Not So Creepy Crawler: Easy Crawler Generation
with Standard XML Queries

Franziska von dem Bussche
vondembu@cip.ifi.Imu.de

Benedikt Linse
linse@pmes.ifi.iImu.de

Tim Furche
tim@furche.net

Klara Weiand
klara.weiand@ifi.Imu.de

Frangois Bry
bry@Imu.de

University of Munich, Oettingenstr. 67, 80538 Munich, Germany

ABSTRACT

Web crawlers are increasingly used for focused tasks such
as the extraction of data from Wikipedia or the analysis of
social networks like last.fm. In these cases, pages are far
more uniformly structured than in the general Web and thus
crawlers can use the structure of Web pages for more precise
data extraction and more expressive analysis.

In this demonstration, we present a focused, structure-
based crawler generator, the “Not so Creepy Crawler” (NC?).
What sets NC? apart, is that all analysis and decision tasks
of the crawling process are delegated to an (arbitrary) XML
query engine such as XQuery or Xcerpt. Customizing crawlers
just means writing (declarative) XML queries that can ac-
cess the currently crawled document as well as the metadata
of the crawl process. We identify four types of queries that
together suffice to realize a wide variety of focused crawlers.

We demonstrate NC? with two applications: The first ex-
tracts data about cities from Wikipedia with a customiz-
able set of attributes for selecting and reporting these cities.
It illustrates the power of NC? where data extraction from
Wiki-style, fairly homogeneous knowledge sites is required.
In contrast, the second use case demonstrates how easy
Nc? makes even complex analysis tasks on social networking
sites, here exemplified by last.fm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design, Experimentation, Languages

Keywords
Web crawler, data extraction, XML, Web query

1. INTRODUCTION

Things haven’t been going well for your company lately
and you know what’s at stake when your boss tells you: “We
have to give a party for our investors, and you have to make
sure, that they all like the music we play to get them into the
right mood. All the information should be on last.fm, where
I have added the investors to my social network.”

Fortunately, you have attended a few WWW conferences
in the past and know to look to crawlers and data extraction.

Unfortunately, large-scale crawlers, used in Web search
engines, do not provide the granularity to solve this task.
Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.

WWW 2010, April 26-30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

Welcome ~ Crawl Expert Crawl UseCase Crawler List Documentation ~ Contac

Please enter a valid url the crawler starts with,

Figﬁre 1: Expert nc? crawler interface

Focused crawlers which aim at accumulating high qual-
ity collections of data on a predefined topic are not suit-
able either as they cannot easily identify pages of investors
and generally do not allow to compare data from different
crawled Web pages. On the other hand, data extraction
tools have long been used successfully to extract spe-
cific data (such as the music tastes of an investor) from Web
pages, but they either do not provide crawling abilities or
allow only limited customization of the crawling.

In this demonstration, we introduce the “Not so Creepy
Crawler” (NC?), a novel approach to structure-based crawl-
ing that combines crawling with standard Web query tech-
nology for data extraction and aggregation. Nc? differs from
previous crawling approaches in that all data (object and
metadata) is stored and managed in XML format. The
crawling process is entirely controlled by a small number
of XML queries written in any XML query language: some
queries extract data (to be collected), some links (to be fol-
lowed later), some determine when to stop the crawling, and
some how to aggregate the collected data.

This allows easy, but flexible customization through writ-
ing XML queries. By virtue of the loose coupling between
an XML query engine and the crawl loop, the XML queries
can be authored with standard tools, including visual pat-
tern generators . In contrast to data extraction scenarios,
these same tools can be used in N2 for authoring queries of
any of the four types mentioned above.

You quickly author the appropriate queries and generate
and run a new NC? crawler using the Web interface shown
in Figure Eﬂ Let the party begin!

1 And available at http://pms.ifi.lmu.de/nccl

http://pms.ifi.lmu.de/ncc

Document Retrieval

% (e 2 e
fefch next document 7% HTML to XML Normalization
,,,,,,,,,,,,,,,,, PRSI

‘

‘

poooeees |

Crawli:ng Loop

Persistent Crawl Graph

(XML) i

* = Frontier]

v

T
T
'
'

update

;\Data Pattern (XML Query) /]

e L —
:’ Frontier Documents

P o N
:/ Link-Following Pattern !

Figure 2: Architecture “Not So Creepy Crawler”

2. CRAWLING WITH XML QUERIES
2.1 “Not So Creepy Crawler”’: Architecture

The basic premise of NC? is easy to grasp: A crawler where
all the analysis and decision tasks of the crawling process are
delegated to an XML query engine. This allows us to lever-
age the expressiveness and increasing familiarity of XML
query languages and provide a highly configurable crawler
generator, which can be configured entirely through declar-
ative XML queries.

To this end, we have identified those analysis and decision
tasks that make up a focused, structure-based crawler, to-
gether with the data each of these tasks requires. Figure
gives an overview of the architecture of Nc? with focus on
the various analysis and decision tasks.

2.1.1 XML patterns

Central and unique to a NC? crawler is uniform access
to both object data (such as Web documents or data al-
ready extracted from previously crawled Web pages) and
metadata about the crawling process (such as the time and
order in which pages have been visited, i.e., the crawl his-
tory). Our crawl graph not only manages the metadata, but
also contains references to data extracted from pages visited
previously. It is worth noting that the tight coupling of the
crawling and extraction process allows us to retain only the
relevant data from already crawled Web documents.

This data is queried in a NC? crawler by three types of
XML queries (shown in the lower right in Figure [2)):

(1) Data patterns specify how data is extracted from the
current Web page. A typical extraction task is “extract all
elements representing events if the current page or a page
linking to it is about person X”. To implement such an
extraction task in a data pattern, one has to find an XML

... — stop crawling! T

Crawling Loop

Persistent Crawl Graph

-: Crawl History | Crawl Graph (XML)
T I - > (Extracted Data | """ 7777777
| Extracted Data 1 H
____________ 4 1
oo :
| Frontier 1 '
e d |
l
i
i

: Aggregate Extracted Data & ‘<l
: Construct Result Document

Result Pattern (XML Query)

Figure 3: Result document construction

query that characterizes “elements representing events” and
“about person X”. As argued above, finding such queries is
fairly easy if we crawl only Web pages from a specific Web
site such as a social network.

(2) Link-following patterns extract all links from the cur-
rent Web document that should be visited in future crawling
steps (and thus be added to the crawling frontier). Often
these patterns also access the crawl graph, e.g., to limit the
crawling depth or to follow only links in pages directly linked
from a Web page that matches a data pattern.

(3) Stop patterns are boolean queries that determine when
the crawling process should be halted. Typical stop patterns
halt the crawling after a given amount of time (i.e., if the
time stamp of the first crawled page is long enough in the
past), number of visited Web pages, number of extracted
data items, or if a specific Web page is encountered.

There is one more type of pattern, the result pattern, of
which there is usually only a single one: It specifies how the
final result document is to be aggregated from the extracted
data. Figure [3| shows this finalization phase: Once a stop
pattern matches and the crawling is halted, the result pat-
tern is evaluated against the crawl graph and the extracted
data, e.g., to further aggregate, order, or group the crawled
data into an XML document, the result of the crawling.

All four patterns can be implemented with any XML query
language. In this demonstration we use Xcerpt |6} |3].

2.1.2 System components

How are these patterns used to steer the crawling process?
Crawling in NC? is an iterative process. In each iteration
the three main components (rectangles with solid borders in
Figure |2) work together to crawl one more Web document:

(1) The crawling loop initiates and controls the crawling
process: It tells the document retrieval component to fetch
the next document from the crawling frontier (the list of yet
to be crawled documents).

(2) The document retrieval component retrieves and nor-
malizes the HTML document and tells the crawling loop to
update the crawl history in the crawl graph (e.g., to set the
document as crawled and to add a crawling timestamp).

(3) The XML query engine (in the demonstrator, Xcerpt)
evaluates the stop, data, and link-following patterns on both
the active document and the crawl graph (containing the in-
formation which data patterns matched on previously crawled
pages and the crawl history). Extracted links and data are
sent to the crawling loop which updates the crawl graph.

(4a) If none of the stop patterns matches (and the frontier
is not empty) the iteration is finished and crawling starts
again with the next document in step (1).

(4b) If one of the stop patterns matches in step (3), the
crawling loop is signalled to stop the crawling. As depicted
in Figure|3] the XML query engine evaluates the result pat-
tern on the final crawl graph and the created XML result
document is returned to the user.

2.2 Implementation

As described above, the implementation of Nc? is inde-
pendent of the actual XML query language used. For this
demonstrator we use Xcerpt [6, [3] as its query-by-example
style eases query authoring where we have an example Web
page and try to formulate a query accordingly. However,
replacing Xcerpt with, e.g., XQuery is, from the view point
of NC?, as easy as changing a configuration file.

In the above description (and the current implementa-
tion), the persistent crawl graph is implemented as an in-
memory data structure that is serialized each time a new
document is crawled. This proves to be sufficient for small
crawl graphs. For larger crawl graphs, those parts of the
query patterns that are evaluated against the crawl graph
should be evaluated incrementally against the updates trig-
gered by data or link extraction and history updates [5].

3. DEMO SETUP AND DESCRIPTION

The demonstration is built around two applications in
the area of knowledge extraction and social networks that
demonstrate the power and ease of pattern-based crawling.
The NC? interface is publicly accessible over a Web interface
at http://pms.ifi.lmu.de/ncc. The interface allows
the easy generation of new crawlers by providing a seed
URL and the requisite patterns (see Section . During
the crawling process, a generated crawler can be examined
online, crawling results are available on the website or via
email. Crawler generation with the Web interface is possi-
ble in two modes: (a) expert mode, in which the user can
load her own patterns, and (b) demo mode, which provides
predefined patterns for our use cases which can be changed
or extended by the user.

3.1 Application #1: Extracting

City Information from Wikipedia

The pattern-based crawling approach is particularly use-
ful on large websites that contain Web pages with similar
structure for the same kind of information. Wikipedia is
among the largest such sites that offer somewhat structured
knowledge. The most valuable structure of that knowledge
is contained in so-called info-boxes, each type of info-box
adhering to a particular schema. Different types of info-
boxes are used for persons, companies, US presidents, op-
erating systems, historical eras, political parties, countries,
skyscrapers, etc. The application described in this section
deals with cities, but can be easily adapted to any of the
other Wikipedia categories.

Assume we would like to find out more about Bavarian
cities: “Find all Bavarian cities in Wikipedia, extract items
(such as the population, the names and/or the elevation)
from the city pages and return a list of all resulting cities
ordered by city name or population.”

Wikipedia info-boxes for cities contain, amongst others,

Area 310.43 km? (119.86 sq mi)
Elevation
Population

Founded 1158

1

3

5

7

Not So Creepy Crawler : Use Case Wikipedia

Introduction

Basic statistics

519m (1703 ft)
1,356,594 (31 December
2007)!1)

4,370 /km?2 (11,318 /sq mi)
2,606,021

5,203,738

- Density
- Urban
- Metro

)

Figure 4: Wikipedia info-box and nc? demo interface

entries for their name, state, country, area, elevation, popu-
lation, its time-zone, postal code and website (see left hand
of Figure . In this use case we are only interested in the
names and the population of the cities, but given the ex-
ample data extraction patterns, users can easily adjust the
crawler to extract additional information.

The right hand of Figure [] shows the demo mode of the
NC? interface. In demo mode the user is given a more limited
choice between several different data, link, stop and result
patterns, that can be further customized by the user. The
user can select info-box items (such as the population or
name of a city) from a dropdown field and the correspond-
ing pattern is shown in the input form. In this way, be-
ginners get easily acquainted to the formulation of queries
in a do-it-yourself style. In ezpert-mode (see Section ,
fully customized crawling tasks are possible, as the user can
upload any pattern.

The following is an example of a data extraction pattern
in Xcerpt that extracts the population of a city from its info-
box (observe that in Wikipedia info-boxes the label of the
population property is an adjacent td to the actual value):

in{ resource { "document.xml","xml"},
and { desc hl [][
attributes { class [
var Name]],
desc tr [[
td{{ desc /.xPopulation.x/ }},
td{{ /(var & — [0-9]+),*(var B — [0-9]+),
*(var C — [0-9]1+)/ }}

"firstHeading"] },

11 1}

Besides the crawl patterns introduced in the previous sec-
tion, the web interface expects a seed URL to initialize the
frontier. We pick the list of all German cities in Wikipedia
(we could also start with the list of all cities).

In addition to the data extraction pattern, the application
also uses a very basic link-following pattern to only crawl
cities in Bavaria. The user can select different stop patterns
to stop the crawling process after a given amount of time,
after a given number of extracted data items or after a given
number of websites crawled.

3.2 Application #2: Last.fm Crawl

This second use case solves a quite similar problem as
the vision described in the introduction: Given a last.fm
user name, a list of artists that the user and his last.fm
friends like is created, augmented with information about
which users are fans of the respective artists. last.fm, the
largest social music platform on the internet, provides music-
related services as well as social features. For this applica-

http://pms.ifi.lmu.de/ncc

1

3

o

rerre———
NI T

usic Videos Radio Events Charts [N EENSNNNNN >

Bl | francymuc | user's name
lllllll %
< |
charts ——
1 shas
" f—

LLLLLL

‘a © KebyC user's friends
Q|| Friends 2)
o = turborichi
francymuc’s Library user’s favorite artists s -
link to friend
link to friends lis
link to library list

Figure 5: A last.fm profile page. The data relevant
to this crawling task is highlighted.

tion, we will make use of the information who a user’s last.fm
friends are and what artists the users have listened to.

The expert mode crawling setup for this use case is shown
in Figure[I} In the crawling task, two different types of pages
are relevant: user profile pages and artist pages. In contrast
to the link structure in the first use case, the structure of
links that must be followed to reach all these relevant pages
from our seed URL is not flat: As is common in social web-
sites not all information about a user can be reached directly
from his profile page. Instead, only some items are linked
directly, others can only be reached via intermediate pages.
For example, last.fm user profiles list up to six randomly se-
lected friends. A link “see more” leads to a complete list of
friends which in turn may be paginated. The same is true for
a user’s favorite artists. This relatively complex link struc-
ture must be represented in the link following patterns.

Traditional crawlers typically avoid to crawl URLs multi-
ple times in order to prevent infinite loops. They keep a list
of seen URLs and do not add the same URL to the frontier
twice. However, for this task, the duplicate information is
essential as the aggregation of information in this crawling
task requires that some URLs (those pointing to artists that
are common to several users) are treated more than once.
Therefore, NC? lets the user indicate in the pattern and in
which circumstances duplicates should be avoided.

To illustrate workflow and data structures employed in
this use case, a pre-result containing data for two friends
who share a favorite artist is shown below. It shows a list
of those friends names. The node_id attributes identify the
Web pages in the crawl graph that each data item originates
from, the matched_id attribute the data extraction pattern
that matched with the item:

<pre-result>

<data node_id="1" matched id="1">
<name>francymuc</name>

</data>

<data node_id="2" matched id="1">
<name>turborichi</name>

</data>

<data node_id="5" matched_ id="2">
<name>Maria Mena</name>

crawled

crawled

crawled

id=20
data_matched=2
crawled

Figure 6: The crawl graph
</data>

11 <pre-result>

The corresponding crawlgraph which holds the link struc-
ture and some additional annotations is shown in Figure [6}
The crawling starts at the person page with id 1 and follows
links both to other person pages (denoted by little men) and
to artists (denoted by notes). Since some of these pages (like
20) are not reachable directly, also intermediary pages are
followed as specified in the link-following pattern. If a page
has been crawled, it is annotated as crawled, all pages with-
out this annotation form the frontier. The artist page 20
shows an annotation like in the pre-result: the data extrac-
tion pattern 2 matched with this page.

Returning to the original query task, we can determine
which artists are liked by a user from the crawl graph: They
are those artists whose pages are reachable from the user
over any number of other pages except other users.

4. REFERENCES

[1] A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD, 2003.

[2] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with Lixto. In VLDB, 2001.

[3] F. Bry, T. Furche, B. Linse, A. Pohl, A. Weinzierl, and
O. Yestekhina. Four lessons in versatility or how query
languages adapt to the web. In F. Bry and
J. Maluszynski, Semantic Techniques for the Web,
LNCS 5500, 2009.

[4] S. Chakrabarti, M. van den Berg, and B. Dom. Focused
crawling: a new approach to topic-specific web resource
discovery. In WWW, 1999.

[5] M. El-Sayed, E. A. Rundensteiner, and M. Mani.
Incremental maintenance of materialized XQuery views.
In ICDE, 2006.

[6] S. Schaffert and F. Bry. Querying the Web
Reconsidered: A Practical Introduction to Xcerpt. In
Ezxtreme Markup Languages, 2004.

[7] M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and
J. M. B. Cavalcanti. Structure-driven crawler
generation by example. In SIGIR Conf., 2006.

	Introduction
	Crawling with XML Queries
	``Not So Creepy Crawler'': Architecture
	XML patterns
	System components

	Implementation

	Demo Setup and Description
	Application #1: Extracting [.5ex] City Information from Wikipedia
	Application #2: Last.fm Crawl

	References

