol – a proposed standard for the

stream-based transmission of news. RFC 977, IETF.

http://www.ietf.org/rfc/rfc0977.txt.

[77] Keidl, M., Kreutz, A., Kemper, A., and Kossmann, D.

2002. A publish & subscribe architecture for dis-

tributed metadata management. In Proc. of the In-

ternational Conference on Data Engineering (ICDE).

309–320.

[78] Khanna, S., Motwani, R., Sudan, M., and Vazirani, U.

1999. On syntactic versus computational views of

approximability. SIAM Journal on Computing 28, 1,

164–191.

[79] Kiesling, T. 2002. Towards a streamed XPath evalu-

ation. M.S. thesis, University of Munich, Institute of

Computer Science. Description and diploma thesis at

http://www.pms.informatik.uni-muenchen.de/

lehre/projekt-diplom-arbeit/streamedxpath.

html.

[80] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.

1983. Optimization by simulated annealing. Sci-

ence 220, 4598, 671–680.

[81] Krishnamurthy, B. and Rosenblum, D. S. 1995. Yeast:

A general purpose event-action system. IEEE Transac-

tions on Software Engineering (TSE) 21, 10, 845–857.

[82] Kuramochi, M. and Karypis, G. 2002. An efficient al-

gorithm for discovering frequent subgraphs. Tech.

Rep. 02-026, Computer Science Departement, Univer-

sity of Minnesota.

[83] Lakshmanan, L. V. and Parthasarathy, S. 2002. On

efficient matching of streaming XML documents and

queries. In Proc. of the International Conference on

Extending Database Technology (EDBT). 142–160.

[84] Lim, L., Wang, M., Padmanabhan, S., Vitter, J. S., and

Parr, R. 2002. XPathLearner: An on-line self-tuning

markov histogram for XML path selectivity estima-

tion. In Proc. of the International Conference on Very

Large Databases (VLDB).

[85] Liu, L., Pu, C., Barga, R., and Zhou, T. 1996. Differen-

tial evaluation of continual queries. In Proc. of the In-

ternational Conference on Distributed Computing Sys-

tems (ICDCS). 458–465.

[86] Liu, L., Pu, C., and Tang, W. 1999. Continual queries

for internet scale event-driven information delivery.

IEEE Transactions on Knowledge and Data Engineer-

ing (TKDE) 11, 4, 610–628.

[87] Ludäscher, B., Mukhopadhyay, P., and Papakonstanti-

nou, Y. 2002. A transducer-based XML query proces-

sor. In Proc. of the International Conference on Very

Large Databases (VLDB).

[88] Madden, S. and Franklin, M. J. 2002. Fjording the

stream: An architecture for queries over streaming

sensor data. In Proc. of the International Conference

on Data Engineering (ICDE).

[89] Madden, S., Shah, M., Hellerstein, J. M., and Raman,

V. 2002. Continuously adaptive continuous queries

over streams. In Proc. of the ACM SIGMOD Interna-

tional Conference on Management of Data.

[90] Maier, D. and Storer, J. A. 1977. A note on the com-

plexity of the superstring problem. Tech. Rep. 233,

Princeton University. Oct.

[91] Marshall, M. S., Herman, I., and Melançon, G. 2001.

An object-oriented design for graph visualization.

Software Practice and Experience 31, 8, 739–756.

[92] Martínez, J. M., Ed. 2002. Mpeg-7 overview. Tech.

Rep. N4980, ISO/IEC JTC1/SC29/WG11. http:

http://www.nitf.org
http://www.nitf.org
http://www.ietf.org/rfc/rfc0977.txt
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://www.pms.informatik.uni-muenchen.de/lehre/projekt-diplom-arbeit/streamedxpath.html
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm

Optimizing Multiple Queries against XML Streams 115

//mpeg.telecomitalialab.com/standards/

mpeg-7/mpeg-7.htm.

[93] McGregor, J. J. 1982. Backtrack search algorithms and

the maximal common subgraph problem. Software-

Practice and Experience 12, 23–34.

[94] Megginson, D. and Brownell, D. 2002. SAX: The sim-

ple API for XML. http://www.saxproject.org/.

[95] Mehringer, D. M., Plante, R. L., and Roberts, D. A.,

Eds. 1999. Astronomical Data Analysis Software and

Systems VIII: Data Pipelines. ASP (Astronomical Soci-

ety of the Pacific) Conference Series, vol. 172.

[96] Meuss, H. and Schulz, K. 2001. Complete answer ag-

gregates for tree-like databases: A novel approach to

combine querying and navigation. ACM Transactions

on Information Systems (TOIS) 19, 2, 161–215.

[97] Mühl, G., Fiege, L., and Buchmann, A. 2002. Filter

similarities in content-based publish/subscribe sys-

tems. In Proc. of the International Conference on

Architecture of Computing Systems (ARCS). Lecture

Notes in Computer Science, vol. 2299. Springer Ver-

lag, 224–238.

[98] Michalewicz, Z. 1996. Genetic Algorithms + Data

Structures = Evolution Programs, 2nd ed. Springer

Verlag.

[99] Michalewicz, Z. and Fogel, D. B. 2000. How to Solve

It: Modern Heuristics, 1st ed. Springer Verlag.

[100] Miklau, G. XML data repository. http://www.

cs.washington.edu/research/xmldatasets/,

University of Washington.

[101] Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu,

S., Datar, M., Manku, G., Olston, C., Rosenstein, J.,

and Varma, R. 2003. Query processing, approxi-

mation, and resource management in a data stream

management system. In Proc. of the Conference on

Innovative Data Systems Research (CIDR).

[102] Nguyen, B., Abiteboul, S., Cobena, G., and Preda, M.

2001. Monitoring XML data on the Web. SIGMOD

(ACM Special Interest Group on Management of Data)

Record 30, 2, 437–448.

[103] Object Management Group, Inc. 2001. Event Ser-

vice Specification, 1.1 ed. Object Management

Group, Inc. http://www.omg.org/technology/

documents/formal/event_service.htm.

[104] Object Management Group, Inc. 2002. Notification

Service Specification, 1.0.1 ed. Object Management

Group, Inc. http://www.omg.org/technology/

documents/formal/notification_service.htm.

[105] Olteanu, D., Kiesling, T., and Bry, F. 2003. An eval-

uation of regular path expressions with qualifiers

against XML streams. In Proc. of the International

Conference on Data Engineering (ICDE).

[106] Olteanu, D., Kiesling, T., Furche, T., and Bry,

F. 2003. Advanced techniques for streamed and

progressive evaluation of XPath. Research re-

port, University of Munich, Institute for Com-

puter Science. http://www.pms.informatik.

uni-muenchen.de/forschung/xpath-eval.html.

[107] Olteanu, D., Meuss, H., Furche, T., and Bry, F.

2002. XPath: Looking forward. In Proc. of the EDBT

Workshop on XML Data Management (XMLDM). Lec-

ture Notes on Computer Science (LNCS), vol. 2490.

Springer Verlag, 109–125.

[108] Ozen, B., Kilic, O., Altinel, M., and Dogac, A. 2001.

Highly personalized information delivery to mobile

clients. In Proc. of ACM International Workshop on

Data Engineering for Wireless and Mobile Access.

[109] Ozkan, C., Dogac, A., and Evrendilek, C. 1995. A

heuristic approach for optimization of path expres-

sions. In Proc. of the International Conference on

Database and Expert Systems Applications. 522–534.

[110] Papadimitriou, C. H. and Yannakakis, M. 1991. Op-

timization, approximation, and complexity classes.

Journal of Computer and System Sciences 43, 425–

440.

[111] Peng, F. and Chawathe, S. S. 2003a. XPath queries

on streaming data. In Proc. of the Proc. of the ACM

SIGMOD International Conference on Management of

Data.

[112] Peng, F. and Chawathe, S. S. 2003b. XSQ: Streaming

XPath queries. In Proc. of the International Confer-

ence on Data Engineering (ICDE).

[113] Pereira, J., Fabret, F., Jacobsen, H.-A., Llirbat, F., and

Shasha, D. 2001. WebFilter: A high-throughput XML-

based publish and subscribe system. In Proc. of the

International Conference on Very Large Databases

(VLDB). 723–724.

[114] Pereira, J., Fabret, F., Llirbat, F., Preotiuc-Pietro, R.,

Ross, K. A., and Shasha, D. 2000. Publish/subscribe

on the web at extreme speed. In Proc. of the Inter-

national Conference on Very Large Databases (VLDB).

627–630.

[115] Pereira, J., Fabret, F., Llirbat, F., and Shasha, D. 2000.

Efficient matching for web-based publish/subscribe

systems. In Proc. of the International Conference on

Cooperative Information Systems. Lecture Notes in

Computer Science, vol. 1901. Springer Verlag, 162–

173.

[116] Polyzotis, N. and Garofalakis, M. 2002. Statistical syn-

opses for graph-structured XML databases. In Proc. of

the ACM SIGMOD International Conference on Man-

agement of Data.

[117] Ramakrishnan, S. and Dayal, V. 1998. The pointcast

http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
http://mpeg.telecomitalialab.com/standards/mpeg-7/mpeg-7.htm
http://www.saxproject.org/
http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/event_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.omg.org/technology/documents/formal/notification_service.htm
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html
http://www.pms.informatik.uni-muenchen.de/forschung/xpath-eval.html

116 Bibliography

network. In Proc. of the ACM SIGMOD International

Conference on Management of Data. ACM Press, 520.

[118] Reiss, S. P. 1990. Connecting tools using message

passing in the field environment. IEEE Software 7, 4,

57–66.

[119] Rosenthal, A. and Chakravarthy, U. S. 1988. Anatomy

of a modular multiple query optimizer. In Proc. of the

International Conference on Very Large Databases

(VLDB). 230–239.

[120] Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S.

2000. Efficient and extensible algorithms for multi

query optimization. SIGMOD (ACM Special Interest

Group on Management of Data) Record 29, 2, 249–

260.

[121] Segall, B. and Arnold, D. 1997. Elvin has left the

building: A publish/subscribe notification service

with quenching. In Proc. of AUUG (Australian Unix

and Open Systems User Group) ’97.

[122] Segall, B., Arnold, D., Boot, J., Henderson, M., and

Phelps, T. 2000. Content based routing with elvin4. In

Proc. of AUUG2K (Australian Unix and Open Systems

User Group).

[123] Sellis, T. K. 1988. Multiple-query optimization. ACM

Transactions on Database Systems (TODS) 13, 1, 23–

52.

[124] Sellis, T. K. and Ghosh, S. 1990. On the multiple-

query optimization problem. IEEE Transactions on

Knowledge and Data Engineering (TKDE) 2, 2, 262–

266.

[125] Shmueli, O. 1983. Dynamic cycle detection. Informa-

tion Processing Letters 17, 4, 185–188.

[126] Spannagel, M. 2003. SPEX Viewer: A graphical

user interface for SPEX. Project thesis, Univer-

sity of Munich, Institute for Computer Science.

http://www.pms.informatik.uni-muenchen.

de/publikationen/projektarbeiten/Markus.

Spannagel/SPEX_Viewer.html.

[127] Spears, W. M. 1996. Cliques, Coloring, and Satisfia-

bility: Second DIMACS Implementation Challenge. DI-

MACS Series in Discrete Mathematics and Theoretical

Computer Science, vol. 26. American Mathematical

Society, Chapter Simulated Annealing for Hard Satis-

fiability Problems, 533–558.

[128] Sullivan, M. and Heybey, A. 1998. Tribeca: A system

for managing large databases of network traffic. In

Proc. of the USENIX Annual Technical Conference.

[129] Sun Microsystems, Inc. 2001. JiniTM Technology

Core Platform Specification, 1.2 ed. Sun Microsys-

tems, Inc. http://wwws.sun.com/software/jini/

specs/jini1.2html/core-title.html.

[130] Sun Microsystems, Inc. 2002. Java Message Service

API Specification, 1.1 ed. Sun Microsystems, Inc.

http://java.sun.com/products/jms/.

[131] Terry, D. B., Goldberg, D., Nichols, D., and Oki,

B. M. 1992. Continuous queries over append-only

databases. In Proc. of the ACM SIGMOD International

Conference on Management of Data. ACM Press, 321–

330.

[132] Turner, J. S. 1989. Approximation algorithms for the

shortest common superstring problem. Information

and Computation 83, 1 (Oct.), 1–20.

[133] Ukkonen, E. 1990. A linear-time algorithm for find-

ing approximate shortest common superstrings. Al-

gorithmica 5, 313–323.

[134] Ullmann, J. R. 1976. An algorithm for subgraph iso-

morphism. Journal of the ACM 23, 1, 31–42.

[135] Wang, K. and Liu, H. 1999. Discovering structural

association of semistructured data. IEEE Transactions

on Knowledge and Data Engineering (TKDE).

[136] Widom, J. and Ceri, S., Eds. 1996. Active Database

Systems: Triggers and Rules For Advanced Database

Processing. Morgan Kaufmann.

[137] Wu, Y., Patel, J. M., and Jagadish, H. V. 2002. Es-

timating answer sizes for XML queries. In Proc. of

the International Conference on Extending Database

Technology (EDBT). 590–608.

[138] Xu, L. and Oja, E. 1990. Improved simulated an-

nealing, boltzmann machine, and attributed graph

matching. L. Almeida, Ed. LNCS 412. Springer Verlag,

151–161.

[139] Yamaguchi, A., Nakano, K., and Miyano, S. 1997. An

approximation algorithm for the minimum common

supertree problem. Nordic Journal of Computing 4, 3,

303–316.

[140] Yan, T. W. and Garcia-Molina, H. 1999. The sift infor-

mation dissemination system. ACM Transactions on

Database Systems (TODS) 24, 4, 529–565.

[141] Yannakakis, M. 1978. The node-deletion problem for

hereditary properties. Tech. Rep. 240, Computer Sci-

ence Laboratory, Princeton University.

[142] Yannakakis, M. 1979. The effect of a connectivity re-

quirement on the complexity of maximum subgraph

problems. Journal of the ACM 26, 4, 618–630.

[143] Yu, H., Estrin, D., and Govindan, R. 1999. A hierar-

chical proxy architecture for internet-scale event ser-

vices. In Proc. of the IEEE International Workshop on

Enabling Technologies: Infrastructure for Collabora-

tive Enterprises (WETICE).

[144] Yu, P. S., Ed. 2003. IEEE Transactions on Knowledge

and Data Engineering: special section on online anal-

ysis and querying of continuous data streams. Vol. 15.

IEEE Computer Society.

http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://www.pms.informatik.uni-muenchen.de/publikationen/projektarbeiten/Markus.Spannagel/SPEX_Viewer.html
http://wwws.sun.com/software/jini/specs/jini1.2html/core-title.html
http://wwws.sun.com/software/jini/specs/jini1.2html/core-title.html
http://java.sun.com/products/jms/

	1 Introduction
	2 Challenges for Query Optimization on Semi-structured Streams
	2.1 Traditional Query Optimization
	2.1.1 Optimizing Logical Query Plans

	2.2 Querying XML Data
	2.3 Optimizing Queries against XML Streams
	2.3.1 Optimization Objective
	2.3.2 Query Plans for XML
	2.3.3 Optimizing XML Query Plans
	2.3.4 Query Plans for Multiple Queries

	3 Related work
	3.1 Trigger Processing
	3.2 Continuous Query Systems
	3.2.1 Continuous Query Systems on Tuple Streams
	3.2.2 Continuous Query Systems on Semi-structured Streams

	3.3 Publish-Subscribe Architectures
	3.3.1 Content-based
	3.3.2 XML-based

	3.4 Single Query Processors against XML Streams

	4 Concise Representation of XML Query Plans
	4.1 Formalization of a Query Plan
	4.1.1 Evaluation Model
	4.1.2 Query Plan

	4.2 Use Case: Traditional Relational Query Plans
	4.3 Use Case: Query Plans for XML Streams

	5 The Minimum Common Super-Plan Problem
	5.1 Complexity and Approximability of Optimization Problems
	5.1.1 Optimization Problems
	5.1.2 NPO Problems
	5.1.3 Approximability of NP-hard Problems

	5.2 Minimum Common Super-Plan
	5.3 Related Problems

	6 Heuristics for the Stable Minimum Common Super-Plan Problem
	6.1 Strategies for the SMCSP
	6.2 Pair Mergers: Algorithms for Merging Pairs of Query Plans
	6.2.1 Incremental Pair Mergers
	6.2.2 Local Search Pair Mergers

	6.3 Set Mergers: Algorithms for Merging Sets of Query Plans
	6.3.1 Pairwise Set Merger: Example for the Clustered Strategy

	7 Use Case: SPEX
	7.1 SPEX in a Nutshell
	7.2 Evaluating Query Plans for Multiple Queries

	8 Cost Estimation in a Streamed Environment
	8.1 Classes of Cost Functions
	8.1.1 Independent Cost Functions
	8.1.2 Local Cost Functions
	8.1.3 Global Cost Functions

	9 Experimental Evaluation
	9.1 Setup
	9.1.1 Workloads

	9.2 Assessing the Feasibility of the Approach
	9.2.1 Comparing the Cost
	9.2.2 Comparing the Time
	9.2.3 Comparing the Results

	9.3 Comparison of Local Search Pair Mergers
	9.4 Comparison of Set Mergers

	10 Implementation
	10.1 Basic Graph Library
	10.2 From Graphs to Query Plans
	10.2.1 Computing the cost of a query plan

	10.3 Pair mergers
	10.4 Set mergers
	10.5 Other Components of the Optimization Framework
	10.6 Testing

	11 Conclusion and Future Work
	A Bibliography

