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SPARQLog: SPARQL with Rules and
Quantification
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Abstract SPARQL has become the gold-standard for RDF query languages. Never-
theless, we believe there is further room for improving RDF query languages. In this
chapter, we investigate the addition of rules and quantifier alternation to SPARQL.
That extension, called SPARQLog, extends previous RDF query languages by ar-
bitrary quantifier alternation: blank nodes may occur in the scope of all, some, or
none of the universal variables of a rule. In addition SPARQLog is aware of impor-
tant RDF features such as the distinction between blank nodes, literals and IRIs or
the RDFS vocabulary. The semantics of SPARQLog is closed (every answer is an
RDF graph), but lifts RDF’s restrictions on literal and blank node occurrences for
intermediary data. We show how to define a sound and complete operational seman-
tics that can be implemented using existing logic programming techniques. While
SPARQLog is Turing complete, we identify a decidable (in fact, polynomial time)
fragment SwARQLog ensuring polynomial data-complexity inspired from the no-
tion of super-weak acyclicity in data exchange. Furthermore, we prove that SPAR-
QLog with no universal quantifiers in the scope of existential ones (∀∃ fragment) is
equivalent to full SPARQLog in presence of graph projection. Thus, the convenience
of arbitrary quantifier alternation comes, in fact, for free. These results, though here
presented in the context of RDF querying, apply similarly also in the more general
setting of data exchange.
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1.1 Introduction

Access to data in a machine-processable, domain-independent manner plays a cen-
tral role in the future growth of the Internet. Information on legislative proceedings,
census data, scientific experiments and databases, as well as the data gathered by
social network applications is now accessible in form of RDF data. The Resource
Description Framework (RDF) is a data format for the Web with a formal semantics
that is achieving considerable popularity. Compared to relational databases, RDF
is mostly distinguished by (1) a specialization to ternary statements or “triples” re-
lating a subject, via a predicate, to an object, (2) the presence of blank nodes that
allow statements where subject or object are unknown, and (3) specific semantics for
a small, predefined vocabulary (RDF Schema, or RDFS) reminiscent of an object-
oriented type system.

With the staggering amount of data available in RDF form on the Web, the sec-
ond indispensable ingredient becomes the easy selection and processing of RDF
data. For that purpose, a large number of RDF query languages (see [9] for a recent
survey) has been proposed, with SPARQL [19] the most prominent representative.
In this paper, we build on SPARQL to remedy two of the most significant weak-
nesses of SPARQL from our perspective: SPARQLog extends SPARQL to support
the distinguishing features of RDF such as blank nodes and the logical core [15]
of the RDFS vocabulary. More technically speaking, we extend SPARQLog with
rules and quantifier alternation. In SPARQLog, Blank nodes can be constructed by
existentially quantified variables in rule heads. It allows full alternation between
existential and universal quantifiers in a rule. This sharply contrasts with previous
approaches to rule-based query languages that either do not support blank nodes (in
rule heads) at all [18, 23], or only a limited form of quantifier alternation [25, 21, 10].

To illustrate the benefits of full quantifier alternation, imagine an information
system about university courses. We distinguish three types of rules with existential
quantifiers (and thus blank nodes) based on the alternation of universal and existen-
tial quantifiers:
(1) “Someone knows each professor” can be represented in SPARQLog as

1 PREFIX uni: <http://example.org/uni>
FROM <http://lmu.de/staff/>

3

EX ?pers ALL ?prof
5 CONSTRUCT { ?pers foaf:knows ?prof }

WHERE { ?prof rdf:type uni:professor }

We call such rules ∃∀ rules (i.e., rules in the Bernays-Schönfinkel class). Some
approaches such as [25] are limited to rules of this form. We show that a recur-
sive rule language that is limited to these kind of rules is strictly less expressive
than a language that allows rules also of the form discussed under (2) and (3). The
gain is that languages with only ∃∀ rules are still decidable. However, as shown in
Section 1.5.1.1, there are larger fragments of SPARQLog that are still decidable.
(2) Imagine, that we would like to state that each lecture must be “practiced” by
another course (such as a tutorial or practice lab) without knowing more about that
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course. This statement can not be expressed by ∃∀ rules. In SPARQLog it can be
represented as

PREFIX uni: <http://example.org/uni>
2 FROM <http://lmu.de/staff/>

4 ALL ?lec EX ?crs
CONSTRUCT { ?crs uni:practices ?lec }

6 WHERE { ?lec rdf:type uni:lecture }

Such rules are referred to as ∀∃ rules (sometimes also denoted as ∀∗∃∗ rules). Recent
proposals for rule extensions to SPARQL are limited to this form, if they consider
blank nodes in rule heads at all. The reason is that in SPARQL CONSTRUCT pat-
terns a fresh blank node is constructed for every binding of the universal variables
(see Section 10.2.1 in [19]). For a more detailed comparison of SPARQL and SPAR-
QLog, see Sections 1.4 and 1.3.
(3) To the best of our knowledge, SPARQLog is the first RDF query language that
supports the third kind of rules, where quantifiers are allowed to alternate freely:
This allows to express statements such as, for each lecture there is a course that
“practices” that lecture and is attended by all students attending the lecture. This is
represented in SPARQLog as

PREFIX uni: <http://example.org/uni>
2 FROM <http://lmu.de/staff/>

4 ALL ?lec EX ?crs ALL ?stu
CONSTRUCT { ?crs uni:practices ?lec . ?stu uni:attends ?crs }

6 WHERE { ?lec rdf:type uni:lecture . ?stu uni:attends ?lec }

In Section 1.5.2, we show (for the first time) that rules with full quantifier alter-
nation can be normalized to ∀∃ form if we allow triple projection (more precisely,
if we consider only the default graph in the RDF dataset as semantic of a SPAR-
QLog program). Thus full quantifier alternation does not add to the expressiveness
of SPARQLog under default-graph semantics. Rather, for all languages with ∀∃
rules and triple projection the rewriting in Section 1.5.2 allows arbitrary quantifier
alternation to be added for free.

In addition to flexible support for existential information through full quantifier
alternation, SPARQLog captures the essentials of RDF through two further charac-
teristics: First, SPARQLog is a closed RDF query language, i.e., the answer to an
SPARQLog program is again an RDF dataset. Second, SPARQLog can express the
logical core of the RDFS semantics (ρdf from [15]).

In particular, we follow RDF in allowing blank nodes not in predicate position
for answers (as well as literals only in object position). We show that these limita-
tions make the traditional approach of defining a closed semantics for a rule based
query language as initial models unpractical. Nonetheless, we show how a closed
semantics of a rule based query language for RDF can be defined that captures the
consequences of the program under RDF entailment. A consequence of that seman-
tics is that intermediary data, but only intermediary data, may violate the limitations
posed by RDF (see also [24]).

With this semantics SPARQLog is unsurprisingly Turing complete. Therefore,
we also consider fragments of SPARQLog that are decidable in polynomial time. We
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(slightly) extend results from [13] to also cover quantifier alternation and identify
a tractable fragment, called SwARQLog. It is based on the notion of super-weak
acyclicity from [13] (which is itself inspired from, though strictly more general
than, the notion of weak-acyclicity in data-exchange [6]). SwARQLog also remains
strictly more expressive than restrictions of SPARQLog to ∃∀ rules as in [25].

Contributions. The paper is organised along the following contributions:

1. An extension of SPARQL with rules and free quantifier alternation, called
SPARQLog is introduced in Section 1.4.

2. The semantics of SPARQLog is defined in terms of entailment in Section 1.4.2.
We show how this semantics can be implemented by a reduction to the evaluation
of a standard logic program without existential quantifiers in Section 1.4.3.

3. SPARQLog is shown to be Turing-complete, but a significant decidable fragment
is identified in Section 1.5.1.1.

4. A rewriting for SPARQLog programs to reduce quantifier alternation to ∀∃ form,
i.e., rules where no universal quantifier occurs in the scope of an existential one,
is given in Section 1.5.2 and shown to be equivalent under default-graph seman-
tics. It is worth emphasizing that this rewriting is not possible in general first-
order logic, unless we allow an extension of the vocabulary with helper constants
that are not part of the semantics of the program. The latter is provided by the
default-graph semantics of SPARQLog.

5. The experimental evaluation of a basic prototype shows that the reduction to
standard logic programming easily competes with existing SPARQL engines
even when considering only the restricted fragment of SPARQLog equivalent
to SPARQL, see Section 1.5.3.

The results in this chapter are partially based on previous results on RDFLog, a
Datalog extension with quantifier alternation, see [3, 2].

1.2 Preliminaries

In this paper, we adopt the notions of RDF vocabulary, RDF graph, (simple) RDF
interpretation, and (simple) RDF entailment from [11].

Definition 1.1 (RDF Graph [11]). An RDF vocabulary V consists of two disjoint
sets called IRIs U and literals L. The blank nodes B is a set disjoint from U and
L. An RDF graph is a set of RDF triples where an RDF triple is an element of
(U∪B)×U× (U∪L∪B). If t = (s,p,o) is an RDF triple then s is the subject, p is
the predicate, and o is the object of t.

The set L of literals consists of three subsets, plain literals, typed literals and
literals with language tags. In this work we consider only plain literals (and thus
drop IL, the interpretation function for typed literals, see Section 1.3 in [11], in the
following definitions).
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Definition 1.2 (RDF Interpretation [11]). An interpretation I of an RDF vocab-
ulary V = (U,L) is a tuple (IR,LV, IP, IEXT, IS) where IR is a non-empty set of
resources such that L ⊆ LV ⊆ IR, IP is a set of properties and IEXT : IP→ 2IR×IR,
and IS : U→ IR∪ IP are mappings.

RDF assigns a special meaning to a predefined vocabulary, called RDFS (RDF
Schema) vocabulary. For example it is required that IEXT(IP(rdfs:subPropertyOf))
is transitive and reflexive. The formulation of theses constraints on RDF interpre-
tation makes use of a notion of a class. We have omitted this notion in the defi-
nition above for simplicity. The logical core of RDFS has been identified in [15],
denoted as ρd f . An RDF interpretation I is a ρd f interpretation if I satisfied the
constraints specified in Definition 3 in [15]. ρd f entailment is the same as RDF
entailment, but assigns specific semantics to the RDFS vocabulary (e.g., transitivity
of rdf:subClassOf).

Definition 1.3 (Interpretation of an RDF Graph [11]). Let I be the RDF (ρd f )
interpretation (IR,LV, IP, IEXT, IS) and A : B→ IR a mapping. Then [I+A](e) = a
if e is the literal a, [I+A](e) = IS(e) if e is a IRI, [I+A](e) = A(e) if e is a blank
node, and [I+A](e) = true if e = (s,p,o) is an RDF triple over V , I(p) ∈ IP and
(I(s), I(o)) ∈ IEXT(I(p)). Finally I(g) = true if there is a mapping A : B→ IR such
that [I+A](t) = true for all RDF triples t ∈ g.

The semantics of RDF is completed by the notion of entailment: An RDF graph
g RDF-entails (ρd f -entails) an RDF graph h if for all RDF (ρd f ) interpretations I,
I(h) = true if I(g) = true [11]. This is equivalent to saying that there is a homomor-
phism from g to h.

We extend the notion of RDF graph to an RDF dataset as in SPARQL. In [19] an
RDF dataset is defined as a set of RDF graphs each associated with an identifying
IRI of which one is marked as the default graph. Here, we choose a formalization of
RDF dataset close to an RDF graph that simplifies latter notation, but captures the
same intuition.

Definition 1.4 (RDF Dataset). An RDF dataset D is a set of quadruples from (U∪
B)×U× (U∪L∪B)× (U∪{�}) such that for all (s, p,o,g), (s′, p′,o′,g′) it holds
that if {s,o}∩{s′,o′}= b �= /0 and b ∈ B then g = g′.

Thus, an RDF dataset is a set of triples each extended with an IRI or � that indi-
cates the provenance of the triple from one RDF graphs. Triples from two distinct
RDF graphs in a same RDF dataset may not share any blank node. In other words, A
RDF dataset is a set of extended RDF triples, where extended means that each triple
is assigned a provenance in the form of the name of an RDF graph. A RDF dataset
requires that if the same blank node occur in two extended triples of the dataset,
then these triples have the same provenance. � indicates that the triple occurs in
the default graph, otherwise the IRI identifies the named graph the triple originates
from.

For an RDF dataset D, we denote with D[g] = {(s, p,o) : ∃(s, p,o,g) ∈ D} the
triples (without the graph identifier) in D that belong to the RDF graph with IRI
g ∈ U∪{�}.
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We can lift the notion of RDF-entailment to RDF datasets as follows: An RDF
dataset D RDF-entails (ρd f -entails) an RDF dataset E iff for all g ∈ IRI∪{�} D[g]
RDF-entails E[g].

For the semantics of SPARQLog, we make use of the following mapping from
RDF graphs and datasets to first-order formulas:

Definition 1.5 (Canonical Formula). For an RDF graph g = {(s1, p1,o1), . . . ,
(sn, pn,on)} we define the canonical formula

φ(g) = ∃b1 . . .∃bm(R(s1, p1,o1)∧ . . .∧R(sn, pn,on))

where b1, . . . ,bm are the blank nodes occurring in g and R is a fixed ternary relation
symbol.

For an RDF dataset D containing the graph identifiers u1, . . . ,un we define the
canonical formula

φ(D) =
∧

1≤i≤n

∃bui
1 . . .∃bui

mui
(

∧
(s,p,o,ui)∈D

R(s, p,o,ui))

where bui
1 , . . . ,bui

mui
are the blank nodes occurring in the graph with identifier u i and

R is a fixed relation symbol with arity 4.

It is worth noting (and easy to prove) that the notion of RDF entailment coincides
with first-order entailment on the canonical formulas of RDF graphs, resp. RDF
datasets.

Lemma 1.1. Let g, h be RDF graphs (datasets). Then g RDF-entails h iff φ(g)
FO-entails φ(h).

1.3 SPARQL Rule Languages

1.3.1 SPARQL and Rule Extensions of SPARQL

As briefly outlined above, SPARQLog is distinguished from previous RDF query
languages by the support for arbitrary quantifier alternation. SPARQL [19], which
is quickly becoming the yardstick for RDF query languages, supports only ∀∃ quan-
tification in what corresponds to rule heads: Each blank node in a CONSTRUCT
clause is instantiated once for each binding tuple of the (universal) variables in that
clause. Otherwise, SPARQLog and SPARQL queries are roughly equivalent with the
exception of negation and typed literals that are not supported in SPARQLog. Fur-
thermore, SPARQL only considers what amounts to a single (non-recursive) rule.

There have been several proposals [18, 21] for extending SPARQL with multiple
rules. Typically these either explicitly do not deal with blank nodes in CONSTRUCT
clauses as [18] or consider only ∀∃ quantification as in basic SPARQL [21]. Their
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semantics also differs considerably from SPARQLog as they support negation with
answer-set or well-founded semantics. It is worth noting that the characterization
of the decidable class of super-weakly acyclic programs as well as the ∀∃ rewriting
carry over to SPARQLog with negation fairly immediately.

As SPARQLog [21] consider querying not a single RDF graph but a set of named
RDF graphs with may contain dynamically computed views. The authors extend
named RDF graphs to so called networked graphs allowing:

1. “reuse of RDF graphs enabling the dynamic copying of contents from one graph
to the other,

2. viewing RDF graphs in a way that is defined by another RDF graph and
3. dynamic networking of RDF graphs. RDF graphs constitute databases and the

meaning they describe comes from their dynamic networking” [21].

In a sense, networked graphs are a mixture of SPARQL datasets and SPARQLog
programs.

Definition 1.6 (Networked Graph, adopted from [21]). A networked graph G N =
(N,G, [G1, ...,Gn],v) is encoded in a named RDF graph with name N where G is
an RDF graph containing the explicit triples to be included in G N . [G1, ...,Gn] is a
list of networked graphs and v a mapping from that list of networked graphs to an
RDF graph called the view definition of GN . The view definition is included in GN

by statements of the form:

N g:definedBy "query".

where the prefix g is appropriately bound and "query" a literal containing a CON-
STRUCT rule. We call the literal a sub-query of the networked graph definition. The
view definition is the union of the sub-queries.

The following example from [21] illustrates the notion of networked graph. We
assume that the named RDF graph ISWebGraph contains information about re-
searchers working at the Information Systems and Semantic Web lab of the In-
stitute of computer science (IFI) and the named RDF graph IFIAdminGraph infor-
mation about the administrative staff at IFI. Then the named graph u : IFIGraph
shown below is a networked graph: (u:IFIGraph,{ u:ISWeb u:workingGroupOf
u:IFI . u:IFI u:belongsTo u:CSDepartment }, [ISWebGraph, IFIAdminGraph], v).
v maps the RDF named graph IFIAdminGraph to itself and the RDF named graph
ISWebGraph to an RDF graph about persons that work at u:IFI if they are known
to work at u:ISWeb.

1 u:IFIGraph {
u:ISWeb u:workingGroupOf u:IFI . u:IFI u:belongsTo u:CSDepartment .

3 u:IFIGraph g:definedBy "CONSTRUCT { ?s ?p ?o }
FROM NAMED u:IFIAdminGraph

5 WHERE { GRAPH u:IFIAdminGraph { ?s ?p ?o } }"
u:IFIGraph g:definedBy "CONSTRUCT { ?person u:worksAt u:IFI }

7 FROM NAMED u:ISWebGraph
WHERE { GRAPH u:ISWebGraph {

9 ?person u:worksAt u:ISWeb. }" }
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The advantage of this approach is the ability to encode the view definitions di-
rectly into RDF graphs where their definitions can also be processed by RDF tools
that are not networked aware.

In SPARQLog, we can provide the same definition (using u:IFIGraph as de-
fault graph). However, SPARQLog also allows multiple different named graphs as
targets for the same construction. More importantly, SPARQLog provides full quan-
tifier alternation and has a far simpler semantics (admittedly partly due to the ab-
sence of negation):

1 FROM NAMED u:IFIAdminGraph
FROM NAMED u:ISWebGraph

3

CONSTRUCT { u:ISWeb u:workingGroupOf u:IFI.
5 u:IFI u:belongsTo u:CSDepartment }

7 ALL ?s ?p ?o
CONSTRUCT { ?s ?p ?o }

9 WHERE GRAPH u:IFIAdminGraph { ?s ?p ?o }

11 ALL ?person
CONSTRUCT { ?person u:worksAt u:IFI }

13 WHERE GRAPH u:ISWebGraph { ?person u:worksAt u:ISWeb. }

1.3.2 Other Rule-based RDF Query Languages

The other class of recursive, rule-based query languages for RDF are adaptations
of F-Logic for RDF: As in the case of extending SPARQL, these often do not con-
sider blank nodes in rule heads at all [23]. To the best of our knowledge, the only
decidable rule-based RDF query language with blank nodes in rule heads has been
proposed in [25]. Decidability is obtained by restricting rules to ∃∀ form. In this
paper, we show that a much less restrictive (and strict super-) class of SPARQLog
programs is still decidable, viz. super-weakly acyclic SPARQLog.

Most other RDF query languages such as RQL [12], [10], or SeRQL [1] are
limited to what amounts to single SPARQLog rules and do not treat issues such as
rule chaining, query closure (i.e., that an answer to a query is again an RDF graph
or dataset), and arbitrary quantifier alternation.

SPARQLog shares some similarity with rule extensions for description logics.
[20] gives an overview over the limits and possibilities of combining description
logics and datalog with and without negation, thereby pointing out minimal un-
decidable combinations of the two methodologies. Due to the possibility of deriv-
ing concepts from base concepts, concept and role inclusion axioms, which are not
present in SPARQLog, this problem is fundamentally different and harder to tackle.
In particular, the undecidability results from [20] do not carry over to SPARQLog.
Moreover such approaches either disallow existential quantifiers in rule heads (but
allow them in facts or TBox-Axioms), or use full logic programming with function
symbols and negation as in dlvhex.
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1.3.3 Quantifier Alternation in Data Exchange

As discussed in more detail in Chapter 11, existential quantification and its expres-
siveness have been extensively studied in data exchange [6]. A data exchange setting
consists of two database schemata, a source schema S and the target schema T , and
a set of constraints Σ . The data exchange problem is to find, given a source database
I over schema S, a target database J over schema T such that (I,J) satisfies Σ . In
this case J is called a solution for the data exchange problem for I and Σ . A solution
J is universal, if there is a homomorphism from J to any other solution J ′ of the
setting. In RDF terms such a homomorphisms is the identity function on IRIs and
literals, but allows blank nodes to be mapped either to other blank nodes or to IRIs
or literals.

Different classes of constraints have been considered. An important class are tu-
pel generating dependencies (TGD). These are roughly SPARQLog rules where the
quantifier alternation is restricted to one alternation of the form ∀∃. Therefore a data
exchange problem for TGDs resembles the problem of computing the semantics for
a given SPARQLog program P with dataset D. Hence the set of universal solutions
could be considered a suitable semantics for P. Universal solutions have a drawback
though: they are not closed under homomorphism: Given a universal solution J for
a set of constraints Σ , there may be databases J ′ such that there is a homomorphism
from J to J ′, yet J′ is not even a solution (let alone a universal solution) for Σ .
For instance, let Σ = {r(a,b),∀x,y∃z : r(x,y)→ s(x,z),∀x : s(x,x)→ q(x)}. Then
J = {r(a,b),∃x : s(a,x)} is a universal solution for Σ and there is a homomorphism
from J to K = {r(a,b),s(a,a)} (the identity function up to x which is mapped to
a). However, K is not a solution of Σ (and thus also no universal solution) as s(a,a)
requires also q(a) to hold in a solution for Σ due to the third constraint. Still it is
easy to see that the set of universal solutions of P is a subset of the denotational
semantics [[P]] defined in Section 1.4.2. In addition we show that the operational
semantics [P] is a universal solution (Lemma 1.2). This is not surprising since our
operational semantics is closely related to the chase procedure which can be used to
compute universal solutions [4]. Nonetheless one could state that we have extended
the chase procedure to a wider class of constraints (by allowing arbitrary quantifier
alternation) and to a more general data model where the input database can contain
blank nodes.

It has been observed in [8] that TGDs are not closed under composition. That
is there are two finite sets of TGDs Σ1 and Σ2 such that there is no finite set of
TGDs that defines the same database to database mapping as Σ 1 ◦Σ2. Nonetheless
[8] shows that there is a finite set Σ of non-TGDs constraints that is equivalent to
Σ1 ◦Σ2. It turns out that this set Σ is in fact a set constraints with ∀∃∀ quantifier
alternation that can be expressed in SPARQLog. This shows that if projection is not
allowed (as in the standard data exchange setting or when all rules in a SPARQLog
program are required to construct into the default graph), then the extra quantifier
alternation does indeed add expressive power.
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1.4 SPARQLog: SPARQL with Rules and Quantification

SPARQL has quickly become the standard for querying RDF data. Part of its suc-
cess is certainly that it is a fairly compact language. Here we want to investigate
how SPARQL can be extended with two features, rules and arbitrary quantification,
without sacrificing most of its simplicity and the basic flavor of the language.

Rules are an acknowledged part of the Semantic Web vision. The CONSTRUCT
query form of SPARQL can be seen as a form of non-recursive single-rule program
and offer an obvious start point for a full rule language. With full rules SPARQL
becomes by itself capable of computing such important concepts as the subsumption
hierarchy in RDFS data or a person’s social network in FOAF (friend of a friend)
data.

The following SPARQLog program illustrates how we extend SPARQL’s syn-
tax to accommodate rules: Rather than a single CONSTRUCT-WHERE clause, in the
following called rule, we allow any number of these to occur in the document. The
bodies of SPARQLog rules are mostly standard SPARQL WHERE clauses. The heads
are CONSTRUCT clauses that may be adorned with GRAPH patterns that specify the
target graph of the rule. If no such pattern is present, the result of the rule is added
to the default graph of the dataset. If such a pattern is present, it is added to the
graph named in the GRAPH pattern. This allows, e.g., for hiding intermediary re-
sults. Note, that the dataset clauses FROM and FROM NAMED occur only once for
all rules. Thus all rules query the same dataset.

1 PREFIX : <http://example.org/#ns>.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>.

3 PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>
FROM <http://example.org>

5 FROM NAMED <http://example.org/bavarians>

7 ALL ?x ?y
CONSTRUCT { ?x rdf:type :bavarian-look-alike } R3

9 WHERE { { { ?x :likes ?y . ?y rdf:type wine:Wine .
?y wine:locatedIn wine:ItalianRegion } UNION

11 { ?x :likes ?y . ?y rdf:type wine:Wine .
?y wine:locatedIn wine:FrenchRegion } } .

13 GRAPH <http://example.org/bavarians>
{ ?x rdf:type :bavarian }

15

ALL ?x
17 CONSTRUCT GRAPH <http://example.org/bavarians> R 2

{ ?x rdf:type :bavarian }
19 WHERE { ?x rdf:type :european. ?x foaf:knows "Edmund" }

21 ALL ?x
CONSTRUCT { ?x rdf:type :european } R1

23 WHERE { ?x foaf:knows "Angela" . ?x foaf:knows "Nicolas" .
?x foaf:knows "Elisabeth" }

In the example above, R1 queries the default dataset (there is no GRAPH pattern
in the body) to find people who know the German chancellor, the French president,
and the British queen. Triples classifying these people as European are added to the
default graph. In R2 that default graph is queried for such people that also know
the former Bavarian prime minister. Triples classifying such people as Bavarian are
added to the named graph http://example.org/bavarians that is also included in the
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dataset in the dataset clause of line 5. R3 queries that named graph (containing the
results of R2 as well as any statements contained in the graph from the beginning)
for Bavarians. If the default graph contains the information that such a person also
likes Italian or French wine, then we that person can not be a real Bavarian, but must
be a look-alike posing as a Bavarian.

Note that all rules carry explicit quantification clauses, e.g., ALL ?x. These
clauses are added to support SPARQLog’s second major addition over SPARQL:

SPARQL’s CONSTRUCT rules allow the construction of RDF graphs. Unfortu-
nately, the construction of one of RDF’s most significant innovations, the provision
of existential information in form of blank nodes, is poorly supported: Blank nodes
can be constructed, but they are always scoped over all (universal) variables of the
query. This makes most grouping tasks involving blank nodes (e.g., the construction
of a container for all authors for each paper) impossible. In absence of rules this is
a significant limitation. We suggest the use of an explicit quantifier clause to over-
come this limitation: Rather than assuming that all blank nodes to be constructed are
in the scope of all universal variables, we allow arbitrary quantifier quantification as
in first-order logic.

To illustrate the issue of quantifier alternation and what kind of queries can be
expressed, consider three examples. We choose to use explicit existential variables
rather than blank nodes as their use in SPARQL is somewhat confusing (in bodies
they play the role of normal variables, but in heads they are treated as existential).

The first, B1, asserts that there is a Presenter for each TalkEvent who also
attends that same event.

PREFIX eswc: <http://www.eswc2006.org/technologies/ontology#>
2

ALL ?x EX ?y B1

4 CONSTRUCT { ?y eswc:attendeeAt ?x . ?y rdf:type eswc:Presenter }
WHERE { ?x rdf:type eswc:TalkEvent }

The second, B2, asserts that there is a MeetingRoomPlace that is the location
of all talks.

1 EX ?x ALL ?y B2

CONSTRUCT { ?y eswc:hasLocation ?x . ?x rdf:type eswc:MeetingRoomPlace }
3 WHERE { ?y rdf:type eswc:TalkEvent }

The third, B3, asserts that there for each TalkEvent there is someone that holds
that talk and therefore is known by all attendees of the talk.

1 ALL ?x EX ?y ALL ?z B3

CONSTRUCT { ?x eswc:heldBy ?y . ?z foaf:knows ?y }
3 WHERE { ?x rdf:type eswc:TalkEvent. ?z eswc:attendeeAt ?x }

The difference between the three cases is, of course, the scope of the existen-
tial variable (or blank node): In the first case, which is the only one unmodified
SPARQL supports, one fresh blank node is created for each binding of the univer-
sal variable. In the second case, a single blank node is created that is the object in
all hasLocation triples. In the third case, one fresh blank node is created for each
binding of ?x (each talk), but that same blank node is object in all knows triples for
attendees of that talk.
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It is worth noting that the latter two cases are essential for constructing many
group or set like structures in RDF. For instance for RDF containers, RDF represen-
tations of n-ary relations [16], and RDF reification it is best and common practice
to use blank nodes for the container, relation, or statement object. Unfortunately,
SPARQL does not support either of these cases.

In presence of rules (and thus not in SPARQL) and graph projection we show
in Section 1.5.2 that quantifier alternation, though convenient, actually does not in-
crease the expressiveness. In other words, if rules and graph projection is present
cases 2 and 3 can be expressed using only rules as in case 1. Nevertheless, even
in these cases quantifier alternation is far more convenient (see rewriting in Sec-
tion 1.5.2).

1.4.1 SPARQLog Syntax

As illustrated above, SPARQLog mostly adds rules and quantifier alternation to
SPARQL. There are a few other restrictions and simplifications:

1. We do not consider OPTIONAL and FILTER expressions in this chapter. As
negation in SPARQL is expressed via OPTIONAL and isBound, SPARQLog
as presented here is based on positive SPARQL.

2. As stated above, we do not allow blank nodes to occur in bodies or heads of
SPARQLog rules. In bodies blank nodes can be replaced by fresh universal vari-
ables, in heads with fresh existential ones.

3. We allow only IRIs or universal variables, but no existential variables, for the
graph identifier (directly after GRAPH) in rule heads.

4. In contrast to SPARQL, we do require that all SPARQLog rules are range-
restricted: If x is an universal variable in the head of a rule R than x must occur
in the body of R. If there is an existential variable y in the head of R that is in the
scope of an universal variable x, then x must occur in the body of R.

5. For simplicity, we only consider basic triple patterns and none of the abbreviation
syntaxes from SPARQL (no predicate-object or object lists, no syntactic sugar for
collections or rdf:type).

Literals and IRIs are as in RDF graphs (see Section 1.2), variables are from an
infinite set disjoint with IRIs, literals, and blank nodes.

With the above restrictions, Figure 1.1 gives the syntax of SPARQLog. For sim-
plicity, we ignore namespace prefixes and all associated issues in the following.
Prefix resolution can be added easily, but only distracts from the salient points of
this chapter. We allow WHERE clauses to be omitted entirely. In this case the rule
head is always true (a fact).
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〈program〉 ::= 〈prefix-clause〉* 〈dataset-clause〉 〈rule〉+
〈dataset-clause〉 ::= ‘FROM’ 〈iri〉 (‘FROM’ ‘NAMED’ 〈iri〉)*
〈prefix-clause〉 ::= ‘PREFIX’ 〈identifier〉? ‘:’ 〈iri〉
〈rule〉 ::= 〈quantifier-clause〉* 〈construct-clause〉 〈where-clause〉?
〈quantifier-clause〉 ::= ‘ALL’ 〈variable〉+ | ‘EX’ 〈variable〉+
〈construct-clause〉 ::= ‘CONSTRUCT’ ‘{’ 〈triple-pattern〉 ‘}’? 〈construct-template〉*
〈construct-template〉 ::= ‘GRAPH’ (〈iri〉 | 〈variable〉) ‘{’ 〈triple-pattern〉 ‘}’
〈where-clause〉 ::= ‘WHERE’ ‘{’ 〈graph-pattern〉 ‘}’
〈graph-pattern〉 ::= (‘GRAPH’ (〈iri〉 | 〈variable〉))? ‘{’ 〈graph-pattern〉 ‘}’

| ‘{’〈graph-pattern〉‘}’ ‘UNION’ ‘{’〈graph-pattern〉‘}’
| 〈graph-pattern〉 (‘.’ 〈graph-pattern〉)?

〈basic-graph-pattern〉 ::= 〈triple-pattern〉 (‘.’ 〈basic-graph-pattern〉)?
〈triple-pattern〉 ::= 〈resource〉 〈predicate〉 〈resource〉
〈resource〉 ::= 〈iri〉 | 〈variable〉 | 〈literal〉
〈predicate〉 ::= 〈iri〉 | 〈variable〉
〈variable〉 ::= ‘?’ 〈identifier〉

Fig. 1.1 Syntax of SPARQLog

1.4.2 Denotational Semantics for SPARQLog

SPARQL’s semantic is defined with a rather ad-hoc algebra in [19]. A more com-
plete algebraic semantics of SPARQL is given in Chapter 9 of this volume. For
SPARQLog a semantics based on (simple) RDF entailment seems the most natural,
in particular since RDF entailment coincides with FO entailment of the canonical
formulas of RDF datasets.

To this end, we first define a canonical formula also for SPARQLog programs.
This can be seen as a translation of SPARQLog to first-order logic.

Definition 1.7 (Canonical Formula for SPARQLog Program). Let P be a SPAR-
QLog program and u1, . . . ,un the identifiers for RDF graphs G1, . . . ,Gn. Then the
canonical formula φ(P) of P is defined as follows:

φ(FROM ui Q) =
∧

(s,p,o)∈Gi
(s, p,o,�)∧φ(Q)

φ(FROM NAMED ui Q) =
∧

(s,p,o)∈Gi
(s, p,o,ui)∧φ(Q)

φ(ALL vars Q) = ∀ vars : φ(Q)
φ(EX vars Q) = ∃ vars : φ(Q)
φ(CONSTRUCT template Q) = φg(template,�) φ(Q)
φ(WHERE pattern) =← φg(pattern,�)
φg(pattern UNION Q,c) = φg(pattern,c)∨φg(Q,c)
φg(GRAPH var Q,c) = φg(Q,var)
φg(GRAPH iri Q,c) = φg(Q, iri)
φg(pattern . Q,c) = φg(pattern,c)∧φg(Q,c)
φg({ pattern },c) = φg((pattern),c)
φg(sub pred obj, c) = R(φ(sub),φ(pred),φ(obj),c)
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The canonical formula is pretty straightforward: the head of a SPARQLog rule,
i.e., the CONSTRUCT clause, is translated into a conjunction that forms the conse-
quence of an implication. The WHERE clause is translated into the condition of the
implication. It may contain both disjunctions and conjunctions. Noteworthy is the
propagation of the identifier of the current query graph in the dataset by means of
the second parameter of φg.

For instance, rule B3 from Section 1.4 has the following canonical formula
(brackets are normalized):

∀x∃y∀z : R(x,eswc:heldBy,y,�)∧R(z, foaf:knows,y,�)
← R(x, rdf:type,eswc:TalkEvent,�)∧R(z,eswc : attendeeAt,x,�).

Here all triples occur in the default graph. In contrast, the canonical formula for rule
R2 highlights that the default graph is queried, but that the consequences are triples
in a named graph:

∀x : R(x, rdf:type, :bavarian,<http://example.org/bavarians>)
← R(x, rdf:type, :european,�)∧R(z, foaf:knows,”Edmund”,�).

It is not generally agreed upon what the semantics of a rule based RDF query
language should be if existential variables are allowed in the head. In contrast, it
is agreed that the semantics of a logic program with only universally quantified
variables is its minimal Herbrand model.

We deal with this problem by defining the semantics of SPARQLog in terms of
entailment. More precisely we define the semantics of an SPARQLog program P
to be the set of all RDF datasets D whose canonical formulas entail the same RDF
datasets as the canonical formula of P.

Definition 1.8 (Denotational Semantics of SPARQLog). Let P be an SPARQLog
program. The denotational semantics [[P]] of P is the set of all RDF datasets D, such
that for all RDF datasets E it holds that φ(D) entails φ(E) if and only if φ(P) entails
φ(E).

Observe that the semantics of an SPARQLog program is an infinite set of possibly
infinite RDF datasets. However, we choose the above semantics (and not, e.g., the
set of all datasets whose canonical formulas follow logically from φ(P)) to ensure
that [[P]] forms an equivalence class under (RDF) entailment. Therefore any element
(in particular, any finite element if such exists) of [[P]] characterizes the entire set.
We consider an implementation of SPARQLog sound and complete if it returns any
element of [[P]] for a given SPARQLog program P.

This semantics is not RDFS aware. However, as stated above [15] gives a set of
first-order formulas that characterize the logical core of RDFS (there called ρ f s).
These formulas can be expressed by SPARQLog rules and added to a program, if an
RDFS aware semantics is desired.
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1.4.3 Relational Operational Semantics for SPARLog

The goal of this section is to give an evaluation of an SPARQLog program P by first
translating P into a logic program s(P), using the well-studied notion of Skolemi-
sation [5], and then evaluating this program s(P) using standard logic programming
or relational technology. Two post processing steps (Unskolemisation and RDF nor-
malization) make sure that the result is an RDF graph in the denotational semantics
of P.

We use the well studied notion of Skolemisation [5] to translate an SPARQLog
program into a logic program:

Definition 1.9 (Skolemisation [5]). Let Σ andΓ be disjoint alphabets,ϕ = ∀x̄∃y(ψ)
a formula over Σ ∪Γ and f ∈ Γ . A Γ -Skolemisation step s f maps ϕ to s f (ϕ) :=
∀x̄ψ{y← f (x̄)}. (We denote with φ{t ← t ′} the formula φ where all occurrences
of the term t are replaced by the term t ′). A Γ -Skolemisation s is a composition
s f1 ◦ . . .◦s fn ofΓ -Skolemisation steps such that f i does not occur in s fi+1 ◦ . . .◦s fn(ϕ)
and s(ϕ) contains no existential variables. The definition of a Skolemisation is ex-
tended to sets in the usual way.

The Skolemisation of (the canonical formula of) an SPARQLog program P is
equivalent to a range restricted logic program, which we denote by s(φ(P)). If nec-
essary, disjunction in rule bodies and conjunction in rule heads is expanded into
multiple rules as usual. Any logic programming engine can compute the minimal
Herbrand model Ms(φ(P)) of s(φ(P)).

For instance, the following logic program is the Skolemisation s(φ(P)) of the
SPARQLog rule B3 from Section 1.4 where s replaces the existential variable y in P
by the term sy(x):

{∀xz : R(x,eswc:heldBy,sy(x),�)
← R(x, rdf:type,eswc:TalkEvent,�)∧R(z,eswc : attendeeAt,x,�).

∀xz : R(z, foaf:knows,sy(x),�)
← R(x, rdf:type,eswc:TalkEvent,�)∧R(z,eswc : attendeeAt,x,�).}

We define φ(Ms(φ(P))) to be the conjunction of all ground atoms that are true in
Ms(φ(P)). However, φ(MS(P)) might not be the canonical formula of an element of
[[P]] for two reasons. First, the example shows that φ(MS(P)) might contain atoms
with skolem terms, which are not entailed by φ(P). Second, φ(MS(P)) can contain
atoms with literals in subject or predicate position or blank nodes in predicate po-
sition. Such atoms are not allowed in an RDF graph and therefore never part of an
element of [[P]].

We can avoid the first problem by “undoing” the Skolemisation: replacing each
Skolem term in φ(MS(P)) by a fresh, distinct blank node. We formalise this operation
as the inverse of a Skolemisation called Unskolemisation.
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Definition 1.10 (Unskolemisation). Let Σ and Γ be disjoint alphabets and ϕ a
ground, possibly infinite, and quantifier free formula over Σ ∪Γ . Let t̄ be the se-
quence of all ground terms f (ū) where f is in Γ and ū is a sequence of terms over
Σ ∪Γ . Then the Γ -Unskolemisation u maps ϕ to u(ϕ) := ∃x̄(ϕ{ t̄← x̄}) . where x̄
is a sequence of fresh variables.

To address the second issue, we remove all atoms with literals or blank nodes in
predicate position (no RDF graph may contain such a triple or any triple entailed by
it). In addition we remove each triple t in graph u that contains a literal l in subject
position and add two triples t1 and t2 to u where t1 is obtained from t by replacing an
occurrence of a literal l in subject position by a fresh blank node b l and t2 is obtained
from t by replacing all occurrences of l by b l. Dropping these atoms does not affect
the soundness or completeness (see below) as these atoms can by definition not be
part of an RDF dataset. Nevertheless, allowing them during the evaluation is useful
and even necessary for certain programs (for details see [15]).

Definition 1.11 (Normalisation Operator). Let ϕ be a formula of the form
∃x̄(a1(x̄)∧ . . .∧an(x̄)) where each ai(x̄) = T (t1,t2,t3) for some t1,t2,t3 ∈ (U∪B∪
L). Let L′ ⊆ L be the set of literals that occur in the first argument of an atom in
ϕ . We define µ : U∪B ∪ L → U ∪B∪ L to be the injection such that µ(t) = b
for some fresh blank node b (not in ϕ) if t ∈ L ′ and µ(t) = t otherwise. Then
Π(ϕ) = {Π(a1(x̄)), . . .Π(an(x̄))} and

Π(T (t1,t2,t3)) =

{
� if t2 ∈ B∪L

(µ(t1),t2,t3)∧ (µ(t1),t2,µ(t3)) otherwise

The normalisation operator ensures that, though intermediary atoms may contain
blank nodes in predicate position (see [24] for examples where this is useful), the
final answer of an SPARQLog program never contains such atoms.

Armed with these notions of Skolemisation, Unskolemisation and Normalisation,
we finally define the operational semantics of SPARQLog as follows:

Definition 1.12 (Operational Semantics of SPARQLog). Let P be an SPARQLog
program over Σ , s a Γ -Skolemisation for P, and u an Γ -Unskolemisation. Then the
operational semantics [P] of P is [P] := Π

(
u(φ(Ms(φ(P))))

)
where φ(Ms(φ(P))) is

as defined above: the conjunction of all ground atoms that are true in the minimal
Herbrand model of s(φ(P)).

1.4.3.1 Soundness and Completeness

Even though we do not require that elements of the denotational semantics [[P]] of an
SPARQLog program P are models of P it holds that u(φ(Ms(φ(P)))) has a canonical
structure that is not only a model of P but even a universal model (or universal
solution in the sense of [7]). Thus if we allow literals in subject position and blank
nodes in subject or predicate position, we can omitΠ from the operational semantics
and compute a model of P.
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To formulate this more precisely, we define an extended Herbrand structure A
over alphabet Σ and variables Var as a structure (D,Rel,Fun) where D is the set
of (possibly non-ground) terms over Σ and Var, and every function f A is defined
by f A(t1, . . . ,tn) = f (t1, . . . ,tn). We extend the definition of Unskolemisation from
formulas to extended Herbrand structures: if u is an Unskolemisation that replaces
t̄ by x̄ then u(M) is the extended Herbrand structure obtained from M by renaming
the domain elements t̄ by x̄.

Lemma 1.2. Let P be an SPARQLog program. Then AP = u(Ms(φ(P))) |= φ(P) and
φ(P) |= u

(
φ(Ms(φ(P)))

)
= ψP.

Intuitively, AP |= φ(P) means that ψP captures all the information in P and
φ(P) |= ψP means that it does not assert anything that is not asserted by P. From
these two key observations, we can prove that the operational semantics of SPAR-
QLog is both sound and complete with respect to the denotational semantics.

Theorem 1.1. Let P be an SPARQLog program. Then [P] ∈ [[P]].

1.4.3.2 Proof of Lemma 1.2 and Theorem 1.1

In the proof of Lemma 1.2 we often make use of the Substitution lemma, which we
state here without proof.

Lemma 1.3 (Substitution Lemma). Let ϕ be a sentence and M an interpretation.
Then

M |= ϕ iff M,d |= ψ(x)

if ψ = ϕ{t← x} and M interpretes t as d.

We now recall some well known results about Skolemisation. Symmetric proofs
show the following properties of Unskolemisation.

Lemma 1.4 (Skolemisation Lemma). Let Σ ,Γ and Π be disjoint alphabets and ϕ
a finite formula over Σ ∪Γ . Let s be aΠ -Skolemisation forϕ , u anΓ -Unskolemisation
for ϕ . Then

• ϕ |= u(ϕ)
• s(ϕ) |= ϕ .
• u(ϕ) is satisfiable iff ϕ is satisfiable.
• ϕ is satisfiable iff s(ϕ) is satisfiable.

Corollary 1.1 (of the Skolemisation Lemma). Let ϕ be a finite formula over Σ ∪Γ
and u an Γ -Unskolemisation for ϕ . If S is a model of u(ϕ) over Σ then there exists
an extension T of S on Γ which is a model of ϕ .

Before we can turn to the actual proofs of the soundness and completeness of the
operational semantics, we have to establish some further properties of Unskolem-
ization. These are the central observations to show that every RDF dataset which
is entailed by the operational semantics of an SPARQLog program P is entailed by
φ(P).
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Lemma 1.5. Let ϕ and ψ be formulas over Σ ∪Γ where ϕ is finite andψ is possibly
infinite and ground. Let u be an Γ -Unskolemisation for ϕ . Then

ϕ |= ψ implies that u(ϕ) |= u(ψ).

Proof. Let S be a model over Σ of u(ϕ). As ϕ is finite, by Corollary 1.1 there is an
extension T of S on Γ which is a model of ϕ . By the assumption T is also a model
of ψ . Then it follows from Lemma 1.4 that T is a model of u(ψ). As u(ψ) contains
no symbol from Γ and T is an extension of S on Γ , S is a model of u(ψ).

Lemma 1.6. Let ϕ be a formula over Σ , M an extended Herbrand structure over Σ
and Var, and u an Γ -Unskolemisation for ϕ . Then

M |= ϕ implies that u(M) |= u(ϕ)

Proof. Assume that M |= ϕ . Let ∀x̄(ψ) = ϕ . Then for all sequences of terms t̄ it
holds that M |= ψ(t̄). As M is an extended Herbrand structure, it interprets every
constant c by c. Therefore it follows from the substitution Lemma that M |= (ψ{c̄←
ȳ})(t̄,
barc). Observe that u(M) be the extended Herbrand structure obtained from M by
renaming the domain elements c̄ by ȳ. Thus u(M) |= (ψ{c̄← ȳ})( t̄). Finally by the
definition of entailment and Unskolemisation it holds that u(M) |= u(ϕ).

Proof of Lemma 1.2. Let P be an SPARQLog program over alphabet Σ . We need
to show that AP = u(Ms(φ(P))) |= φ(P) and φ(P) |= u

(
φ(Ms(φ(P)))

)
= ψP.

To show that AP |= φ(P), observe that by definition Ms(φ(P)) is a model of
s(φ(P)). It therefore follows from Lemma 1.6 that u(Ms(φ(P))) is a model of P.

For the second part observe that as s(φ(P)) is a logic program it follows that
s(φ(P)) entails each atom that is true in Ms(φ(P)). Thus s(φ(P)) also entails the
canonical formula φ(Ms(φ(P))) of Ms(φ(P)). Let u be the inverse of s. As s(φ(P)) is a
finite set of finite formulas and ψP is a ground formula it follows from Lemma 1.5
that u◦ s(φ(P)) = φ(P) entails u

(
φ(Ms(φ(P)))

)
.

Proof of Theorem 1.1. The aim is to show that every RDF dataset that is entailed by
an SPARQLog program is also entailed by the operational semantics. First we need
to establish a few more properties of canonical formulas of SPARQLog programs:

Lemma 1.7. Let P be a logic program over alphabet Σ and MP its minimal Her-
brand model. Let g be an RDF dataset and φ(g) = ∃x̄ (

∧
ψ) its canonical formula.

Then the following statements are equivalent

(a) P |= ∧
ψ{x̄← t̄ } for some sequence of variables x̄ and ground terms t̄

(b) P |= φ(g)
(c) MP |= φ(g)

Proof. It is trivial that (a) implies (b). To see that (b) implies (c) observe that MP is a
model of P. To show that (c) implies (a) assume that (c) is true. As MP is a Herbrand
model there is a sequence of terms t̄ such that MP, t̄ is a model of

∧
Φ(x̄). In addition,
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MP interprets all terms by themselves. Thus it follows from the substitution lemma
that MP is a model of

∧
Φ{x̄← t̄ }. Therefore MP is a model of a{x̄← t̄ } for every

a ∈ Φ . As a{x̄← t̄ } is a ground atom it follows that P |= a{x̄← t̄ }. As this is true
for every a ∈Φ it holds that P |= ∧

Φ{x̄← t̄ } for some sequence of terms t̄.

With these properties we can now show the Theorem 1.1: Let P be an SPARQLog
program and ψP = u(φ(Ms(φ(P)))). We first show that that for any RDF graph g

φ(P) |= φ(g) iff ψP |= φ(g).

The direction from right to left follows from the second part of Theorem 1.2. For
the direction from left to right let φ(g) = ∃x̄(

∧
ξ ) where ξ is a set of atom. Assume

that φ(P) |= φ(g). By Lemma 1.4 s(φ(P)) |= φ(g) for any Skolemisation s of φ(P).
As s(φ(P)) is a logic program it follows from Lemma 1.7 that there is a sequence
t̄ of terms such that s(φ(P)) |= ∧

ξ{x̄← t̄ }. Thus for all atoms a ∈ ξ{x̄← t̄ } it
holds that s(φ(P)) |= a. As Ms(φ(P)) is a model of s(φ(P)) it follows that Ms(φ(P)) is
a model of a. Let

∧
Ms(φ(P)) be the conjunction of all ground atoms which are true

in Ms(φ(P)). Then a is a conjunct in Ms(φ(P)) and thus
∧

Ms(φ(P)) |= a. As this is true
for any a ∈ ξ{x̄← t̄ } it holds that

∧
Ms(φ(P)) |= ξ{x̄← t̄ }.

Thus
∧

Ms(φ(P)) |= φ(g) and there is a homomorphism µ from Ms(φ(P)) to

g. Observe that there is a mapping ν from DMs(φ (P)) to Du(Ms(φ (P))) such that (i)
ν(cMs(φ (P)) ) = cu(Ms(φ (P))) if c is a IRI or literal, (ii) if f is a skolem symbol then
ν( f (t̄)) = x f (t̄) where x f (t̄) is a non-constant domain element in Du(Ms(φ (P))), and (iii)

RMs(φ (P)) (d̄) iff Ru(Ms(φ (P)))(ν(t̄)) for every relation symbol R. Observe that µ ◦ν is a
homomorphism from G to u(Ms(φ(P))). Thus the operational semantics u(Ms(φ(P)))
of P entails ϕg.

It remains to show that θ |= φ(g) iff Π(θ ) |= φ(g) where θ is a formula as in
the definition of the normalisation operator Π . The direction from right to left is
immediate since Π(θ ) |= θ . The other direction follows from the definition of Π
and the structure of RDF triples.

1.5 Properties of SPARQLog

1.5.1 Designing Tractable Fragments of SPARQLog

Since the full SPARQLog captures some classes of expressive formulas (such as
the ∀∃-rules) it is easy to adapt some standard proofs of Turing completeness (see,
e.g.,[4]) to show the following.

Proposition 1.1. SPARQLog is Turing complete.

This section focuses on the description of fragments of SPARQLog, recognizable
in PTIME, that ensure polynomial complexity when given a fixed (or fairly small)
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program P and a potentially very large RDF dataset (playing the role of a database).
We can formalize the desired notion of tractability as follows:

Definition 1.13 (Tractability). We say that an SPARQLog program P containing
the RDF graph identifiers u1, . . . ,un in its dataset clause is tractable iff the following
holds: For all RDF graphs G1, . . . ,Gn associated with u1, . . . ,un of total size n, the
RDF dataset [P] is finite and can be computed in time O(nk) for some k depending
only on P.

It follows from Theorem 2 in [13] that the finiteness of [P] (for all G 1, . . . ,Gn) is
actually a sufficient condition for polynomial data-complexity. By using a standard
encoding of general relational constraints into RDF constraints, we can adapt the
proof of Theorem 4 in [13] to show that the finiteness of [P] is undecidable.

Proposition 1.2. The following problem is undecidable: given an SPARQLog pro-
gram P, is P tractable?

Note that the union P1 ∪P2 of two tractable SPARQLog programs P1 and P2 is
not necessarily tractable. Consider for instance the two following rules, where :a
and :b denotes two distinct IRIs:

1 R1 = ALL ?x ?y EX ?z
CONSTRUCT { ?y <b> ?z } FROM { ?x <a> ?y }

3 R1 = ALL ?x ?y EX ?z
CONSTRUCT { ?y <a> ?z } FROM { ?x <b> ?y }

Even though P1 = {R1} and P2 = {R2} are tractable, we can check that the SPAR-
QLog program P12 = {R1,R2} is not tractable. In particular, in the case of an RDF
graph G containing a triple (<c>,<a>,<d>) we can observe that [P] is infinite as it
must contain an infinite path of the form

{(<c>,<a>,<d>);(<d>,<b>, :1);( :1,<a>, :2);( :2,<b>, :3); . . .}

where :i is a blank node.
As also illustrated by this example, there is very little hope of identifying an

interesting local criterion (testing each rule independently) ensuring the right notion
of tractability. In particular, the notion of guarded Datalog± from Chapter 11 of
this volume, designed to ensure (only) the tractability of query answering, does
not ensure the tractably of the data-exchange problem (i.e., the materialization of
[P]). We can indeed observe that P12 is not tractable in the sense of Definition 1.13
even though it is guarded (each rule contains an atom in its body that contains all
universally quantified variables of that rule).

A more relevant approach would consist in relying on the notion of weak-
acylicity (WA), introduced in [6], and based on the study of two different processes:
the creation of new terms in some positions and the migration of newly-created
terms from initial positions to new positions. A criteria of acyclicity then ensures
that there is no infinite loop in this process of creation and migration of new terms,
and that the evaluation of [P] terminates in polynomial time.

Even though WA is a fairly simple way of ensuring tractability, we argue in this
section that the more technical notion of Super-weak Acyclicity (SwA) introduced in
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[13] turns out to be a very significant and useful generalization of WA in the context
of RDF.

First, SwA allows to take in account the numerous constants that usually occur in
a SPARQLog program while relying on efficient unification technics to distinguish
distinct constants. This contrasts with WA which was only defined for constraints
without constants.

Second, SwA relies on a richer notion of positions (called places). A standard
approach in the context of relational databases is indeed to define a position as a
pair (R,A) where R is a relational symbol, and A is a single attribute (or column) of
R. In the context of RDF, since we have only a single predicate symbol of small arity
we would only consider a fixed and very small number (typically 3) of positions and
large programs are almost never acyclic in the sense of WA. In contrast, the SwA
relies on places of the form (a, i) where a is an atom of the logic program s(φ(P))
and i ∈ {1,2,3}. SwA distinguishes therefore a polynomial number O(||P|| 3) of
places instead of distinguishing only 3 positions.

Third, SwA enjoys some natural closure properties (missing in WA) which make
the design of SwA programs easier (see Theorem 5 in [13]). In particular, adding
more atoms in the body of some rule in P never hurts: if P is SwA then the resulting
set of rules is also SwA.

Note that other generalizations of WA (incomparable with SwA) have been pro-
posed in the literature, in particular, the notion of Stratification [4], the notion of
Safe Restriction [22], and the notion of Inductive Restriction [14]. However, none of
these notions solves the problems of WA discussed above. In particular, the tractable
program

ALL ?x ?y EX ?z
2 CONSTRUCT { ?y <b> ?z } FROM { ?x <a> ?y }

belongs to none of these classes because none of them take into account the fact
that the two IRIs (constants) a and b are distinct. Moreover, these three classes only
ensure the termination of the so-called restricted chase, and – unlike SwA – they do
not ensure the termination of the logic program s(φ(P)) (i.e. [P] could be infinite).

1.5.1.1 SwARQLog

We define in this section a tractable fragment called SwARQLog (for super-weakly
acyclic SPARQLog) relying on the notion of super-weak acyclicity (SwA) intro-
duced in [13] in the context of data-exchange with ∀∃-rules only, and adapted here
to the case of rules with quantifier alternation.

Given an SPARQLog program P we let P∗ be the logic program P∗ = s(φ(P))
and define a place as a pair (a, i) where a is a atom of P∗ and i ≤ 3. We write
(a, i) ∼ (a, i′) when i = i′ and the atoms a and a′ are unifiable. Given two sets of
places Q and Q′ we write Q � Q′ iff for all p ∈ Q there exists p′ ∈ Q′ such that
p ∼ p′. Given a rule r : Br → Hr and a variable x we let ρ(x,Br) and ρ(x,Hr) be
the set of places (R(t1,t2,t3,u), i) in the body Br and the head Hr such that ti = x.
Given a function symbol f , we let ρ( f ,Hr) be the set of places (R(t1,t2,t3,u), i)
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φ(P) =



∀lec∃crs∀stu (

R(lec, rdf:type,uni:lecture,�)∧R(stu,uni:attends, lec,�)
→ R(crs,uni:practices, lec,�)∧R(stu,uni:attends,crs,�) )

∀x∃prf ∀stu (
R(stu,uni:attends,x)
→ R(x,uni:taught-by,prf ,�)∧R(prf ,people:knows, stu,�) )

s(φ(P))=
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
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5
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11
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12

,people:knows, stu
13

,�)

Fig. 1.2 Super-weakly acyclic program P

in the head Hr such that ti is of the form f (. . .). Given a set of places Q we define
Fix∗(Q) as the smallest set of places Q′ such that Q⊆Q′ and for all rules r : Br→Hr

and all variables x we have (ρ(x,Br)� Q′)⇒ (ρ(x,Hr)⊆ Q′). Let F∗ be the set of
function symbols occurring in P∗, then we can observe that each f ∈ F ∗ occurs in
exactly one rule denoted r f : Bf → Hf and that each occurrence of f in this rule
uses the same vector of arguments denoted arg( f ). Given two function symbols
f ∈ F∗ and g ∈ F∗ we say that f feeds g iff there exists some x ∈ arg(g) such that
ρ(x,Bg)� Fix∗(ρ( f ,Hf )) and we define the feeding graph G (P) of P as the graph
(F∗,�) containing an edge ( f � g) iff f feeds g.

Definition 1.14 (SwARQLog). An SPARQLog program P is super-weakly acyclic
(SwA) and is called an SwARQLog program iff the feeding graph G (P) is acyclic.

Consider, for instance, the following SwARQLog program P:

PREFIX uni: <http://example.org/uni>
2 FROM <http://example.org/oxford>

4 ALL ?lec EX ?crs ALL ?stu
CONSTRUCT { ?crs uni:practices ?lec . ?stu uni:attends ?crs }

6 WHERE { ?lec rdf:type uni:lecture . ?stu uni:attends ?lec }

8 ALL ?lec EX ?prf ALL ?stu
CONSTRUCT { ?lec uni:taught-by ?prf . ?prf foaf:knows ?stu }

10 WHERE { ?stu uni:attends ?lec }

Figure 1.2 illustrates the places in P: p1 =
(
R(lec, rdf:type,uni:lecture,�),1)

;
p2 =

(
R(stu,uni:attends, lec,�),1)

; p3 =
(
R(stu,uni:attends, lec,�),3)

; . . . ;
p13 =

(
R(prf ,people:knows,stu,�),3)

. Note that there are more places, but we
show only the useful ones. With letting f and g the skolem functions used in s(φ(P))
we can check that P is indeed super-weakly acyclic:

• f feeds g: We have indeed ρ( f ,H f )= {p4, p7} and Fix∗({p4, p7})= {p4, p7, p10}
while arg(g)= {x} and ρ(x,Bg) = {p9}. Since p9 unifies with p11 we have there-
fore ρ(x,Bg)� Fix∗(ρ( f ,Hf ))



1 SPARQLog: SPARQL with Rules and Quantification 23

• f does not feed f : We have indeedρ( f ,H f ) = {p4, p7} and Fix∗({p4, p7}) =
{p4, p7, p10} while arg( f ) = {lec} and ρ(lec,B f ) = {p1, p3}. Since none of the
places in {p4, p7, p10} unifies with p1 we have ρ(lec,B f ) �� Fix∗(ρ( f ,Hf )).

• we can check similarly that g does not feed f and g does not feed g.

The definition above coincides precisely with the definition of SwA given in [13]
for the case of ∀∃-rules and we can easily adapt the proofs given in [13] to also
cover quantifier alternation and thus show the following.

Theorem 1.2 (Tractability of SwARQLog).
(1) We can decide whether an SPARQLog program is SwA in PTIME.
(2) Every SwARQLog program is tractable.

1.5.2 Expressiveness of Quantifier Alternation in SPARQLog

SPARQLog allows existential variables in any position of the quantifier of a rule.
This contrasts to other RDF query languages that are either limited to rules in ∀∃
or to ∃∀ form: In ∀∃ approaches such as [21] existential quantifiers occur in the
scope of all universal variables of a rule. In ∃∀ approaches such as [25], existential
variables occur in the scope of no universal variables.

In this section, we show that an SPARQLog program P can be translated into an
SPARQLog program F∀∃(P) such that the two programs are default-graph equiva-
lent and F∀∃(P) contains only rules in ∀∃ form. Such an equivalence does not hold
for the ∃∀ form.

Default-graph equivalence captures the notion that they both construct the same
default graph, but may differ on the named graphs they query and construct in inter-
mediary rules:

Definition 1.15 (Default-graph Equivalence). Let P and P ′ be two SPARQLog
programs. Then P is default-graph equivalent to P ′ if for all datasets D ∈ [[P]],D′ ∈
[[P′]] it holds that D[�] |=|D’[�].

Thus two SPARQLog programs that are default-graph equivalent can be consid-
ered equivalent up to results in intermediary named graphs.

First, we define F∀∃. For convenience, we abbreviate for any IRI H and sequence
of variables x̄ = x1, . . . ,xn, the conjunction of triple patterns

(H rdf:_1 ?x1) . \ldots . (H rdf:_n xn)

by H(x̄) and, for any graph IRI I,

H̃(x̄, I) = R(H,rdf: 1,x1, I)∧ . . .∧R(H,rdf: n,xn, I).

Definition 1.16 (∀∃ Rewriting). Let P be an SPARQLog program and

1 ALL x̄ EX ȳ Qz̄
CONSTRUCT { ξ (x̄, ȳ, z̄) } WHERE { ψ(x̄, ȳ, z̄) }
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a rule R in P with Qz̄ some sequence of quantifier clauses over the variables z̄,
ξ (x̄, ȳ, z̄) a construct template over the given variables and ψ(x̄, ȳ, z̄) a graph pattern
over the given variables.

Then we define the ∀∃-rewriting F∀∃(φ) as

F∀∃(φ) =

{
R if R is in ∀∃ form

R1R2R3 otherwise

where

R1 = ALL x̄ ALL ȳ ALL z̄
2 CONSTRUCT GRAPH <I> { ProjR(x̄) } WHERE { ψ(x̄, ȳ, z̄) }

4 R2 = ALL x̄ EX ȳ
CONSTRUCT GRAPH <I> { GenR(x̄, ȳ) } WHERE GRAPH <I> { ProjR(x̄) }

6

R3 = F∀∃
(
ALL x̄ ALL ȳ Qz̄

8 CONSTRUCT { ξ (x̄, ȳ, z̄) } WHERE { ψ(x̄, ȳ, z̄) . GRAPH <I> { GenR(x̄, ȳ) } }
)

and GenR,ProjR, I are new IRIs that do not occur in P. The definition is analog for
rules with graph specification in the head.

The idea of the rewriting is to extract all existential variables ȳ that depend only
on the universal variables x̄ from φ . A specific generator rule Rgen states their ex-
istential dependence on x̄ separately. To allow Rgen in ∀∃ form, we first project all
variables in ψ on only the relevant variables x̄ in Rproj, the projection rule. Finally,
we query both the original body and the generator rule in R join. Since Gen is a new
IRI (and thus there can be no further rules with Gen in the head) it suffices together
with x̄ to identify the corresponding ȳ.

Even though a classical logic formula with arbitrary quantifier alternation has,
in general, no logical equivalent in the prefix class ∀∃, this does no longer hold if
we allow the extension of the vocabulary with “helper constants” that are ignored
when considering equivalence. Here this is provided by the notion of default-graph
equivalence introduced above. The above rewriting extends the vocabulary of the
SPARQLog program in two ways:

1. It introduces, for each rewritten rule, a new graph identifier constant (I in Defi-
nition 1.16). All intermediary tuples introduced by the rewriting of that rule are
constructed to belong to I (only ξ (x̄, ȳ, z̄) remains in the original graph).

2. It introduces, for each rewritten rule, two new RDF resource IRIs Gen R,ProjR. It
would actually suffice to use introduce two such new IRIs overall, as the rewrit-
ing of different rules can reuse these constants without clash (due to the separate
graph identifiers). But for clarity we use also in this case distinct new constants.
In fact, the rewriting remains applicable even if no concept such as graph identi-
fiers exists in the rule language. But in this case, we need a form of equivalence
up to certain constants or predicate symbols (see, e.g., the notion of relativised
equivalence in [17]).

To illustrate the rewriting consider again rule B3 from Section 1.4:
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ALL ?x EX ?y ALL ?z B3

2 CONSTRUCT { ?x eswc:heldBy ?y . ?z foaf:knows ?y }
WHERE { ?x rdf:type eswc:TalkEvent. ?z eswc:attendeeAt ?x }

For this rule we obtain the following rewriting F∀∃(B3) using http../I as IRI for
the intermediary graph, http../Gen1 as IRI for R 1 and http../Proj1 as IRI
for R2:

1 ALL ?x ALL ?y ALL ?z
CONSTRUCT { ?x eswc:heldBy ?y . ?z foaf:knows ?y }

3 WHERE GRAPH <http../I> { ?x rdf:type eswc:TalkEvent. ?z eswc:attendeeAt ?x.
<http../Gen1> rdf:_1 ?x . <http../Gen1> rdf:_2 ?y }

5

ALL ?x EX ?y
7 CONSTRUCT GRAPH <http../I> {<http../Gen1> rdf:_1 ?x. <http../Gen1> rdf:_2 ?y}

WHERE GRAPH <http../I> { <http../Proj1> rdf:_1 ?x }
9

ALL ?x, ?y, ?z
11 CONSTRUCT GRAPH <http../I> { (<http../Proj1> rdf:_1 ?x }

WHERE { ?x rdf:type eswc:TalkEvent. ?z eswc:attendeeAt ?x }

Observe that the rewriting essential splits the prefix of the original rule at any ∀ after
an ∃ and distributes the prefix parts over several rules. The triples with fresh IRIs
allow us to link the bindings for parts of the prefix between different rules.

The ∀∃ rewriting of an SPARQLog program is, if restricted to the default graph,
equivalent to the original program.

Theorem 1.3. Let P be an SPARQLog program. Then F∀∃(P) is default-graph equiv-
alent to P.

In other words, SPARQLog restricted to ∀∃ rules is as expressive as full SPAR-
QLog if we consider default-graph semantics.

Proof. Let R be an SPARQLog rule as in the definition of F∀∃. We show that (1)
φ(F∀∃(R)) FO-entails φ(R) and (2) if A = (D,Rel,Fun) is a first-order model of R
then there is an extension B of A with only triples from the auxiliary relations in the
auxiliary graph I that is a model of φ(F∀∃(R)). We omit sub- and superscripts if they
are clear from the context. Finally, let R3 = F∀∃(R′3).

We first show that φ(F∀∃(R)) FO-entails φ(R). The proof is by induction on the
number of quantifier alternations in R. The base case is trivial. For the induction
step let A = (D,Rel,Fun) be a FO-model of φ(F∀∃(R)). To show that A |= φ(R), let
d̄ ∈D∗ be a sequence of domain elements with the same length as x̄. If for all e ∈D
and f̄ ∈ D∗ with | f̄ | = |z̄| it holds that A �|= ψ(d̄,e, f̄ ) then we are done. Otherwise
there are e ∈D and f̄ ∈D∗ such that A |= ψ(d̄,e, f̄ ). As by hypothesis A |= φ(R1) if
follows that A |= ˜ProjR(d̄, I). Therefore as A |= φ(R2) there is an e′ ∈ D, such that
A |= ˜GenR(d̄,e′, I). Finally as A |= φ(R3) if follows from the induction hypothesis
that A |= φ(R′3) and thus A |= φ(R).

We no show that if A = (D,Rel,Fun) is a model of φ(R) then there are triples
T1 = { ˜Proj(x̄, I) . . . ˜Proj(x̄,y, z̄, I)} and T2 = { ˜Gen(x̄, I) . . . ˜Gen(x̄,y, z̄, I)} such that
the extension B = (D,Rel∪T1∪T2,Fun) of A is a model for φ(F∀∃(R)).

The proof is by induction on the number of quantifier alternations in R. Again
the base case is trivial. For the induction step let A be a model of φ(R). We define
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Fig. 1.3 Performance of SPARQLog on rules 1, 2 and 3

T1 = { ˜Proj(x̄, I) : ∃y, z̄ : φ(ψ(x̄,y, z̄))}
T2 = { ˜Gen(x̄,y, I) : φ(Qz : CONSTRUCT ξ (x̄,y, z̄)WHERE ψ(x̄,y, z̄))}

and C = (D,Rel∪T1∪T2,Fun). With this definition it is a tautology that C |= φ(R1).
To show that C |= R2 let d̄ ∈D∗. As A |= φ(R) it holds that there is an e∈D such that
A |= φ(Qz : CONSTRUCT ξ (x̄,y, z̄) WHERE ψ(x̄,y, z̄)). Thus C |= φ(R2). Finally
we observe that φ(R) |= φ(θ ) where

θ = ALL x̄ ALL ȳ Qz̄
2 CONSTRUCT { ξ (x̄, ȳ, z̄) } WHERE { ψ(x̄, ȳ, z̄) . GRAPH <I> { GenR(x̄, ȳ) } }

As C is a model of φ(R) it is also a model of φ(θ ). By the induction hypothesis
there is an extension B of C that is model of R3 = F∀∃(θ ).

1.5.3 Experimental Comparison with SPARQL Engines

The reduction of SPARQLog to standard logic programs (Section 1.4.3) allows for a
direct implementation of SPARQLog on top of any logic programming or database
engine that supports value invention and recursion. In the following, we we compare
experimentally the performance of a very simple prototype based on that princi-
ple with two of the more common SPARQL implementations. Our implementation
of SPARQLog uses a combination of Perl pre- and post-filters for Skolemisation,
Unskolemisation, and normalisation of SPARQLog programs and XSB Prolog to
evaluate the Skolemised programs.

We compare our implementation with the ARQ SPARQL processor of Jena (Ver-
sion 2.1) and the SPARQL engine provided by the Sesame RDF Framework. For
Sesame, we choose the main-memory store as it is “by far the fastest type of repos-
itory that can be used” according to Sesame’s authors. With this store, Sesame be-
comes a main-memory, ad-hoc query engine just like SPARQLog and ARQ. As
common for ad-hoc queries we measure overall execution time including both load-
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Fig. 1.4 Performance comparison on rule 1 (left) and on rule 2 (right)

ing of the RDF data and execution of the SPARQL or SPARQLog query. For the
comparison, we only consider rules without existential quantification (rule 1 be-
low) or with ∀∃ quantification (rule 2 below, expressible by blank nodes in the
CONSTRUCT graph pattern in SPARQL). Rules with arbitrary quantifier alterna-
tion are not considered as they are not expressible in SPARQL (the rewriting from
Section 1.5.2 does not apply as SPARQL is single-rule and provides no projection).

In the experiments we evaluate three different queries against an RDF graph con-
sisting of Wikipedia data. The experiments have been carried out on a Intel Pentium
M Dual-Core with 1.86 GHz, 1 MB cache and 2 GB main memory. For each set-
ting, the running time is averaged over 25 runs. We compare the following rules
(with appropriate prefix definitions and dataset clauses).

Rule 1: ALL ?x ALL ?y
2 CONSTRUCT { ?x test:connected ?y } WHERE {?x wiki:internalLink ?y }

Rule 2: ALL ?x ALL ?z EX ?z
4 CONSTRUCT { ?x test:connected ?z } WHERE {?x wiki:internalLink ?y }

Rule 3: EX ?z ALL ?x ALL ?y
6 CONSTRUCT { ?x test:connected ?z } WHERE {?x wiki:internalLink ?y }

Figure 1.3 shows the performance of SPARQLog for each of the rules. Note that
the running time increases from rule 1 to rule 3 and from rule 3 to rule 2. The
difference between rule 1 and rule 3 might be due to overhead of Skolemisation,
Unskolemisation and normalization. The running time difference between rule 3
and rule 2 may be attributed to the lower amount of blank nodes generated in rule 3,
as the existential quantifier is outside of the scope of all universal quantifiers.

Figure 1.4 compares the performance of SPARQLog with that of ARQ and
Sesame for rule 1 and rule 2 (we omit rule 3 as it is not expressible in SPARQL).
Despite its light-weight, ad-hoc implementation, SPARQLog outperforms ARQ and
Sesame in this setting. The figures show moreover that also for ARQ and Sesame,
blank node construction does not bear any significant additional computational ef-
fort.
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1.6 Conclusion

Blank nodes are one of RDF’s distinguishing features. Yet they have been entirely
neglected or treated only in a limit fashion in previous approaches to RDF querying.
With SPARQLog we advance the knowledge about the combination of blank nodes
and rules (and thus RDF and rules) in three directions: (1) We show that restrictions
of RDF wrt. blank nodes occurrence can be treated in a semantics based purely on
entailment. (2) Though unrestricted combinations of recursive rules and blank nodes
in rule heads lead, unsurprisingly, to a undecidable, Turing-complete language, we
identify a large fragment of such rules that is still decidable. This fragment is strictly
larger than previous decidable languages with recursive rules and blank nodes in the
head. (3) Finally, we show that quantifier alternation does not add to the expres-
siveness or complexity of a language with ∀∃ rules and projection. The latter form
of rules is commonly found in data exchange or SPARQL rule extensions. In other
words, quantifier alternation comes for free for such languages.

Though we present the results here in the context of RDF querying, they apply to
a wide range of logic languages with horn rules extended by existential quantifica-
tion. In particular, in data exchange such languages are common but mostly limited
to ∀∃ rules.
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