Not So Creepy Crawler:
Crawling the Web with XQuery

Franziska von dem Bussche!, Klara Weiand!, Benedikt Linse!, Tim Furche!':2,
Frangois Bry!

! Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 Miinchen, Germany
2 Oxford University Computing Laboratories, Parks Rd, Oxford OX1 3QD, UK

Abstract. Web crawlers are increasingly used for focused tasks such as
the extraction of data from Wikipedia or the analysis of social networks
like last.fm. In these cases, pages are far more uniformly structured than
in the general Web and thus crawlers can use the structure of Web pages
for more precise data extraction and more expressive analysis.

In this demonstration, we present a focused, structure-based crawler gen-
erator, the “Not so Creepy Crawler” (NCQ). What sets NC? apart, is that
all analysis and decision tasks of the crawling process are delegated to
an (arbitrary) XML query engine such as XQuery or Xcerpt. Customizing
crawlers just means writing (declarative) XML queries that can access
the currently crawled document as well as the metadata of the crawl
process. We identify four types of queries that together suffice to realize
a wide variety of focused crawlers.

1 Introduction

In this demonstration, we present the “Not so Creepy Crawler” (NC?), a novel
approach to structure-based crawling that combines crawling with standard Web
query technology for data extraction and aggregation. Nc? differs from previous
approaches to crawling in that it allows for high level of customization through-
out every step in the crawling process. The crawling process is entirely controlled
by a small number of XML queries written in any XML query language: some
queries extract data (to be collected), some links (to be followed later), some
determine when to stop the crawling, and some how to aggregate the collected
data.

This allows easy, but flexible customization through writing XML queries. By
virtue of the loose coupling between an XML query engine and the crawl loop,
the XML queries can be authored with standard tools, including visual pattern
generators [I]. In contrast to data extraction scenarios, these same tools can be
used in Nc? for authoring queries of any of the four types mentioned above.

A demonstration of N2, accessible online at http://pms.ifi.lmu.de/ncc,
showcases two applications: The first extracts data about cities from Wikipedia
with a customizable set of attributes for selecting and reporting these cities.
It illustrates the power of NC? where data extraction from Wiki-style, fairly


http://pms.ifi.lmu.de/ncc

homogeneous knowledge sites is required. The second use case demonstrates
how easy NC? makes even complex analysis tasks on social networking sites,
exemplified by last.fm.

NC? has already been presented at the 2010 WWW conference [3].

2 Crawling with XML Queries

“Not So Creepy Crawler”: Architecture. The basic premise of NC? is easy
to grasp: A crawler where all the analysis and decision tasks of the crawling
process are delegated to an XML query engine. This allows us to leverage the
expressiveness and increasing familiarity of XML query languages and provide a
highly configurable crawler generator, which can be configured entirely through
declarative XML queries.

To this end, we have identified those

Document Retrieval

analysis and decision tasks that make upa ~ __ J -~~~
focused, structure-based crawler, together feteh next document 777> HTML to XML Normalization
,,,,,,,,,,,,,,,,
with the data each of these tasks requires. ‘ ; ;
Crawli:ng Loop } T i,,,,
Persistent Crawl Graph up(}iale i&c:ﬁ“l_’)e Web Document

XML patterns. Central and unique to a i 3 B o

NC? crawler is uniform access to both ob-
ject data (such as Web documents or data
already extracted from previously crawled

Web pages) and metadata about the crawl-
ing process (such as the time and order
in which pages have been visited, i.e., the
crawl history). Our crawl graph not only
manages the metadata, but also contains
references to data extracted from pages vis-
ited previously. The tight coupling of the ‘

(
§

crawling and extraction process allows us (G e Bt ke

ready crawled Web documents.

to retain only the relevant data from al- | s

Data Pattern (XML Query) |

This data is queried in a NC? crawler by
three types of XML queries (see Figure :

(1) Data patterns specify how data is
extracted from the current Web page. A
typical extraction task is “extract all elements representing events if the current
page or a page linking to it is about person X”. To implement such an extrac-
tion task in a data pattern, one has to find an XML query that characterizes
“elements representing events” and “about person X”. As argued above, finding
such queries is fairly easy if we crawl only Web pages from a specific Web site
such as a social network.

(2) Link-following patterns extract all links from the current Web document
that should be visited in future crawling steps (and thus be added to the crawling
frontier). Often these patterns also access the crawl graph, e.g., to limit the

Fig. 1. Architecture NC?



crawling depth or to follow only links in pages directly linked from a Web page
that matches a data pattern.

(3) Stop patterns are boolean queries that determine when the crawling pro-
cess should be halted. Typical stop patterns halt the crawling after a given
amount of time (i.e., if the time stamp of the first crawled page is long enough
in the past), number of visited Web pages, number of extracted data items, or
if a specific Web page is encountered.

There is one more type of pattern, the result pattern, of which there is usually
only a single one: It specifies how the final result document is to be aggregated
from the extracted data. Once a stop pattern matches and the crawling is halted,
the result pattern is evaluated against the crawl graph and the extracted data,
e.g., to further aggregate, order, or group the crawled data into an XML docu-
ment, the result of the crawling.

All four patterns can be implemented with any XML query language. In this
demonstration we use Xcerpt [2] and XQuery.

System components. How are these patterns used to steer the crawling pro-
cess? Crawling in NC? is an iterative process. In each iteration the three main
components work together to crawl one more Web document (see Figure [1)):

(1) The crawling loop initiates and controls the crawling process: It tells the
document retrieval component to fetch the next document from the crawling
frontier (the list of yet to be crawled documents).

(2) The document retrieval component retrieves and normalizes the HTML
document and tells the crawling loop to update the crawl history in the crawl
graph (e.g., to set the document as crawled and to add a crawling timestamp).

(3) The XML query engine (in the demonstrator, Xcerpt) evaluates the stop,
data, and link-following patterns on both the active document and the crawl
graph (containing the information which data patterns matched on previously
crawled pages and the crawl history). Extracted links and data are sent to the
crawling loop which updates the crawl graph.

(4a) If none of the stop patterns matches the iteration is finished and crawling
starts again with the next document in step (1), if there is any.

(4b) If one of the stop patterns matches in step (3), the crawling loop is sig-
nalled to stop the crawling. The XML query engine evaluates the result pattern
on the final crawl graph and the created XML result document is returned to
the user.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information extraction with
Lixto. In VLDB, 2001.

2. F. Bry, T. Furche, B. Linse, A. Pohl, A. Weinzierl, and O. Yestekhina. Four lessons
in versatility or how query languages adapt to the web. In Semantic Techniques for
the Web, The REWERSE Perspective, LNCS 5500. Springer, 2009.

3. F. von dem Bussche, K. A. Weiand, B. Linse, T. Furche, and F. Bry. Not so creepy
crawler: easy crawler generation with standard XML queries. In WIWW, 2010.



	Not So Creepy Crawler:Crawling the Web with XQuery
	Franziska von dem Bussche, Klara Weiand, Benedikt Linse, Tim Furche, François Bry

