
1

Four Lessons in Versatility
or How Query Languages Adapt to the Web

François Bry, Tim Furche, Benedikt Linse, Alexander Pohl,
Antonius Weinzierl, and Olga Yestekhina

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. Exposing not only human-centered information, but machine-processable
data on the Web is one of the commonalities of recent Web trends. It has enabled
a new kind of applications and businesses where the data is used in ways not fore-
seen by the data providers. Yet this exposition has fractured the Web into islands
of data, each in different Web formats: Some providers choose XML, others RDF,
again others JSON or OWL, for their data, even in similar domains. This fractur-
ing stifles innovation as application builders have to cope not only with one Web
stack (e.g., XML technology) but with several ones, each of considerable com-
plexity.
With Xcerpt we have developed a rule- and pattern based query language that
aims to give shield application builders from much of this complexity: In a single
query language XML and RDF data can be accessed, processed, combined, and
re-published. Though the need for combined access to XML and RDF data has
been recognized in previous work (including the W3C’s GRDDL), our approach
differs in four main aspects: (1) We provide a single language (rather than two
separate or embedded languages), thus minimizing the conceptual overhead of
dealing with disparate data formats. (2) Both the declarative (logic-based) and the
operational semantics are unified in that they apply for querying XML and RDF in
the same way. (3) We show that the resulting query language can be implemented
reusing traditional database technology, if desirable. Nevertheless, we also give a
unified evaluation approach based on interval labelings of graphs that is at least
as fast as existing approaches for tree-shaped XML data, yet provides linear time
and space querying also for many RDF graphs.
We believe that Web query languages are the right tool for declarative data access
in Web applications and that Xcerpt is a significant step towards a more conve-
nient, yet highly efficient data access in a “Web of Data”.

1.1 Introduction

The one undeniable trend in the development of the Web has been a move from human-
centered information to more machine-processable data. This trend is a part of most
visions for the future of the Web, may they be called “Web 2.0”, “Semantic Web”,

2 F. Bry et al.

“Web of Data”, “Linked Data”. There is a reason that this trend underlies so many
of the visions for a future Web: With machine-processable data, other agents than the
owner or publisher of data can create novel applications, e.g., by using the data in a
context never envisioned by the data owner, by presenting it in different ways or media,
or by enhancing or mixing it with other data.

Unfortunately, though machine-processable data is called for by many of these vi-
sions, they do not agree on the data format. For human-centered information, HTML
has clearly dominated the Web. For machine-processable data, Web 2.0 APIs and pub-
lishers tend to use XML, JSON, or YAML, Semantic Web publishers RDF and/or OWL.
This way, application designers are either impeded from using data published in, say,
RDF, if they are used to data in, say, XML or they have to cope with not only one
(already fairly complex) stack of Web technologies but several.

The need for a more integrated, easier access to Web data has been recognized: For
instance, the W3C has proposed a means of accessing XML data as RDF (GRDDL
[54]). Other approaches integrate existing RDF query languages into XML query lan-
guages (XSPARQL [7], [78]) or vice versa ([60], SPAT1. In this work, we present a
different answer to this problem: a single, unified language, called Xcerpt, that can
query both XML and RDF with the same ease. Previous approaches require the user
to learn (a) an XML (usually XPath or XQuery), (b) an RDF query language (usually
SPARQL), and (c) how concepts from RDF and XML are mapped to each other, if at
all. In our approach, we first develop a query language flexible enough to deal with most
Web data (in the spirit of, though with quite different focus and result than [137]). Then
we only have to teach the user how to query RDF resp. XML with that query language,
reusing as much of the data and query concepts between the two settings as possible.
Not only does this reduce the learning curve for the user considerably, it also makes it
easy to extend the approach with further Web formats such as JSON, YAML, or Topic
Maps.

We introduce Xcerpt in Sections 1.4 and 1.5 after a brief recall of the basics of the
two Web formats considered here, XML and RDF, in Section 1.2.

But defining a language for unified access to XML and RDF is just how the story
begins. For the approach to be feasible, we require two more ingredients: 1. a simple
semantics that is nevertheless versatile enough to cover the specifics of both XML and
RDF. 2. an evaluation engine that is competitive to engines specialized to XML or RDF
data only.

In Sections 1.8 to 1.11 we propose two different ways to define the (declarative)
semantics of Xcerpt: The first uses a modified form of simulation to describe which
queries match what data. It is flexible enough to deal with queries on XML and RDF
data and can be defined very concisely. We show in Section 1.9 and 1.10 how to adapt
the (well-founded) semantics of rule programs with negation to use simulation rather
than term equality/instantiation.

This gives an easy, straightforward definition of the semantics of Xcerpt. However,
the disadvantage is that required notion of simulation is not as well studied as term
equality and not supported by existing database or rule technologies. Therefore, we
show in Section 1.11 how Xcerpt can be translated into standard Datalog with nega-

1 http://www.w3.org/2007/01/SPAT/.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 3

tion and value invention (Datalog¬new) which can be evaluated by most SQL-database
engines and many rule engines. Not only do we show how to translate Xcerpt into
Datalog¬new, but we do the same for XPath, XQuery, and SPARQL, thus establishing a
uniform formal foundation for all these languages (that we exploit in Section 1.13 for
a unified evaluation engine for all these languages). Moreover, we use the translation
to prove several complexity and expressiveness features. Most importantly, we show
that full Xcerpt is unsurprisingly Turing-complete, that stratification does not limit the
expressiveness of Xcerpt, and identify a decidable fragment (weakly-recursive Xcerpt).

For Datalog¬new and thus for Xcerpt, whether on XML or RDF data, we define a
novel evaluation algorithm and indexing scheme in Section 1.13, thus turning to the
second of the two missing ingredients, the competitive evaluation engine. We show how
to extend tree labeling schemes (such as the pre/post-encoding [80]) to graph data in a
novel way: Where previous such approaches [6, 150, 48, 144] can not guarantee linear
time and space evaluation of acyclic conjunctive queries on interesting super-classes of
trees, our approach exhibits such a class: the continuous-image graphs. On this signif-
icant super-class of trees we can still maintain linear time and space evaluation. The
basic idea of the approach is a generalized interval labeling together with (most impor-
tantly) a novel join algorithm for intermediary answers represented by intervals.

Together with the results from Section 1.11, we thus obtain a surprisingly large
linear time and space fragment of Xcerpt, viz. (weakly-recursive) acyclic Xcerpt on
continuous-image graphs, a novel super-class of trees. The same also applies to, e.g.,
SPARQL.

To complete the evaluation of Xcerpt, we not only need an efficient evaluation en-
gine for Xcerpt queries, but for Xcerpt rules. Section 1.14 gives a first step towards
such a rule engine for Xcerpt. It introduces simulation unification as an extended, more
flexible form of unification that is adapted to Xcerpt’s notion of simulation discussed
above. Based on simulation unification, we show how subsumption can be exploited to
define an efficient resolution with tabling for locally stratified Xcerpt programs.

To summarize, the theme of this chapter is the investigation of how to address the
increasing number of diverse data formats being introduced on the Web. We suggest as
a solution, Xcerpt,

1. a versatile query language that allows access to both XML and RDF in the same
language, sharing concepts as much as possible (Section 1.3– 1.6). It is comple-
mented by

2. a versatile declarative semantics based on a form of simulation adapted to Web
data that is easy to understand, yet can be translated to standard database and rule
technology, as can XPath, XQuery, and SPARQL (Section 1.7– 1.11). For that se-
mantics (and thus for Xcerpt, XPath, XQuery, and SPARQL), we propose

3. a versatile evaluation algorithm that is able to provide the best-known complexity
for acyclic conjunctive queries on tree-shaped XML data, manages to maintain that
complexity for many RDF graphs, and yet can also operate on arbitrary graphs
(Section 1.13). We extend that evaluation algorithm towards a full versatile rule-
based query language for the Web like Xcerpt by illustrating how resolution with
tabling can be adapted to use

4 F. Bry et al.

4. a versatile form of subsumption based on simulation unification for determining
where previously computed answers to a sub-query can be reused for further sub-
queries (Section 1.14).

The structure of this chapter follows the four perspectives on addressing the rising
amount of Web data formats: data, query language, semantics, and evaluation. While
the parts on data and query are to some extent necessary for understanding the parts
on semantics and evaluation, the latter two are fairly independent. It is not necessary to
understand the details of the semantics for the evaluation or vice versa.

Related Work. To keep the parts fairly self-contained and to avoid overly long prelimi-
naries, we decided to address related work in each part separately.

In particular, Section 1.6.3 compares Xcerpt, in particular its features for access-
ing RDF, with SPARQL, the W3C proposal for querying RDF and a number of its
extensions. Section 1.11.6 gives a brief comparison of the challenges when translating
Xcerpt to Datalog¬new, i.e., to existing database and rule technology, compared to XPath,
XQuery or SPARQL. For the evaluation, we extensively compare our approach with ex-
isting labeling schemes for tree and graph data in Section 1.13.5. The basic principles
of the evaluation algorithm are discussed in the context of related work in Section .

As pointed out there are a number of previous approaches to integrating XML and
RDF access. These can be divided in two categories: Approaches such as GRDDL
[57] use two separate query languages to first transform data from one format in the
other and then to query only in the latter format. The advantage of this approach is
that existing language engines can be used as is. The second kind of approaches is
exemplified by XSPARQL [127] and [78]: Here one of the languages is embedded into
the other, providing an interface between the two languages (of varying sophistication).
The advantage is that we can now transfer results in both directions, the disadvantage
is that new query engines or rather involved query translations are needed2.

For both approaches there are two main shortcomings:

1. The user has to learn two different query languages that were designed entirely
separate.

2. Since the language engines remain entirely separate, these approaches first trans-
form all data (without respect to what is actually queried), then load all trans-
formed data in the second query engine, only then it is filtered by the conditions
of the queries in the target format. Thus, there is no chance for goal-driven query
evaluation and even static propagation of query conditions from queries in the tar-
get format to the transformation queries are very hard due to the starkly varying
semantics of the two languages involved.

Though Xcerpt and Xcerpt still require the use to learn some concepts specific to
XML or RDF, they are design to share concepts where possible. Furthermore, we use
a unified semantics thus allowing for full static cross-format optimization and a unified
evaluation allowing for dynamic cross-format optimization.

2 In Section 1.11.6 we illustrate a first step towards a translation approach.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 5

Neither the above approaches not Xcerpt addresses integrating also queries on
(OWL) ontologies, e.g., in the style of [?]. Though this is certainly an important is-
sue, it is out of the scope of this chapter. We believe that some of the discussed issues
apply also in that context (in particular, the treatment of blank nodes in RDF in the
semantics and evaluation of Xcerpt), but there are many more issues when considering
even conjunctive queries on ontologies that would need addressing.

1.2 Versatile Data

1.2.1 Extensible Markup Language (XML)

XML [28] is, by now, the foremost data representation format for the Web and for
semi-structured data in general. It has been adopted in a stupendous number of appli-
cation domains, ranging from document markup (XHTML, Docbook [149]) over video
annotation (MPEG 7 [109]) and music libraries (iTunes3) to preference files (Apple’s
property lists [9]), build scripts (Apache Ant4), and XSLT [94] stylesheets. XML is also
frequently adopted for serialization of (semantically) richer data representation formats
such as RDF or TopicMaps.

XML is a generic markup language for describing the structure of data. Unlike in
HTML (HyperText Markup Language), the predominant markup language on the web,
neither the tag set nor the semantics of XML are fixed. XML can thus be used to derive
markup languages by specifying tags and structural relationships.

The following presentation of the information in XML documents is oriented along
the XML Infoset [56] which describes the information content of an XML document.
The XQuery data model [66] is, for the most parts, closely aligned with this view of
XML documents.

Following the XPath and XQuery data model, we provide a tree shaped view of
XML data. This deviates from the Infoset where valid / links are resolved and
thus the data model is graph, rather than tree shaped. This view is adopted in some
XML query languages such as Xcerpt [40] and Lorel [3], but most query languages
follow XPath and XQuery and consider XML tree shaped.

XML in 500 Words The core provision of XML is a syntax for representing hierar-
chical data. Data items are called elements in XML and enclosed in start and end tags,
both carrying the same tag names or labels. <author>...</author> is an example
of such an element. In the place of ‘. . . ’, we can write other elements or character data
as children of that element. The following listing shows a small XML fragment that
illustrates elements and element nesting:

<bib xmlns:dc="http://purl.org/dc/elements/1.1/">
2 <article journal="Computer Journal" id="12">

<dc:title>...Semantic Web...</dc:title>
4 <year>2005</year>

3 http://www.apple.com/itunes/
4 http://ant.apache.org/

6 F. Bry et al.

<authors>
6 <author>

<first>John</first> <last>Doe</last> </author>
8 <author>

<first>Mary</first> <last>Smith</last> </author>
10 </authors>

</article>
12 <article journal="Web Journal">

<dc:title>...Web...</dc:title>
14 <year>2003</year>

<authors>
16 <author>

<first>Peter</first> <last>Jones</last> </author>
18 <author>

<first>Sue</first> <last>Robinson</last> </author>
20 </authors>

</article>
22 </bib>

In addition, we can observe attributes (name, value pairs associated with start tags)
that are essentially like elements but may only contain character data, no other nested
attributes or elements. Also, by definition, element order is significant, attribute order
is not. For instance

<author><last>Doe</last><first>John</first></author>

represents different information than the author element in lines 6–9, but

<article id="12" journal="Computer Journal">...</article>

represents the same element information item as lines 2–15.
Figure 1.1 gives a graphical representation of the XML document that is referenced

in preceding illustrations. When represented as a graph, an XML document without
links is a labeled tree where each node in the tree corresponds to an element and its
type. Edges connect nodes and their children, that is, elements and the elements nested
in them, elements and their content and elements and their attributes. Since the visual
distinction between the parent-child relationship can be made without edge labels and
since attributes are not addressed or receive no special treatment in the research pre-
sented in this text, edges will not be labeled in the following figures.

Elements, attributes, and character data are XML’s most common information types.
In addition, XML documents may also contain comments, processing instructions
(name-value pair with specific semantics that can be placed anywhere an element can
be placed), document level information (such as the XML or the document type dec-
larations), entities, and notations, which are essentially just other kinds of information
containers.

On top of these information types, two additional facilities relevant to the informa-
tion content of XML documents are introduced by subsequent specifications: Names-
paces [26] and Base URIs [108]. Namespaces allow partitioning of element labels used
in a document into different namespaces, identified by a URI. Thus, an element is no
longer labeled with a single label but with a triple consisting of the local name, the

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 7

Fig. 1.1 Visual representation of sample XML document

(1)

bib

(2)

article

(13)

article

(6)

author

(3)

title

(4)

year

(5)

authors

(12)

journal

(9)

author

(14)

title

(15)

year

(16)

authors

(23)

journal

(17)

author

(7)

first

(8)

last

(10)

first

(11)

last

... Semantic

Web ...

John Doe Mary Smith

2005 Computer Journal

(18)

first

(19)

last

Peter Jones

(20)

author

(21)

first

(22)

last

Sue Robinson

Web Journal...Web... 2003

namespace prefix, and the namespace URI. E.g., for the dc:title element in line 3,
the local name is title, the namespace prefix is dc, and the namespace URI (called
“name” in [56]) is http://purl.org/dc/elements/1.1/. The latter can be
derived by looking for a namespace declaration for the prefix dc. Such a declaration
is shown in line 1: xmlns:dc="http://. . . It associates the prefix dc with the given
URI in the scope of the current element, i.e., for that element and all elements contained
within unless there is another nested declaration for dc, in which case that declaration
takes precedence. Thus, we can associate with each element a set of in-scope names-
paces, i.e., of pairs namespace prefix and URI, that are valid in the scope of that element.
Base URIs [108] are used to resolve relative URIs in an XML document. They are asso-
ciated with elements using xml:base="http://. . . and, as namespaces, are inherited
to contained elements unless a nested xml:base declaration takes precedence.

The above features of XML are covered by most query languages. Additionally
some languages (most notably XQuery) also provide access to type information as-
sociated via DTD or XML Schema [65]. These features are mentioned below where
appropriate but not discussed in detail here.

1.2.2 Resource Description Framework (RDF)

As the second preeminent data format on the Semantic Web, the Resource Description
Format (RDF) [107, 100, 84] is emerging. RDF is, though much less common than
XML, a widespread choice for interchanging (meta-) data together with descriptions of
the schema and, in contrast to XML, a basic description of its semantics of that data.

Not to distract from the salient points of the discussion, we omit typed literals (and
named graphs) from the following discussion.

8 F. Bry et al.

RDF in 500 Words RDF graphs contain simple statements about resources (which,
in other contexts, are be called “entities”, “objects”, etc., i.e., elements of the domain
that may partake in relations). Statements are triples consisting of subject, predicate,
and object, all of which are resources. If we want to refer to a specific resource, we
use (supposedly globally unique) URIs, if we want to refer to a resource for which we
know that it exists and maybe some of its properties, we use blank nodes which play the
role of existential quantifiers in logic. However, blank nodes may not occur in predicate
position. Finally, for convenience, we can directly use literal values as objects.

RDF may be serialized in many formats (for a recent survey see [20]), such as
RDF/XML [15], an XML dialect for representing RDF, or Turtle [13] which is also
used in SPARQL. The following Turtle data represents roughly the same data as the
XML document discussed in the previous section:

@prefix dc: <http://purl.org/dc/elements/1.1/> .
2 @prefix dct: <http://purl.org/dc/terms/> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

4 @prefix bib: <http://www.edutella.org/bibtex#> .
@prefix ex: <http://example.org/libraries/#> .

6 ex:smith2005 a bib:Article ; dc:title "...Semantic Web..." ;
dc:year "2005" ;

8 ex:isPartOf [a bib:Journal ;
bib:number "11"; bib:name "Computer Journal"] ;

10 bib:author [a rdf:Bag ;
rdf:_1 [a bib:Person ;

12 bib:last "Smith" ; bib:first "Mary"] ;
rdf:_2 [a bib:Person ;

14 bib:first "John" ; bib:last "Doe"]] .

Following the definition of namespace prefixes used in the remainder of the Turtle
document (omitting common RDF namespaces), each line contains one or more state-
ments separated by colon or semi-colon. If separated by semi-colon, the subject of the
previous statement is carried over. E.g., line 1 reads as ex:smith2005 is a (has rdf:type)
bib:Article and has dc:title “. . . Semantic Web. . . ”. Lines 3–4 show a blank node: the
article is part of some entity which we can not (or don’t care to) identify by a unique
URI but for which we give some properties: it is a bib:Journal, has bib:number “11”,
and bib:name “Computer Journal”.

Figure 1.2 shows a visual representation of the above RDF data, where we distin-
guish literals (in square boxes) and classes, i.e., resources that can be used for classify-
ing other resources, and thus can be the object of an rdf:type statement (in square
boxes with rounded edges) from all other resources (in plain ellipses).

What sets RDF apart from XML and justifies its role as the data format for the
Semantic Web is that RDF data comes with attached meaning, that allows us to infer
additional knowledge beyond what is stated explicitly. Query languages are usually
expected to behave consistent w.r.t. some form of RDF entailment (e.g., simple, full, or
RDFS entailment), i.e., graphs equivalent under the respective entailment yield the same
answers. Simply stated, rather than just consulting the actual RDF data for answering
a query, we might also need to consider additional, inferred triples depending on the
form of entailment chosen. E.g., when querying for resources of type bib:Publication

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 9

Fig. 1.2 Visual representation of sample RDF graph

smith2005 Article

Computer
Journal11

Doe

authorisPartOf
2005

_1

_2

John

Mary

Smith

first

last

first

last

Bag

type
namenumber

...Semantic
Web...

title

Person

Person

year

Journal

type

type

type

type

Class Literal Other
Resource

Legend

we might also want to return bib:Articles if we have the additional information that
bib:Article is a sub-class of bib:Publication. SPARQL, e.g., is designed to be agnostic
of the particular entailment used: it can be used to query RDF data under any of the
above mentioned entailment forms.

In the following, we assume familiarity with the notion of RDF entailment, inter-
pretation, model, as well as the RDFS semantics from [84].

1.3 Versatile Queries

With the rise of a plethora of different semi-structured Web formats, versatility [32] has
become the central requirement for web query languages. Besides the well-known and
ubiquitous formats HTML, XML and RDF, there are quite a lot of less familiar formats
such as RDFa [5, 4] for embedding RDF information in HTML pages, the microformats
[97] geo, hCard, hCalendar, hResume, etc., the ISO-standard Topic Maps [73, 122].
We call a web query language format versatile, if it can handle, merge or transform
data in different formats within the same query program. The need for integrating data
from different formats has been acknowledged by partial solutions such as GRDDL
[57, 148, 71], hGRDDL [4] and XSPARQL [7]. All these solutions have in common
that they try to solve the problem of web data integration by applying a mix of already

10 F. Bry et al.

established technologies such as XSLT transformations, DOM manipulations, and a
combination of XML and RDF query languages such as XQuery and SPARQL. It is thus
unsurprising that understanding these solutions requires a large background knowledge
of the employed technologies, and that the methods are much more complicated than
they could be if a format-versatile language particularly geared at integrating data from
different web formats was employed.

Besides format versatility, we distinguish two other kinds of versatility: schema
and representational versatility. A web query language is called schema versatile, if
it can handle and intermediate between different schemata (i.e. schema heterogeneity)
on the Web. Usage of different schemata for representing similar data is very common
and well-studied in the field of data integration [145, 105]. Since the Web is being en-
hanced with structured and semantically rich data, data integration on the Web [101]
has also received considerable attention and has spurred the growth of ontology align-
ment [116, 62, 63] research. Schema heterogeneity on the Web is encountered whenever
two ontologies describe the same kind of information on the Web, but employ different
languages for this end.

Finally, representational heterogeneity is encountered in XML dialects such as RD-
F/XML, where the same information is represented differently due to the use of syn-
tactic sugar notations – e.g. for rdf:type arcs or for the concise notation of literals,
URIs or RDF containers. Moreover, representational heterogeneity is present in any
XML dialect that does not enforce any order of the information that it provides, since
for serialization an arbitrary order must be chosen. We call a language representational
versatile, if it can query data agnostic of the representational variant chosen.

In this and the following sections, we show how the design of Xcerpt query terms,
construct terms and rules has lead to a versatile language with respect to all three is-
sues – format, schema and representation. This section starts out by looking at Xcerpt
from an abstract point of view, its relationship to logic programming and the interface
defined by Xcerpt terms. In Section 1.4, we introduce XML querying, construction and
transformation at the example of harvesting search results and microformat information
of personal profile pages of a social network. In Section 1.5, Xcerpt’s RDF querying
capabilities are presented with special emphasis on treating RDF specifies such as con-
tainers, collections and reifications. Finally, in Section 1.6, we present a use-case on
combining microformat information harvested with Xcerpt and RDF data queried
with Xcerpt, thus combining versatile querying in XML and RDF.

Xcerpt Terms from an Abstract Point of View: Simulation, Substitutions, and Applica-
tion of Substitution Sets. Xcerpt is a rule and pattern based language inspired by logic
programming, but with significantly richer querying capabilities that are necessitated
by the semi-structured nature of data on the Web.

In contrast to Prolog unification, Xcerpt uses a more involved kind of unification
called simulation unification5 to extract bindings of logical variables from Web data.

While Prolog rules consist of possibly non-ground terms in the head and the body
of a rule, Xcerpt distinguishes between construct terms and query terms to be used in
the heads and the bodies of rules, respectively. This differentiation is necessary because

5 The term simulation is derived from graph simulation as defined in [1].

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 11

the semi-structured nature of data on the Web requires expressive query constructs –
such as descendant, subterm negation, optionality – only in the query part of a rule (i.e.
in the query terms), and constructs for reassembling the data – such as grouping – only
in the construction part (i.e. the construct terms). Additionally, Xcerpt offers data terms
as an abstraction of XML (and thus also HTML) and RDF data. Xcerpt terms fulfill the
following three properties: (i) any data term is also a query term, (ii) any data term is
also a construct term, and (iii) the intersection between the set of construct terms and
query terms is exactly the set of data terms, where some subterms may be substituted
by variables.

Also Prolog differentiates between terms and ground terms and facts. In Prolog it
holds that any ground term is a fact (i.e. data). In Xcerpt, however, a term may very well
be ground, but still be only an incomplete description of data – i.e. a query. Xcerpt terms
are formally – but, for the sake of brevity, not in their entirety – defined in Section 1.8.

The differences between Prolog Unification and Simulation unification can be
briefly summarized as follows:

– Non-Symmetry of simulation unification. Whereas Prolog unification is a symmetric
operation on two generally non-ground terms, Xcerpt simulation unfication is a
non-symmetric relation having a query term as the first argument, and a construct
term as the second.

– Different types of variables. While Prolog Unification only allows for one single
type of variable that will bind to any type of term, Xcerpt differentiates between
different types of variables. Obviously the types of variables also differ with the
data format that is being queried (XML, RDF, Topic Maps, Microformats, etc).
When querying XML data, Xcerpt distinguishes between term variables, that bind
to an entire XML fragment and label variables, that bind to a qualified or local
name only.6

– Notations for querying incomplete data. Due to the almost schemaless nature of
data on the Web, Xcerpt terms must be able to incompletely specify or describe
the data that is being searched for. These notations include optionality of subterms,
subterms at arbitrary depth and negated subterms and are introduced in detail in
Section 1.4.

– Substitution sets instead of substitutions. While in Prolog one can find a single most
general unifier for two terms t1 and t2 up to variable renaming, this is not true for
Xcerpt. Simulation unification between two Xcerpt terms xt1 and xt2 results in a
set of substitutions (that may very well contain only a single substitution or none at
all), which is due to the richer kind of simulation and the deeper structure of data
found on the Web. Imagine, for example, a biological database in XML format on
the Web that contains data about enzymes and chemical reactions they catalyze.
Although the database may be contained in a single XML document, the query for
all pairs of enzymes and catalyzed reactions should, obviously, return more than a
single tuple.

6 Variables for term identifiers and for XML attributes are not considered in this survey for the
sake of brevity.

12 F. Bry et al.

Feature unification [93, 92], i.e. unification between feature terms, has been investi-
gated in linguistics to aid automatic translation of natural language texts. Feature terms
are used as an abstract representation of text, and are similar to semi-structured expres-
sions as far as they can be arbitrarily nested as XML documents, may contain nodes that
are entirely represented by their properties (just as RDF blank nodes), and in that the
order of subterms may or may not be relevant. In contrast to simulation unification, fea-
ture unification is symmetric, and feature terms do not provide constructs for specifying
incompleteness in depth or different types of variables. Finally, feature unification does
not return sets of variable bindings but serves to translate text from one natural language
to another.

Matching or – in Xcerpt terminology – simulating queries with data is only one of
two steps in the transformation of semi-structured data. Just as Prolog, but more conse-
quently (because of aggregation), Xcerpt clearly separates extraction of data (the data is
bound to variables within rule bodies) and construction of new data (reassembling the
data by application of substitution sets to rule heads).7 This separation contrasts with
XML query languages such as XQuery and XSLT, in which querying and construc-
tion is intertwined. Construction of new data with rule based languages is achieved by
applying a substitution to a term. As mentioned above, however, Xcerpt does not deal
with ordinary substitutions, but with substitution sets, and moreover, it differentiates
between different kinds of terms. Therefore, we must be more specific: Construction
of new data in Xcerpt is achieved by applying sets of substitutions to construct terms.
The step from single substitutions to substitution sets allows the introduction of group-
ing constructs and aggregations to rule-based web querying. In the absence of grouping
and aggregation constructs, application of substitution sets does not result in a single
Xcerpt term, but in a set of terms (which may very well be unary or even empty).

The above discussion of Xcerpt terms can be summarized by the following interface
(written as a functional type signature) of an Xcerpt term:

simulates :: QueryTerm→ConstructTerm→ Bool(1.1)
simulation uni f y :: QueryTerm→ConstructTerm→ S ubstitutionS et(1.2)

apply substitution set :: S ubstitutionS et→ConstructTerm→ [DataTerm](1.3)

The function simulates returns true for a query term q and a construct term t if and
only if the substitution set returned for simulation uni f y(q, t) is non-empty. In addition
to three above mentioned functions, a function which decides the subsumption relation-
ship between two Xcerpt query terms is required if an optimized tabling algorithm for
backward chaining evaluation of a multi-rule program is to be used. For more informa-
tion about the subsumption relationship between Xcerpt query terms see Section 1.14.

In Section 1.4, we informally introduce the XML processing capabilities of Xcerpt,
Xcerpt terms, Xcerpt simulation unification and the application of substitution
sets to Xcerpt terms. In Section 1.5 we do the same for Xcerpt.

7 Queries against a single Prolog rule, such as the append rule, may indeed be used to achieve
both: concatenation of lists and finding components of a list. Still, querying is performed by
matching rule bodies with terms, and data construction by filling in bindings for variables in
rule heads.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 13

1.4 Versatile Queries I:
XML—Examples and Patterns

A large number of query languages for XML data have been proposed in the past. They
range from navigational languages such as XSLT [95] XQuery [141], their common
subset XPath [19], and Quilt [47] (the predecessor of XQuery) over pattern based lan-
guages such as XML-QL [58], UnQL [41] and Xcerpt to visual query languages such
as visXcerpt [17], XQBE [12] and XML-GL [46]. For a comprehensive survey over
XML query languages, their expressive power and language constructs, see [14], for a
comparison of Lorel, XML-QL, XML-GL, XSL and XQL see [23].

In this section, we introduce the XML processing capabilities of Xcerpt, taking Web
search results, personal profile pages from the LinkedIn social network and FOAF doc-
uments as a running example. With this data, the following task will be accomplished:

– We will extract links to LinkedIn profile pages from search results of the Google
search engine. These search results are wrapped within deeply nested HTML which
primarily serve presentation purposes, and snippets of text extracted from the in-
dexed pages. By matching among others class and id attributes, only the relevant
links will be extracted.

– From the profile pages relevant data of the curriculum vitae of the persons is
identified and extracted by exploiting the microformat vocabularies hresume,
hcalendar and hcard which are integrated into the HTML pages for semantic
enrichment of the textual content.

– Finally, FOAF documents are queried to find additional information not present
in the LinkedIn profile. Since FOAF is an RDF format that may be serialized in
RDF/XML, we will discuss the syntactic XML structure of these documents and
their correspondence to Xcerpt query terms in this section, but use Xcerpt to
query their contents in Section 1.5.

1.4.1 Xcerpt Data and Rules.

This section introduces Xcerpt data terms, that abstract from XML documents, ig-
noring XML specifities such as processing instructions, comments, entities and DTDs.
Xcerpt terms are introduced to allow a more concise representation of XML data that
can be extended to form queries and construct patterns to be used in rules.

Rules are written in a similar fashion to Datalog or Prolog rules, and have the fol-
lowing general form:

CONSTRUCT <CONSTRUCTTERM> FROM <QUERY> END

Xcerpt queries are enclosed between the FROM and END keywords and are matched
– in Xcerpt terminology simulated – with data. Due to Xcerpt’s answer closedness
(see Definition 1 for details), data may also be used as queries. To see how XML is
represented as Xcerpt data, consider the FOAF document in Listing 1.1 and the corre-
sponding Xcerpt data term in Listing 1.2.

FOAF is an acronym for “Friend-Of-A-Friend”, which is a vocabulary for speci-
fying relationships among people, their personal information such as adresses, educa-
tion and contact information. FOAF is primarily an RDF vocabulary, and is therefore

14 F. Bry et al.

semantically richer than plain XML data, but most FOAF documents are serialized
in RDF/XML. Therefore, FOAF documents serialized in RDF/XML can be queried
or transformed syntactically (on the XML level) or semantically (on the RDF level).
While this section deals with syntactic transformations of Web data, semantic queries,
transformations and reasoning using Xcerpt are discussed in Section 1.5.

<rdf:RDF xmlns:rdf="http://www.w3 ... rdf-syntax-ns#"
2 xmlns:rdfs="http://www.w3 ... rdf-schema#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"
4 xml:base="http://www.example.com/">

<foaf:PersonalProfileDocument
rdf:about="descriptions/Bill.foaf">

6 <foaf:maker rdf:resource="#me"/>
<foaf:primaryTopic rdf:resource="#me"/>

8 </foaf:PersonalProfileDocument>
<foaf:Person rdf:ID="me">

10 <foaf:givenname>Bill</foaf:givenname>
<foaf:mbox_sha1sum>5e22c ... 35b9</foaf:mbox_sha1sum>

12 <foaf:depiction rdf:ID="images/bill.png"/>
<foaf:knows>

14 <foaf:Person>
<foaf:name>Hillary</foaf:name>

16 <foaf:mbox_sha1sum>1228 ... 2f5</foaf:mbox_sha1sum>
<rdfs:seeAlso rdf:ID="descriptions/Hillary.foaf"/>

18 </foaf:Person>
</foaf:knows>

20 </foaf:Person>
</rdf:RDF>

Listing 1.1. A friend-of-a-friend document

Listings 1.1 and 1.2 exhibit an overwhelming similarity. Therefore, we will only
quickly discuss the points in which the data term representation deviates from the XML
serialization. While attributes are given as name value pairs inside of opening tags
in an XML document, they are given in round braces following a qualified name in
Xcerpt. Moreover, the beginning and end of an element are specified by opening
and closing brackets (or braces). Namespace prefixes are declared outside of the data
terms, which disallows redefinition of namespace prefixes. Nevertheless all XML doc-
uments conforming to the Namespace recommendation [25] can also be represented as
an Xcerpt data term. Finally, text nodes are enclosed within quotation marks in order
to be differentiated from empty element nodes.

1 declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";
declare namespace rdfs "http://www.w3 ... rdf-schema#";

3 declare namespace foaf "http://xmlns.com/foaf/0.1/"
declare xml-base "http://www.example.com/"

5

rdf:RDF [
7 foaf:PersonalProfileDocument

(rdf:about="descriptions/Bill.foaf") [

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 15

foaf:maker (rdf:resource="#me"),
9 foaf:primaryTopic (rdf:resource="#me")],

foaf:Person (rdf:ID="#me") [
11 foaf:givenname ["Bill"],

foaf:mbox_sha1sum ["5e22c ... 35b9"],
13 foaf:depiction (rdf:ID="images/bill.png"),

foaf:knows [
15 foaf:Person [

foaf:name ["Hillary"],
17 foaf:mbox_sha1sum ["1228 ... 2f5"]

rdfs:seeAlso (rdf:ID="descriptions/Hillary.foaf")]]]]

Listing 1.2. A friend-of-a-friend-document written as an Xcerpt data term

1.4.2 Xcerpt Queries: Pattern-based Filtering of Search Results

Consider the task of finding people and their curriculum vitae who study or have studied
at the university of Munich. Searching for the term “LinkedIn” and “Munich” with
a decent search engine returns among other search results links to pages of personal
profiles of persons living in that city. The following Xcerpt query can be used to filter
out other links in the search result page of Google.8

html{{
2 desc div((id="res"))[[

h2((class="hd")){ "Search Results" },
4 desc h3((class="r")){{

or(
6 a((href=var Link as /.*linkedin\.com\/in\//)){{ }},

a((href=var Link as /.*linkedin\.com\/pub\//)){{ }}
8)

]]
10 }}
}}

The following features of Xcerpt must be explained to understand the above query:
(in)completeness in breadth for elements and attributes, incompleteness in depth, logi-
cal variables, regular expressions and query term disjunction.

– Curly braces are used to specify subterm relationship between an element and an-
other element or a text node. The query h2{ "Search Results"} finds h2 el-
ements with an enclosed text node with text "Search results". Double curly
braces signify that more subterms may be present than are specified. If more than
one subterm is specified within double curly braces, they must be mapped in an in-
jective manner, i.e. they may not match with the same subterm of the data. This in-
jectivity requirement can be avoided by using triple curly braces {{{ }}}. Square

8 We make use of the fact that all LinkedIn profile pages start either with http://www.
linkedin.com/pub/ or http://www.linkedin.com/in/.

16 F. Bry et al.

parentheses may be used instead of curly braces, if the order of the subterms ap-
pearing in the query is relevant. In the presence of zero or one subterm only, using
square brackets or curly braces has the same semantics. A query that uses double or
triple braces or brackets is termed incomplete in breadth, a query with single braces
or brackets only is termed complete in breadth.

– XML Attributes and values are given in round parentheses directly following ele-
ment names. Attribute names are followed by an “=” sign and by an attribute value
in quotation marks. Double parentheses may be used to state that there may be more
attributes present in the data than specified in the query. Since XML attributes are
always considered to be unordered, there is no way of expressing an ordered query
on attributes in Xcerpt. In case of double parentheses, the attributes are said to be
specified incompletely in breadth.

– The desc keyword has the same semantics as the XPath descendant axis: The sub-
term following the desc may either be a direct child of the surrounding term or
nested at arbitrary depth within one of the children. A term using the desc keyword
is termed incomplete in depth, the other terms are said to be completely specified in
depth. As the example above shows, incompleteness significantly eases query au-
thoring, since requires only a very basic knowledge about the structure underlying
the queried data.

– Logical variables are used to extract information from an HTML or XML docu-
ment. In Xcerpt terms, variables may bind either to entire XML elements, in
which case they are called term variables, to the labels of elements only (label
variables), to entire attributes (attribute variables) or to the values of attributes
only(label variables). Variables may additionally feature a variable restriction ini-
tiated with the as keyword. Variable restrictions serve to lay a restriction on the
possible bindings of variables.

– Regular expressions are delimited by the sign ’/’ and can be used at the place of
labels to restrict the set of XML names that are matched by an Xcerpt query
term. The query term /ab*/, for example, will match with the labels a, ab, abb,
etc. only.

– Queries may be composed using the boolean connectives and, or, and not which
have the same intuitive semantics as in logic.

1.4.3 Mining Semantic data from Microformats embedded in personal profiles.

Let us now turn to the second task of our use case. Having identified relevant URIs
from the results of a search engine query, we now exploit microformats as a semantic
enrichment for HTML pages to gather additional knowledge from web pages.

LinkedIn uses the microformats hcalendar, hresume, hcard, hAtom, and XFN to se-
mantically enrich the contents of their pages. Unfortunately, the use of microformats
has not been standardized, but evolves over time. Moreover, there is no underlying for-
mal data model for microformat data as in RDF or XML. Microformats primarily use
the XML attribute names class and rel for semantic information. In contrast to RDF,
microformats do not use namespaces or globally unique identifiers, which makes it hard
or sometimes even impossible to find out the exact semantics of an HTML fragment en-
riched by microformats. For example, both the hresume and the hcalendar specifications

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 17

make use of a tag called summary for specifying either the summary of one’s experience
gained during a professional career or the summary of an event description.9 With this
deficiency in mind, the importance of query languages that transform semantic infor-
mation embedded in HTML pages into a more precise RDF dialect becomes even more
obvious. The fragment of a personal profile in Listing 1.3 pictures the use of microfor-
mats on LinkedIn and serves as further example data in this section.10 One can observe
that finding the semantic information within the HTML markup requires knowledge
about the microformat standards, and that using the class attribute both for identifying
elements to be formatted by stylesheets and for microformat predicate names is against
the principle of separation of concerns coined by Dijkstra in [59].
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US"

lang="en-US">
2 <head><title>John Doe - LinkedIn</title></head>
<body>

4 <div class="hresume">
<div class="profile-header">

6 <div class="masthead vcard contact portrait">
<h1 id="name">

8
John

10 Doe

12 </h1>
</div>

14 </div>
<div id="experience">

16 <h2>John Doe Experience</h2>
<ul class="vcalendar">

18 <li class="experience vevent vcard">
<h3 class="title">Research assistant</h3>

20 <h4 class="summary">
University of Munich

22 </h4>
<p class="organization-details">(Research industry)</p>

24 <p class="period">
<abbr class="dtstart" title="2000-02-01">February

2000</abbr> until
26 <abbr class="dtstamp" title="2008-11-24">Present</abbr>

<abbr class="duration" title="P8Y10M">(8 years 10
months)</abbr>

28 </p>

30
</div>

32 </body>
</html>

Listing 1.3. A simplified personal profile page with embedded semantic information

9 Consult the descriptions of these microformats available online http://microformats.
org/wiki/hresume and http://microformats.org/wiki/hcalendar for de-
tails.

10 The majority of the HTML markup serving presentation purposes and also most of the irrele-
vant content has been stripped out to shorten the presentation.

18 F. Bry et al.

The following Xcerpt query extracts the first and last name of a Person, if she has
some experience as a research assistant in some organization in Munich. Aside from
that, the query extracts the duration of the working relationship between the person and
the organization if present. Unlike other query subterms, the relevant subterm for the
duration is marked optional, which means that the whole query is still successfull, if the
optional subquery fails to match. Optional matching of subterms is only suitable if the
subterm contains variables, and has also been proposed for SPARQL and other query
languages. In contrast to SPARQL, however, the order of optional subterms within a
query does not have any effect on the query result – see [69] for a more detailed discus-
sion of this issue.

Listing 1.3 makes use of abbreviations for displaying information about the start,
end and duration of an event. The actual date or duration is hidden within an XML
attribute value that is meant for computational processing. 11

1 html{{
body{{

3 desc{{
desc /.*/((class="given-name")){ var FirstName },

5 desc /.*/((class="family-name")){ var LastName }
}},

7 desc /.*/((class=/.*experience.*/")){{
/.*/((class="title")){ "Research assistant" },

9 /.*/((class="summary")){ /.*Munich.*/ },
optional /.*/((class="period")){{

11 /.*/((class="duration" title=var Duration)){{ }}
}}

13 }
}}

15 }}

Listing 1.4. Finding research assistants from some organization in Munich

Listing 1.4 highlights the pecularities of matching HTML document with embedded
microformat information. While element names have almost no relevance, the values
of the class attributes is of primary importance. When querying plain HTML data, or
XML dialects such as XMLSchema or DocBook, however, the role of the attributes
will be less important, but element names will occur more often in the query. Another
issue in extracting microformat information from documents is that the values of class
attributes are often space separated lists of microformat predicate names such as vcard
contact portrait. Up until now, Xcerpt has no specialized means for accessing

these atomic strings in the attribute values, which results in excessive use of regular
expressions. Therefore, it may be beneficial to invent a domain specific language or
at least a class of query patterns that are specifically suited for querying microformat
information and which would allow a less verbose notation of the query in Listing 1.4.

11 This convention was proposed by Tantek Çelik on his blog (http://tantek.com/log/
2005/01.html\#d26t0100) since humans prefer dates in a natural language description
over a formal and concise notation, and may also deduce some information from the context.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 19

In the following Section, we introduce the class of Xcerpt query terms, which are
geared at native and concise RDF querying.

1.5 Versatile Queries II:
RDF—Examples and Patterns

In this section, the RDF processing capabilities of Xcerpt – united under the term
Xcerpt – such as data, query and construct terms particularly geared towards RDF
are introduced by example. This section is structured in four parts. In Section 1.5.1
Xcerpt data terms as a convenient way for representing RDF data are introduced. In
Sections 1.5.2 and 1.5.3, Xcerpt query and construct terms are introduced as syntac-
tic extensions to data terms. Section 1.6.3 compares Xcerpt to SPARQL, which is by
far the most prominent RDF query language today.

1.5.1 Representation of RDF Graphs as Xcerpt Data Terms

Many serializations for RDF Data have been proposed (RDF/XML, Notation3, Turtle,
NTriples, etc.), with their inventors pursuing a set of partially competing goals: On the
one hand, (i) RDF serializations are supposed to be as short as possible, on the other
hand, (ii) an optimal serialization should have a canonical and unique representation for
each RDF graph – put more formally, there should be an isomorphism between the set
of RDF graphs and the set of RDF graph serializations. Moreover, RDF serializations
should be (iii) interchangeable between software systems on the Web, and at the same
time (iv) easy to author and read by humans.

RDF/XML was proposed by the W3C with the first and the third aim in mind.
Due to the encoding of RDF in XML, RDF/XML is easily exchanged over the Web,
and standard XML tools, such as XPath, XQuery, XSLT processors and XML Schema
validators can be used to process this serialization. Furthermore, the RDF/XML syntax
allows for a plethora of syntactic sugar notations that significantly reduce the verbosity
of an XML encoding of data. Unfortunately, RDF/XML does not perform well in the
second and fourth discipline, i.e. it is not canonical, and it is not easy to read and write
by humans. Due the availability of the syntactic sugar notations, there are many different
possibilities for encoding the same RDF graph, which makes parsing XML/RDF into
a set of triples a major challenge, and also requires more background knowledge about
the serialization format by the user than other serializations do.

Notation3 was also proposed by the W3C with the first and fourth reason in mind.
Due to its non-XML serialization format and some short hand notations, it is easier
to read and write for human users, and is also quite dense in comparison with other
serialization formats. Notation3 does not perform well, however, taking only the second
and third end into account.

Turtle being a subset of Notation3, and NTriples being a minimal subset of Turtle
(and thus also of Notation3), NTriples does not provide any short hand notations and is
thus significantly more verbose and redundant than Notation3. Still, it is quite readable

20 F. Bry et al.

for human users and can be easily read into or serialized from a relational database con-
taining only one single relation for all triples in an RDF graph12. Due to its simplicity,
NTriples comes pretty close to fulfilling the second aim: An RDF graph being a set of
triples, its possible NTriples serializations only differ in the order of the triples and in
the naming of the blank nodes.

With Xcerpt data terms, we introduce yet another format for serializing RDF
graphs. Besides the common goals stated above, Xcerpt data terms were invented
with three other goals in mind: (a) compatibility with Xcerpt data terms, (b) ex-
tensibility to query terms involving variables and incompleteness constructs13, and (c)
support for RDF specificities such as containers and collections14.

Consider the RDF graph displayed as an XML/RDF document in Listing 1.1 and as
an Xcerpt data term in Listing 1.2. Its representation as an Xcerpt data term is as
follows:

declare namespace rdf "http://www.w3 ... rdf-syntax-ns#";
2 declare namespace rdfs "http://www.w3 ... rdf-schema#";
declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 declare namespace ex "http://www.example.org/"

6 ex:descriptions/Bill.foaf {
rdf:type → foaf:PersonalProfileDocument,

8 foaf:maker → ex:#me,
foaf:primaryTopic → ex:#me {

10 rdf:type → foaf:Person,
foaf:givenname → "Bill",

12 foaf:mbox_sha1sum → "5e22c ... 35b9",
foaf:depiction → base:images/bill.png,

14 foaf:knows {
_:SomePerson {

16 rdf:type → foaf:Person,
foaf:name → "Hillary",

18 foaf:mbox_sha1sum "1228 ... 2f5"
rdfs:seeAlso → base:descriptions/Hillary.foaf

20 } } } }

Listing 1.5. A friend-of-a-friend-document written as an Xcerpt data term

As another example consider Figure 6 from the RDF Primer [106]. Its representation
as an Xcerpt term is as follows:

declare namespace exterms "http://www.example.org/terms/"
2 declare namespace exstaff "http://www.example.org/staffid/"

4 exstaff:85740 {
exterms:address → _:A {

6 !http://www.example.org/terms/city → "Bedford",

12 This is a common schema for RDF stores
13 any Xcerpt data term is per se also an Xcerpt query
14 This last point has already been partially addressed by XML/RDF

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 21

exterms:street → "1501 Grant Avenue",
8 exterms:state → "Massachusetts",

exterms:postalCode → "01730"
10 }
}

Listing 1.6. Example from the W3C RDF Primer in Xcerpt notation

Similar to RDF/XML, Notation3, Turtle and SPARQL, Xcerpt data terms can be
abbreviated using namespace prefixes in qualified names. Full URIs are distinguished
from qualified names by prefixing an exclamation mark, blank nodes by the prefix _:,
and literals by quotation marks.

In the RDF graph above, multiple statements have the blank node _:A as their com-
mon subject, which is factored out in the Xcerpt serialization. In many cases RDF
statements do not only share the subject, but also the predicate, in which case also the
predicate can be factored out:

declare namespace ex "http://www.example.org/"
2 declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 ex:anna { foaf:knows → (ex:bob, ex:chuck) },

Xcerpt also supports the factorization of properties only, objects only, predicate
and object, subject and object, and of all three elements – subject, predicate and object,
in which case there will be one Xcerpt term for each RDF triple. Factoring out the
predicate only could be used, for example, to represent a clique of friends, in which
every member knows every other member and herself:

(ex:anna, ex:bob, ex:chuck) {
2 foaf:knows → (ex:anna, ex:bob, ex:chuck) },

The RDF graph in Listing 1.6 has only a single node without incoming edges, and
therefore the choice of the root of the Xcerpt term is trivial. RDF graphs may, how-
ever, have multiple nodes without incoming edges or none at all, or may even be entirely
disconnected. In the case of no nodes without incoming edges, one can arbitrarily pick
a root node for the Xcerpt term representation, but in the case of multiple nodes with-
out incoming edges, and in the case of a disconnected RDF graph, the graph cannot be
serialized as a single Xcerpt term, but only as a conjunction of terms. Therefore, the
keyword RDFGRAPH is introduced:

RDFGRAPH {
2 ex:anna { foaf:knows → ex:bob },

ex:chuck { foaf:knows → ex:bob }
4 }

RDF Schema is a specification that “describes how to use RDF to describe RDF
vocabularies” [112]. It therefore provides a set of URIs, with a semantics defined by
RDFS entailment rules, and which are in popular use for defining new RDF ontolo-
gies. Xcerpt provides shorthand notations for the most common ones among them:
rdf:type, rdfs:range, rdfs:domain, rdf:Property and rdfs:Resource.

ex:name { is [ex:Person -> ex:Name] }

22 F. Bry et al.

The Xcerpt term above is a shorthand for the following Xcerpt term:

1 ex:name {
rdf:type → rdf:Property,

3 rdfs:domain → eg:Person,
rdfs:range → eg:Name

5 }

If the domain and/or the range of a predicate shall be left unrestricted, then the
restricting classes can be simply omitted as in the Xcerpt term eg:name{ is

[eg:Person ->] }. In Xcerpt this expands to the following term:15

ex:name {
2 rdf:type → rdf:Property,

rdfs:domain → eg:Person,
4 }

Besides the RDFS vocabulary, RDF distinguishes a set of URIs for expressing reifi-
cation of RDF statements and containers and collections of Resources in RDF bags,
sequences, alternatives or lists. Xcerpt provides syntactic sugar notations both for
reifications on the one hand and RDF containers and collections on the other hand.
Consider the following Xcerpt term:

ex:bob { ex:believes →
2 _:Statement1 { < ex:anna{ foaf:knows → ex:bob } >
}

The Xcerpt term enclosed in angle brackets is a reified statement, and thus the
entire term is equivalent to the following, significantly more verbose one:

1 ex:bob { ex:believes →
_:Statement1 {

3 rdf:type → rdf:Statement,
rdf:subject → ex:anna,

5 rdf:predicate → foaf:knows,
rdf:object → eg:tim

7 }
}

Whereas bags, sequences and alternatives are termed as RDF containers, and are
considered to be open (i.e. there may be other elements in the container, which are not
specified in the present RDF graph), RDF collections (i.e. RDF lists) are considered to
be completely specified. However, this intuitive semantics is in no way reflected within
the RDF/S model theory. When using only Xcerpt shorthand notations for represent-
ing RDF graphs featuring RDF containers, collections or reification, one can be sure to
respect this intuitive semantics. Xcerpt provides the reserved words bagOf, seqOf,
altOf and listOf to reduce the verbosity serializing RDF containers and collections. To
represent a research group, one might chose the following Xcerpt term, which would
expand to four triples.
15 Note that under the RDFS entailment rules, also the triple ex:name rdfs:range-->
rdf:Resource would be implied. Xcerpt, however, does not enforce the RDFS seman-
tics, since RDF/S entailment rules can be easily encoded in Xcerpt itself.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 23

_:Group1 { bagOf{ eg:anna, eg:bob, eg:chuck } }

Table 1.1. Syntax of Xcerpt data terms

term = node | node ’{’ arc (’,’ arc)* ’}’ | reification
node = blank | uri | literal | qname
arc = uri ’→’ term | container | collection
blank = attvalueW3C
literal = ’"’ char* ’"’ | ”’” char* ”’”
uri = ’!’ uriW3C
qname = qnameW3C
collection = bag | sequence | alternative
container = ’listOf’ ’{ }’ | ’listOf’ ’{’ term (’,’ term)* ’}’
bag = ’bagOf’ ’{ }’ | ’bagOf’ ’{’ term (’,’ term)* ’}’
sequence = ’seqOf’ ’{ }’ | ’seqOf’ ’{’ term (’,’ term)* ’}’
alternative = ’altOf’ ’{ }’ | ’altOf’ ’{’ term (’,’ term)* ’}’
reification = ’<’ term ’>’

1.5.2 Xcerpt Query Terms

Just as in Xcerpt, Xcerpt data terms are augmented with constructs for speci-
fying incompleteness to yield Xcerpt query terms. Such constructs include the use
of logical variables, subterm negation, subterm optionality, incompleteness in breadth
and qualified descendant. While originally invented for XML processing, these con-
structs are also beneficial for querying RDF graphs as exemplified in Example 1.7. The
query extracts variable bindings for all Persons and their nick names within an RDF
graph, who know some Person with nick name ’Bill’, who in case do not know any
other Person named ’Hillary’. As in Xcerpt, the optional keyword is used to bind
the nick name to the variable var Nick whenever possible, but does not cause the
query to fail if the nick name is not present. Also the semantics of double curly braces
and the without keyword is analogous to Xcerpt. In Listing 1.7, the scope of the
without and optional keyword is explicitly given by round parentheses. The scope
of a without or optional does not have to be the entire subterm following the key-
word, but may also be restricted to the edge only. Table 1.2 gives an intuition of the exact
semantics of without with varying scopes by providing example data that does or does
not simulate with the given query terms. The intuitive semantics for optional can be
described by similar examples, but is left unspecified here for the sake of brevity. Note,
however, that optional subterms are only useful if they contain variables for extracting
data.

var Person{{
2 optional (foaf:nick → var Nick),

rdf:type → foaf:Person,

24 F. Bry et al.

4 foaf:knows → _:X{{
foaf:nick → ’Bill’, rdf:type → Person,

6 without (
foaf:knows → {{ _:Y{{ foaf:nick → ’Hillary’ }} }}

8)
}}

10 }}

Listing 1.7. An Xcerpt query term

Table 1.2. Query term simulation with different scopes for without

query term simulating data terms non-simulating data terms

a{{ without (b→) c }} a{ d→ c} a{ b→ c}
a{ b→ e, d→c } a{ b→ d, b→ c }

a{ b→ d }

a{{ without (b→ c) }} a{ } a{ b→ c }
a{ b→ d } a{ b→ d, b→ c }

a{{ b→ without c }} a{ b→ d } a{ b→ c }
a{ e→ c, b→ f } a{ }

a{{ b→ without c {{ a{ b→ c } a{ b→ c{ d→ e } }
d→ e }} }} a{ b→ c{ d→ f } } a{ }

a{{ b→ (without c) {{ a{ b→ f{ d→ e } } a{ b→ f }
d→ e }} }} a{ b→ c }

Although the Xcerpt constructs for specifying incomplete queries mentionend
above retain their semantics in Xcerpt, there are some different requirements in XML
and RDF processing that are also reflected in the way that Xcerpt variables are used
in Xcerpt query terms.

An obvious difference between matching RDF graphs and matching XML docu-
ments is that while extracting entire subtrees from an XML document is a very common
task, extracting entire RDF subgraphs from an RDF graph is less frequently used, since
this may often result in the whole RDF graph being returned. Therefore, the default
variable binding mechanism in Xcerpt is not subgraph extraction but label extrac-
tion. Therefore, the most common form of variables used in Xcerpt query terms are
node and predicate variables. Node and predicate variables are written using the key-
word var. A node (predicate) variable binds to a single node (arc) of the queried graph.
graph variables are identified by the keyword graphVar and bind – similarly to Xcerpt

term variables – to entire subgraphs. Finally, CBD-variables (identified by the keyword
cbdVar) bind to concise bounded descriptions16.

16 http://www.w3.org/Submission/CBD/

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 25

Another difference is that once an RDF node in an RDF graph has been identified
by a query and has been bound to a variable, the very same node can be easily recovered
in a subsequent query, since both URI nodes and blank nodes are uniquely named in an
RDF graph, whereas an XML Document may very well contain multiple nodes having
the same tag name and even the same content. XQuery and Xcerpt 2.0 deal with this
problem by introducing node identity for XML elements and attributes, thereby allow-
ing the comparison of variable bindings not only by deep equality, but also by shallow
equality [68]. This distinction is not necessary in RDF processing, since the value of a
node is already a global (in the case of resources) or local (in the case of blank nodes)
identifier.

For the representation of complex values, however, the simplistic data model of
RDF graphs as sets of triples is not well-suited. Here, blank nodes are used to group
atomic attributes of a node together to form a complex attribute. Often, these complex
attributes shall be selected together and collected in a single variable binding. This need
has been addressed by the W3C consortium with the introduction of a concept known
as Concise Bounded Descriptions. Xcerpt supports concise bounded descriptions by
providing a special kind of variable which does not bind to the value of a node, nor to
the subgraph rooted at the node, but to the concise bounded description associated with
that node. Table 1.3 gives an example driven overview of the different types of variables
in Xcerpt and their binding mechanisms.

Table 1.3. Query term simulation with variables for nodes, predicates, graphs and concise
bounded descriptions

query term data term substitution set

var X a{ b→ c } { { X 7→ a } } (1)

a{{ b→ var O }} a{ b→ c, b→ :X } { { O 7→ c }, { O 7→ :X } } (2)

a{{ var P→ var O }} a{ b→ c, b→ e } { { P 7→ b, O 7→ c },
{ P 7→ b, O 7→ e } } (3)

graphVar G a{ b→ c } { { G 7→ a{ b→ c } } } (4)

graphVar G as g{{ }} a{ b→ c} { { } } (5)

a{{ graphVar G }} a{ b { a }, c } { { G 7→ b{ a { b, c } } } } (6)

graphVar G a{ b→ c} { { G 7→ a{ b→ c },
as var L L 7→ a } } (7)

cbdVar G :X{ b→ c{ d→ e } } { { G 7→ :X{ b→ c } } } (8)

cbdVar G :X{ b→ :Y{ d→ e } } { { G 7→
:X{ b→ :Y{ d→ e } } } }

} } (9)

26 F. Bry et al.

Rows 1 and 2 show the simulation of a simple Xcerpt variable in subject and
object position. Compare the binding of the graph variable G in row 4 with the one of
the label variable X in row 1 under simulation with the same data term. Row 3 shows
a variable in predicate position, row 5 a graph variable with a restriction, which has
the same semantics as in Xcerpt (since the label g of the restriction does not appear
within the data, the substitution set is empty).

An interesting case is row 6. Since the queried graph d is not a tree, but a graph, the
binding for variable G is not a subterm of d, but a subgraph.

Row 7 shows the contemporary use of a graph and label variable, and rows 8 and 9
illustrate the semantics of variables for concise bounded descriptions.

Table 1.4 shows the syntax of Xcerpt query terms as a context free grammar
with terminal symbols in single quotes and the usual semantics of the meta-symbols
* + ? and |. The nonterminal symbols uriW3C, attvalueW3C and qnameW3C
correspond to the syntactic definition of URIs, attribute values and qualified names in
the W3C recommendation for XML[27]. The non-terminal symbol rpe denotes an
Xcerpt regular path expression, whose definition is omitted in this contribution for
the sake of brevity.

Table 1.4. Syntax of Xcerpt query terms

term ::= ’desc’? node | ’desc’? node ’{{’ arc (’,’ arc)* ’}}’ |
’desc’? reification

node ::= blank | uri | literal | qname | variable | graphVar | cbdVar
variable ::= ’var’ varname
varname ::= [A-Z][A-Za-z0-9*]
graphVar ::= ’graphVar’ varname | ’graphVar’ varname as term
cbdVar ::= ’cbdVar’ varname | ’cbdVar’ varname as term
arc ::= uri ’→’ term | rpe ’→’ term | container | collection
blank ::= attvalueW3C
literal ::= ’"’ char* ’"’ | ”’” char* ”’”
uri ::= ’!’ uriW3C
qname ::= qnameW3C
collection ::= bag | sequence | alternative
container ::= ’listOf’ ’{{ }}’ | ’listOf’ ’{{’ term (’,’ term)* ’}}’
bag ::= ’bagOf’ ’{{ }}’ | ’bagOf’ ’{{’ term (’,’ term)* ’}}’
sequence ::= ’seqOf’ ’{{ }}’ | ’seqOf’ ’{{’ term (’,’ term)* ’}}’
alternative ::= ’altOf’ ’{{ }}’ | ’altOf’ ’{{’ term (’,’ term)* ’}}’
reification ::= ’<’ term ’>’

1.5.3 Xcerpt Construct Terms and Rules

Consisting of a query part and a construct part, pure Xcerpt rules serve to trans-
form RDF data. The query part is used to extract data from an RDF graph into sets of

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 27

sets of variable bindings, also called substitution sets, and the construct part is used to
reassemble these variable bindings within construct patterns, substituting bindings for
variables.

Table 1.5 describes how substitution sets are applied to Xcerpt construct terms to
yield Xcerpt data terms. Apart from the different kinds of variable bindings allowed
in Xcerpt substitution sets, the algorithm differs from the application of Xcerpt

substitution sets to Xcerpt terms in the following ways:

– In accordance with the most famous RDF query languages such as SPARQL [140]
and RQL [91, 29], URIs are treated as unique identifiers within an RDF graph and
do not have any object identity besides the identity given by the URI itself. This
convention has as an implication that a substitution set applied to different con-
struct terms may result in semantically equivalent data terms. To see this consider
rows 1 and 5 in Table 1.5. Although the Xcerpt construct terms are syntactically
different, the data terms resulting from the application of the substitution set are
equivalent RDF graphs. As a result, the use of all within construct terms made up
of URIs only does not change the semantics of a rule.

– Just as RDFLog [33, 34], but unlike SPARQL and other RDF query languages,
Xcerpt supports arbitrary construction of blank node identifiers. While the ma-
jority of RDF query languages does not allow blank node construction at all or
only blank nodes depending on all universally quantified variables of a rule (see
[34] for details), Xcerpt and RDFLog support also construction of blank nodes
that depend only on some or none of the universally quantified variables of a rule.
RDFLog does this by explicit quantifier alternation, Xcerpt on the other hand
achieves the same goal by using Xcerpt’s all grouping construct. To see the differ-
ence consider rows 2 and 6 in Table 1.5. In row 2 the construct contains the free
variable var O, whereas in row 6 the construct term does not contain any free vari-
able. Thus in the first case, the substitution set is divided into two substitution sets
according to the binding of variable var O, and each of the substitution sets is ap-
plied to the construct term. In the second case, however, the substitution set is not
divided at all, but applied as a whole to the construct term.

Special care must be taken that the result of the application of a substitution set to
an Xcerpt construct term is again an RDF graph. Guaranteeing that pure Xcerpt

programs convert RDF graphs into valid RDF graphs allows easy composition of Xcerpt
programs.

Providing the same input and output format for a language is a feature of many
modern query languages and is usually referred to as answer closedness. Popular XML
query languages in general are only weakly answer closed – which means that they al-
low for easy authoring of programs that again produce valid XML documents, but that it
still is possible to generate non-XML data. A notable exception to this rule is Xcerpt,
which is strongly answer closed in the sense that every outcome of an Xcerpt pro-
gram is an XML fragment. On the other hand, the W3C languages XPath, XQuery and
XSLT can also be used to output non-XML content such as PDF, Postscript, or comma
separated values.

28 F. Bry et al.

Table 1.5. Application of substitution sets to Xcerpt construct terms

substitution set construct term Xcerpt result
{ { O 7→ c }, { O 7→ d } } a{ b→ var O } a{ b→ c }

a{ b→ d } (1)

{ { O 7→ c }, { O 7→ d } } :X{ b→ var O } :X1{ b→ c }
:X2{ b→ d } (2)

{ { S 7→ c }, { S 7→ d} } var S{ b→ a } c{ b→ a }
d{ b→ a } (3)

{ { S 7→ c }, { S 7→ d} } var S{ b→ :X } c{ b→ :X1 }
d{ b→ :X2 } (4)

{ { O 7→ c }, { O 7→ d } } a{ all b→ var O } a{ b→ c, b→ d } (5)

{ { O 7→ c }, { O 7→ d } } :X{ all b→ var O } :X{ b→ c, b→ d } (6)

{ { O 7→ c }, { O 7→ d } } a{ b→ var O{ e→ f } } a{ b→ c{ e→ f } }
a{ b→ d{ e→ f } } (7)

{ { G 7→ a{ b→ c } } } graphVar G a{ b→ c } (8)

{ { G 7→ a{ b→ c } } } d{ e→ graphVar G } d{ e→ a{ b→ c } } (9)

Definition 1 (Answer Closedness). A web query language is called answer closed, if
the following conditions are fulfilled:

1. data in the queried format can be used as queries
2. the result of queries is again in the same format as the data

A web query language is called weakly answer closed, if condition (2) is possible;
it is called strongly answer closed, if condition (2) is always enforced.

The assurance of answer closedness in Xcerpt must take the following two
thoughts into account:

– Abidance of RDF triple constraints. The evaluation of query terms may bind node
variables to literals or blank nodes. RDF graphs, however, do not allow literals in
subject or predicate position or blank nodes in predicate position.

– Abidance of RDF graph constraints. Xcerpt supports four different kinds of vari-
ables: node variables, predicate variables, graph variables and concise bounded de-
scription variables. In general, it is only safe to substitute variables in construct
terms by bindings of variables of the same type. Depending on the data, bindings
for node, graph and concise bounded description variables may degenerate to plain
URIs, and therefore it may be safe to substitute them for predicate or node vari-
ables.

With the above two restrictions in mind, there are three different possibilities for
implementing answer closedness in Xcerpt.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 29

– Static Checking of Bindings: Before an Xcerpt program is run, it is checked that
predicate variables in the construct term are also used as predicate variables in the
query term, and the same for graph variables, node variables and CBD variables.
To be more precise, the semantics of graph and CBD variables only differ within
the query term, and thus a CBD variable binding may be substituted for a graph
variable in the construct term. Moreover, the binding of a predicate variable may
be substituted for a label variable in the construct term, since predicate variables
always bind to URIs. On the other hand, bindings of node variables, may not be
substituted for predicate variables. While static checking of variable bindings en-
sures that all terms constructed by Xcerpt programs are valid RDF graphs, certain
tasks, such as using URIs of nodes of a source graph in predicate position in the
target graph, are impossible to achieve with this technique.

– Dynamic Checking of Variable Bindings: Dynamic checking of variable bindings
is a sensible choice if there is reason to assume that the query author has some
knowledge about the data to be queried. It is more flexible than static checking in
the sense that a larger number of tasks can be realized, but is less reliable in the
sense that runtime errors may occur.

– Casting of Variable Bindings unites the best of static checking of variable bindings
(i.e. no runtime errors) and dynamic checking of variable bindings (i.e. a higher
degree of flexibility). Consider the sources of runtime errors that may occur with
dynamic checking of variable bindings – examples for each case are given in Ta-
ble 1.6.

– A literal or blank node bound to a node variable is substituted for a predicate
variable in a construct term. Such triples are simply omitted from the resulting
RDF graph.

– A subgraph bound to a CBD or graph variable is substituted for a node variable
in a construct term. In this case the subgraph rooted at the occurrence of the
node variable in the construct term and the binding of the variable are merged.

– A subgraph g rooted at a URI u and bound to a graph variable is substituted for
a predicate variable in a construct term. The graph g is cast to u.

– A subgraph g rooted at a blank node b and bound to a graph variable or CBD
variable is substituted for a predicate variable. Since blank nodes may not ap-
pear in subject positions, the resulting triple is not included in the Xcerpt

result.
– A literal lit is substituted for a node variable L appearing in subject position

in the construct term. In this case a fresh blank node B is substituted for the
variable instead of the literal. If L additionally appears in object position, also
the literal itself is substituted for L, but the triples containing lit in subject
position are omitted.

Since the last alternative gives an operational semantics to programs which would be
either considered invalid under the first approach or would throw runtime errors under
the second, Xcerpt favors the casting of variable bindings. We acknowledge, how-
ever, that the first approach may make more sense for unexperienced users in that it is
easier to understand, and that the second approach may uncover errors in the authoring
of Xcerpt programs, which would pass unnoticed by the third approach.

30 F. Bry et al.

Table 1.6. Application of substitution sets to Xcerpt construct terms with casting of variable
bindings

substitution set construct term Xcerpt result

{ { V 7→ :X } } a{ var V→ b }

{ { V 7→ :X } } a{ var V→ b, c→ d } a{ c→ d }

{ { V 7→ ’literal1’ } } a{ var V→ b, c→ d } a{ c→ d }

{ { G 7→ a{ b→ c } } } graphVar G{ d→ e } a{ b→ c, d→ e }

{ { G 7→ a{ b→ c } } } d{ var G→ e } d{ a→ e }

{ { G 7→ :X{ b→ c } } } d{ var G→ e } :X{ b→ c }

{ { L 7→ ’literal1’ } } a{ b→ { var L{ c→ d } } a{ b→ :X { c→ d },
b→ ’literal1’ }

1.6 Versatile Queries III:
Rules for Separation of Concern and Reasoning

Having introduced queries for both XML and RDF data, this section combines both
features to realize the truly versatile use case already sketched in Section 1.4. Starting
out from the result pages for the terms “LinkedIn Munich” of a popular Web search
engine, links to relevant LinkedIn profile pages are extracted by the use of rich XML
query patterns with logical variables. In a second step, the profile pages are retrieved
and semantic microformat information is exploited to gather reliable information about
the users. Finally, in a third step, this information is enriched by semantic information
from FOAF profiles in RDF format using the RDF processing capabilities of Xcerpt.

In this use case Xcerpt’s capability of handling XML query terms and RDF con-
struct terms in the same rule (and the other way around) comes in particularly handy. As
in pure XML querying and in pure RDF querying, the interface between querying and
construction is a substitution set. Substitution sets generated by XML query terms differ
in the allowed variable types from substitution sets generated by RDF query terms. As
a result, there must either be a way to transform XML substitution sets to RDF substi-
tution sets and reversely, or the application of XML substitution sets to RDF construct
terms and the application of RDF substitution sets to XML construct terms must be
defined. While both ways are feasible, we present here the first alternative, since it is
less involved.

1.6.1 Xcerpt Query Terms and Xcerpt Construct Terms and vice versa in
the Same Rule

Note that it is Xcerpt’s underlying principle of clear separation of querying and con-
struction that allows for, e.g, an XML query term in a rule body and an RDF construct
term in the head of the same rule. The applicability of this design principle remains

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 31

untouched if further types of query and construct terms are introduced (e.g. for topic
maps or queries aimed at specific microformats or at pages of a Semantic Wiki). The
only requirement for these new types of queries and construct terms are the definition
of the following four algorithms: (1) a simulation algorithm matching queries with data
and returning a substitution set (a set of set of variable bindings),17 (2) an application
algorithm for substitution sets that fills in bindings for logical variables occuring in a
construct term18, (3) a mapping from variable bindings in the new format to variable
bindings in the other formats (until now only XML and RDF) and finally (4) a mapping
from XML and RDF variable bindings to variable bindings in the new format.

The following list defines informally the mapping of XML bindings to RDF and
reversely.

– The Xcerpt URI !http://www.example.org/#foo is mapped to the Xcerpt

qualified name eg:#foo with the namespace prefix eg bound to the namespace
http://www.example.org/. We adopt the convention that the Xcerpt URI
is split into namespace and local name at the last ’/’, but other methods are also
conceivable.

– The Xcerpt blank node _:B is mapped to the Xcerpt element name _:B.
– The Xcerpt literal “some literal” maps to the Xcerpt text node “some lit-

eral”19.
– The Xcerpt qualified name eg:anna is mapped to the Xcerpt qualified name
eg:anna. An appropriate namespace binding is added to the Xcerpt term. Im-
plementations may choose to expand the qualified name to a URI u, and map u
instead.

– The Xcerpt term a{ b → c } maps to the Xcerpt term a{ b{ c } }

in correspondance to past work on querying XML serializations of RDF with
Xcerpt [21]. Similarly, the Xcerpt term _:X{ a → b{ c → ‘‘another

literal’’ } } is mapped to the Xcerpt term _:X{ a { b { c { ‘‘another

literal’’ } } } }.
– The Xcerpt shorthand notation ex:name{ is [ex:Person → ex:Name] }

is expanded to its corresponding unabbreviated term as introduced in Section 1.5.
Then this longer notation is mapped to an Xcerpt term as described above.

– The Xcerpt reification term a{ believes → _:S{ < b{ c → d } } is mapped
to the Xcerpt term a { believes _:S { xcrdf:reification { b { c

{ d } } } } } with the namespace prefix xcrdf bound to http://www.
xcerpt.org/xcrdf.

– The Xcerpt term _:X { bagOf { a, b, c } } is mapped to the Xcerpt

term _:X { xcrdf:bag { a, b, c } }. Expansion to the normalized RDF
syntax and applying the standard mapping to Xcerpt terms could also be in-
troduced. The choice of the conversion is, however, not of primary importance,
as long as all information present in the Xcerpt term is preserved. Additional

17 See Tables 1.2 and 1.3 for an informal description of this algorithm for Xcerpt
18 Table 1.5 gives the relevant ideas for this algorithm in Xcerpt
19 We leave the details of treating typed RDF literals and literals with a language tag as future

work.

32 F. Bry et al.

transformation rules can be easily written to change the XML outcome and be pro-
vided as an Xcerpt module (See [11] for more about Xcerpt modules). Xcerpt

sequences, alternatives and lists are treated in the same manner.
– The Xcerpt qualified name eg:a is mapped to the Xcerptqualified name eg:a

and the binding for the namespace prefix eg is preserved.
– The Xcerpt unqualified name a is mapped to the Xcerptqualified name xcxml:a

with the namespace prefix xcxml bound to the namespace http://www.xcerpt.
org/xcxml. Note that the RDF graph data model does not allow for local names
other than blank nodes. The unqualified name is not mapped to a blank node to
avoid naming conflicts with other resources that may be contained in the resulting
RDF Graph.

– The Xcerpt term eg:a[eg:b, eg:c] is mapped to the Xcerpt term
eg:a{ xcxml:child → eg:b, xcxml:child → eg:c }, and the binding for
the namespace prefix eg is preserved. Note that since RDF graphs are always con-
sidered to be unordered, Xcerpt does not provide square brackets, and the infor-
mation about the order is lost in this mapping. Encodings of XML terms as RDF
graphs that preserve the order are conceivable.

– The Xcerpt term eg:a(id="2"){ eg:b } is converted to the Xcerpt term
eg:a{ xcxml:child → eg:b }, i.e. XML attributes are not mapped to Xcerpt

terms. Attribute names and values may, however, also be inserted into an RDF graph
by binding them to label variables. Also in this case, a different kind of mapping
may be chosen, but it turns out that for the applications considered in this report,
this simple mapping suffices.

1.6.2 Transforming LinkedIn embedded Microformat information to DOAC and
FOAF

Reconsider the Xcerpt query term in Listing 1.4. It extracts bindings for the variables
FirstName, LastName and Duration. It is easy to construct RDF data from those
variable bindings with an Xcerpt rule featuring the construct term in Listing 1.6.2.

declare namespace doac "http://ramonantonio.net/doac/0.1/"
2 declare namespace foaf "http://xmlns.com/foaf/0.1/"

4 _:Person {
rdf:type → foaf:Person,

6 foaf:firstName → var FirstName,
foaf:surname → var LastName,

8 all doac:experience → _:Exp {
doac:title → "Research Assistant",

10 doac:duration → var Duration
}

12 }

Note the semantics of the all construct in Listing 1.6.2. The all construct serves
to collect a set of variable bindings within a data term to be constructed. The number
of data terms generated for construct term c preceded by an all construct depends on

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 33

the set of free variables inside of c, and the substitution set which is applied to the con-
struct term. A variable v is free within a term t, if it does not occur within the scope
of an all construct inside of t. Thus the variable Duration is free within the term
doac:duration ..., but not inside of the entire construct term of Listing 1.6.2. The
set of free variables in the term c :=doac:experience → _:Exp { ... } follow-
ing the all keyword is the unary set {Duration}. The substitution set applied to the
construct term is thus separated according to the bindings of the variable Duration

only. Then each of the resulting substitution sets is applied to c independently and in-
cluded as a subterm of the outermost foaf:Person label. Whenever a substitution set
is applied to a term with a blank node, a new instantiation of this blank node is created,
as showcased in Table 1.5. This is a major difference to application of substitution sets
to terms starting with URIs.

Alternatively, one might want to create a single RDF bag enumerating the work-
ing relationships a person has had. This could be achieved by the following Xcerpt

construct term:

_:Person {
2 rdf:type → foaf:Person,

foaf:firstName → var FirstName,
4 foaf:surname → var LastName,

_:Experiences {
6 bagof {

all _:Exp {
8 doac:title → var Title,

doac:duration → var Duration
10 }

}
12 }
}

Once the microformat information from the LinkedIn page is transformed to the
more precise RDF representation at the aid of this rule, it can be combined with RDF
data located anywhere on the Web. These FOAF documents can be discovered in a very
similar fashion as has been done for the LinkedIn profile pages in Section 1.4.

Since LinkedIn does not provide the hash sums of email-addresses or other globally
unique identifiers for persons within their profile pages, combining the extracted RDF
information will rely on simple joins over the names of people, which is not particularly
reliable – see [98] for an overview of the problems that may occur.

With OpenID [130] becoming the de facto standard for distributed authentication
and single-sign-on on the Web and with the largest corporations involved in online ac-
tivities such as Google, Yahoo, Microsoft, etc already joining the bandwagon, it seems
likely that also LinkedIn will provide an open identifier within its profiles. Also the ex-
tension of the FOAF vocabulary to provide for OpenIDs within FOAF profiles is already
discussed. In the presence of this information, the combination of the collected micro-
format data and other RDF resources can easily and reliably achieved using Xcerpt.

34 F. Bry et al.

1.6.3 State of the Art: the SPARQL Query Language and its Extensions

With the publication of the SPARQL W3C recommendation on January 2008, SPARQL
has become the first query language that has been standardized by a major standard-
ization body. In contrast to most other languages that have been proposed for RDF
querying, SPARQL is, due to its triple syntax, quite easy to understand and use for
programmers familiar with relational query languages.

In this section, SPARQL is introduced by example, its semantics according to [123]
is recapitulated, and several extensions to SPARQL are presented. Throughout the pre-
sentation, the commonalities and differences to Xcerpt are highlighted.

A SPARQL query consists of the three building blocks pattern matching part, so-
lution modifiers and output. In addition there are four different kinds of query forms.
Arguably the most popular one is the select query form, which is inspired by SQL and
returns so-called solution sets, the counterpart of Xcerpt substitution sets in SPARQL.
An example of a select query is given in Listing 1.8. In case of a select query, the
output part of the query is a selection of distinguished variables, i.e. the specification
of the variables of interest in the query. If no variable bindings are of interest, the ask
query form is to be used. It simply gives a yes/no answer to the question if a given
query pattern is entailed by the RDF graph being queried. A useful query form for RDF
graph transformations is the construct query form, which does not return single values,
but entire RDF graphs as a result. There are, however certain limitations to the blank
node construction (in database theory termed value invention) in the SPARQL con-
struct query form, see [39].A final query form is given by the describe key word which
pays attribute to the fact that a blank node identifier returned as a variable binding in
a SPARQL ask-query is somewhat useless, since it only asserts the fact that something
exists, and cannot be reused in a follow-up query to extract further information about
the resource in question. When using the describe query form, not only single iden-
tifiers are returned as variable bindings, but also descriptions of resources. The exact
nature of a resource description is left unspecified in the SPARQL recommendation, but
a sensible solution would be the one of Concise Bounded Descriptions [142].

The SPARQL query form which is most similar to Xcerpt rules is the construct
query form. Xcerpt does not distinguish between query forms, but is strongly answer
closed in the sense that every Xcerpt data term is also a Xcerpt query, and in that
every result of an Xcerpt query is again an RDF graph. While SPARQL construct
queries are answer closed, the remaining query forms are not. However, SPARQL ask
and select queries can be simulated by construct queries. Similarly, boolean queries
can be formulated in Xcerpt by interpreting the empty RDF graph as false and all
other RDF graphs as true, and tuple-generating queries can be expressed in Xcerpt

by wrapping the tuples within RDF containers or similar constructs. Describe queries
are expressed in Xcerpt by using concise-bounded-description variables.

All four SPARQL query forms make use of the pattern matching part, which is
described next.

SPARQL graph patterns SPARQL is weakly answer closed in the sense that any
RDF graph is also a valid SPARQL graph pattern. But only in the case of the construct
query form, also the result of a SPARQL query is again an RDF graph. The syntax of

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 35

SPARQL graph patterns resembles the one of Turtle, but is augmented with variables.
Listing 1.8 (from [140]) shows a query to retrieve the name and email address of persons
within an RDF graph using the FOAF vocabulary. With the term graph pattern, one
refers to the set of triples within curly braces in lines 4 to 5. The select-clause serves
to specify the distinguished variables of the query. Any variable appearing within the
graph pattern, but not within the select-clause is called a non-distinguished variable.
The terms distinguished and non-distinguished variables have thus the same meaning
as in conjunctive queries in database theory.

1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox

3 WHERE
{ ?x foaf:name ?name .

5 ?x foaf:mbox ?mbox }

Listing 1.8. A simple SPARQL query

SPARQL allows the selection of variables that do not appear within the graph pat-
tern as shown in Listing 1.9. The empty query pattern matches with any RDF graph,
and the variable ?x in the select clause does not appear within the query pattern. In
database theory, such rules are said to violate the principle of range-restrictedness. In
fact the intuitive semantics of non-range-restricted rules is unclear and varies from one
language to another. While according to [140] Listing 1.9 is supposed to return a single
solution with no binding for the variable ?x, unbound variables are forbidden within
construct clauses of SPARQL queries. In Prolog, on the other hand, the non ground
fact p(X) simply remains uninstantiated and can be unified with ground bodies of other
queries such as p(a).

SELECT ?x
2 WHERE {}

Listing 1.9. A non-range-restricted SPARQL query matching with arbitrary RDF graphs

Since queries such as the one in Listing 1.9 can also be expressed with the SPARQL
ask query form, and since SPARQL does not allow any kind of rule-chaining, non-
range-restricted queries do not add to the expressive power of the SPARQL language,
but cause the semantics of the language to be more complex than it needs to be.

The graph pattern in Listing 1.8 is termed a basic graph pattern. It consists of two
triple patterns, which are ordinary RDF triples except that subject, predicate and object
may be replaced by SPARQL variables. Basic graph patterns may contain filter expres-
sions in addition to a set of triple patterns. Filter expressions use the boolean predicates
‘=’, ‘bound’, ‘isIRI’ and others to construct atomic filters. Additionally the logical
connectives ‘&&’ for logical conjunction, ‘||’ for logical disjunction and ‘!’ for logical
negation are used to construct compound filters from atomic ones. Atomic and com-
pound filters are used to eliminate sets of variable bindings that do not fulfill the filter
requirements.

Besides basic graph patterns, SPARQL provides group graph patterns that may ei-
ther be unions of graph patterns, optional graph patterns or named graph patterns.
Unions of graph patterns are similar to disjunctions in the bodies of rules in logic pro-

36 F. Bry et al.

gramming. For the query to succeed, only one of the graph patterns in the union must
be successful, and the solution sets from all graph patterns in the union are collected
to yield the solution set for the union. Optional graph patterns are patterns that may
bind additional variables besides the ones present in the non-optional parts of a graph
pattern, not causing the entire query to fail if the optional graph pattern fails. In contrast
to unions of graph patterns, the non-optional part is obliged to match. Named graph
patterns are introduced into the SPARQL language, because Semantic Web databases
may hold multiple RDF graphs, each identified by a URI. To explain the concept of
querying named graphs in SPARQL, the notion of a dataset must be introduced. A
dataset is a pair (d,N) where d is the default graph to be queried, and N is a set of
named graphs. Datasets are specified by the FROM and FROM NAMED clauses in
SPARQL. Whereas the default graph is the merge of all RDF graphs specified in the
FROM clause, the FROM NAMED clauses specify the set N of named graphs, and re-
main unmerged. The GRAPH key word must subsequently be used to refer to named
graphs in a WHERE clause as Listing 1.10 (taken from [126]) illustrates.

SELECT ?N WHERE { ?G foaf:maker ?M .
2 GRAPH ?G { ?X foaf:name ?N } }

Listing 1.10. Querying named graphs in SPARQL

As [126] points out, the query in Listing 1.10 is somewhat unintuitive, since
SPARQL engines compliant with the W3C specification will search for answers to the
triple pattern ?X foaf:name ?N only in named graphs, but not in the default graph.
The notion of named graphs is discussed in more detail in [45], and can be compared
to grouping XML data in XML documents.

Blank nodes in SPARQL graph patterns Blank nodes in SPARQL graph patterns
act in the same way as non-distinguished variables, and therefore cannot be used to
reference specific blank node identifiers within an RDF graph. Hence, one could substi-
tute an arbitrary blank node for the variable ?x in Listing 1.8 and still obtain the same
result.20

Before proceeding, we will quickly discuss this treatment of blank nodes in SPARQL.
When issuing a query with a blank node, newcomers to the SPARQL language may have
five different expectations in mind:

– Syntactic equality: The blank node in the query is supposed to match only with the
data that uses exactly the same blank node identifier, as it is the case for URIs in
graph patterns. While this is a valid desire, it would fall into the domain of syntactic
processing of RDF data. A query on two equivalent RDF graphs should obviously
return equivalent answers. But what is a sensible notion of equivalence in this con-
text? As with all data items in information processing, one may introduce several
equivalence relationships for RDF graphs. One such equivalence relationship is
bi-entailment, and it is arguably the most sensible one for RDF graphs. Another
such equivalence relationship would be syntactic equality, and there is certainly the

20 Note that one could not use a blank node at the place of the other two variables in Listing 1.8,
since they are distinguished.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 37

necessity to compare RDF graphs for syntactic equality, but then we could also sim-
ply consider them as plain text files and run a UNIX diff command to test them
for equality. With the decision for syntactic equality for blank nodes in queries, one
would obtain different results for equivalent RDF graphs (under bi-entailment), and
for this fact the decision of SPARQL not to use syntactic equality is a sensible one.

– Treatment as non-distinguished variables: The blank node is supposed to act as a
non-distinguished variable as explained above. One minor problem with this under-
standing is that there are two alternative ways of specifying the same query, which
may be confusing for new-comers to the language. Another more important issue
with this solution is that while SPARQL remains answer closed in the sense that any
RDF graph can be used as a SPARQL query, the answer to such a query would not
only be graphs that are equivalent or contain an equivalent graph, but also graphs
that are more specific. The simple SPARQL graph pattern _:X a b will also return
true on the RDF graph a b c.

– Banning of blank nodes within queries: As the inclusion of blank nodes within
queries does not add expressive power to SPARQL graph patterns, an obvious ap-
proach is to ban blank nodes from graph patterns. This approach has the advantage
that SPARQL users cannot be fooled to assume a different semantics of blank nodes
in graph patterns other than non-distinguished variables. On the other hand, this ap-
proach has the obvious drawback that SPARQL is not answer closed in the sense
that an RDF graph containing blank nodes cannot be viewed as a SPARQL query.

– Treatment as ordinary variables: Since blank nodes are viewed as existentially
quantified variables in RDF graphs, one might view them as plain variables in
queries as well, and specify in the select-clause if they are to be treated as distin-
guished variables or non-distinguished variables. This solution has the plain advan-
tage that any RDF graph can be viewed as a query, but shares the same deficiencies
with respect to answer closedness as treating them as non-distinguished variables.
Clearly this approach would mean that there is no longer the necessity for SPARQL
variables.

– Matching blank nodes only: A final intuition query authors may have in mind is
that blank node identifiers in queries must be mapped to blank node identifiers in
the data only. None of the above approaches can express this semantics. The graph
pattern _:X b c would thus return true when evaluated on the graphs _:X b c

and _:Y a b, but it would not match with a b c. Thus with answer closedness in
mind, this approach ensures that an RDF graph q considered as a SPARQL query
only matches with RDF graphs that are equivalent or have a subgraph equivalent to
q. The major drawback of this solution is, however, that the same query may once
return true for an RDF graph g1 and false for an equivalent (under bi-entailment)
RDF graph g2. To see this, consider again the query _:X b c and the graphs g1 :=
_:Y b c, a b c and a b c. Under the light of this deficiency and with the avail-
ability of the filter predicate isBlank in SPARQL that can be used for imitating
this blank node semantics, it is a good choice not to adopt this treatment of blank
nodes in SPARQL graph patterns.

Testing RDF Graphs for Equivalence in SPARQL None of the above solutions are
completely satisfactory in that they do not allow the specification of a query q that

38 F. Bry et al.

returns true on exactly the equivalence class Σ⇔(g) induced by RDF bi-entailment for
an arbitrary graph g containing a blank node.

Note that SPARQL query patterns cannot express the above query even in the ab-
sence of blank nodes. Consider the RDF graph g a b c consisting of a single triple.
Evaluating g as a SPARQL query pattern will yield all RDF graphs that contain g, but
there is no way of expressing a query that will find all equivalent graphs.

In other words, a SPARQL basic graph pattern q returns true on an RDF graph
g iff g rdf-entails21 n(q) where the normalization operator n replaces variables in q
by blank nodes (multiple occurrences of the same variable by the same blank node
identifier, and distinct variables by distinct blank nodes, that do not occur anywhere
else in q). Hence, with basic SPARQL graph patterns it is only possible to demand that
something be entailed by the graph g to be queried, but not to restrict the entailments
of g. The development of the language Xcerpt, on the other hand, is influenced by
the assumption that query authors would like to both demand some entailments from a
graph as well as demand that something is not entailed by it.

There is, however, the possibility to express such queries in SPARQL at the aid of
optional graph patterns, SPARQL filter constructs, and the SPARQL bound predicate.
The query in Listing 1.11 only returns true for the one-triple graph a b c. For all other
graphs it returns false. The graph pattern first ensures that the triple a b c is in fact
contained in the RDF graph. Secondly it uses an optional pattern to find other triples
in the graph. The filter inside the optional pattern makes sure that the optional pattern
does not match with a triple other than a b c. The second filter expression makes sure
that the optional graph pattern was unsuccessful by testing for a binding of the variable
?x.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 ASK
WHERE { a b c .

4 OPTIONAL { ?x ?y ?z
FILTER (?x != a || ?y != b || ?z != c)

6 }
FILTER (!bound(?x))

8 }

Listing 1.11. A query that only matches with a graph consisting of a single triple (a b c)

Before proceeding to the study of the complexity and semantics of SPARQL, we
will quickly discuss how to test for equivalence with RDF graphs containing blank
nodes. Consider the graph g = _:X b c . a b d . consisting of two triples only
with a single occurrence of a single blank node. When formulating a SPARQL query
to return true on exactly the set of RDF graphs equivalent to g, one first needs to test
for the presence of the two triples and then for the absence of triples that are different
from the two ones given in the graph. While the query in Listing 1.12 is all but trivial
to figure out, testing graphs for equivalence in SPARQL becomes even more complex
in the presence of multiple occurrences of the same blank node identifier, since in this

21 There are different variants of RDF entailment. In this section we mean simple RDF entailment
when when speaking of RDF entailment only.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 39

case it does not suffice to test for the absence of single triples only, but one has to test
for the absence of multiple triples connected via blank nodes.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 ASK
WHERE {

4 a b c .
?blank b d

6 OPTIONAL { ?x ?y ?z
FILTER ((?x != a || ?y != b || ?z != c)) &&

8 (!(isBlank(_?x1)) || ?y1 != b || ?z != d))
}

10 FILTER (!bound(?x1))
}

Listing 1.12. A query that only matches with a graph consisting of a single triple (a b c)

Obviously the queries in Listing 1.11 and 1.12 are much more complicated than
they need to be. This is due to the absence of explicit negation in SPARQL, a design
decision that makes implementation easier and circumvents the non-monotonicity of
negation as failure.

Semantics and Complexity of SPARQL [123] recursively defines the semantics of
SPARQL query patterns in terms of relational algebra operators as follows:

– The semantics [[t]]G of a possibly non-ground triple t evaluated over an RDF graph
G is the set of mappings µ such that the domain of µ is the set Var(t) of variables in
t and the application µ(t) of the mapping µ to t is in G. The application of a mapping
µ to a triple pattern t is simply the triple pattern with the variables in t replaced by
their bindings in µ.

– The semantics [[(P1 AND P2)]]G of a conjunction of query patterns evaluated over
the RDF graph G is defined as the set {[[P1]] on [[P2]]} = {µ1 ∪µ2 | µ1 ∈ [[P1]],µ2 ∈

[[P2]],µ1 and µ2 are compatible} of unions of compatible pairs of mappings of P1
and P2. In this context two mappings are termed compatible if they coincide on the
bindings of their common variables. The semantics of the conjunction can thus be
thought of as the natural join over the relations defined by the conjuncts.22

In [126] the notion of compatibility of pairs of mappings is refined to brave com-
patibility, cautious compatibility and strict compatibility. While in the absence of
unbound variables within mappings, all three notions of compatibility coincides,
in the presence of unbound variables, only the brave compatibility coincides with
compatibility as understood by [123].

– Two mappings σ1 and σ2 are bravely compatible if they coincide on the bind-
ings of their common bound variables. Brave compatibility hence does not re-
strict the bindings of variables that are unbound in either σ1, σ2 or both.

– σ1 and σ2 are cautiously compatible if for all common variables – no matter if
bound or unbound – the bindings coincide.

22 Note that the terms relation and sets of mappings can be used interchangeably here.

40 F. Bry et al.

– σ1 and σ2 are strictly compatible if they are cautiously compatible and if addi-
tionally there is no common variable of σ1 and σ2 which is unbound in both.

– The semantics of a graph pattern [[P1 OPT P2]]G including an optional construct
over an RDF graph G is defined as the left outer join between [[P1]] and [[P2]].

– Finally the semantics [[P1 UNION P2]] of a union of two graph patterns is defined
as the union of [[P1]] and [[P2]].

[123] extend the semantics to SPARQL queries including filter expressions and
show some important properties of SPARQL queries:

– Generally the expressions

(P1 AND (P2 OPTIONAL P3))

and

(P1 AND P2)OPTIONAL P3))

are not semantically equivalent, but they are equivalent for the class of well-defined
graph patterns introduced in the same work.

– In the presence of optional patterns, AND is only commutative for well-designed
graph patterns.

Some results on the complexity of query evaluation in SPARQL from [123] are the
following:

– The combined complexity of SPARQL graph patterns involving only AND and
FILTER expressions is in O(|P| · |D|) where |D| is the size of the data and |P| is the
size of the query. This result is based on the assumption that the application of a
mapping µ to a triple t is achieved in a constant amount of time, independently of
the number of variables in µ.

– The combined complexity of SPARQL graph patterns involving AND, FILTER and
UNION is NP-complete. The proof is by polynomial reduction of the satisfiability
problem of propositional logic formulas in conjunctive normal form to SPARQL
queries.

– The combined complexity of SPARQL graph patterns including AND UNION and
OPTIONAL is PSPACE-complete, independently of the presence or absence of
FILTER expressions.

– The data complexity of SPARQL graph patterns is in LOGSPACE.

1.6.4 Extensions of SPARQL

SPARQL being the most popular RDF query language and the only one which has been
standardized by some standardization organization such as the W3C, it has received
considerable attention from the research community. Its expressiveness and complex-
ity has been formally studied, and as a result of its limited expressiveness, extensions
of SPARQL in different directions have been proposed. With the absence of path ex-
pressions in SPARQL, nSPARQL[124] has been suggested to enhance the expressive
power of SPARQL into this direction. The necessity of combined processing of XML

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 41

and RDF has been acknowledged by XSPARQL[7], an extension of XQuery to RDF
processing at the aid of SPARQL WHERE and CONSTRUCT clauses. Just as SQL
allows the deletion and insertion of data and creation of new tables, SPARQL update
[139] and SPARLQ+23 extend SPARQL with facilities to manipulate and create RDF
graphs. Finally [44], [126] and [135] eliminate the restriction of SPARQL to single
rules by allowing possibly recursive multi-rule programs.

nSPARQL nSPARQL[124] is an extension of SPARQL to support arbitrary-depth nav-
igation in SPARQL queries. It arose from the need to answer queries for finding all
nodes reachable from a given node via a given predicate name, a disjunction of predicate
names or simply for finding all transitively connected nodes. The syntax of nSPARQL
is heavily influenced by the syntax of XPATH, and nSPARQL borrows the notions of
axes, node tests, reverse axes, step expressions, and path predicates from XPATH. While
path expressions in XPATH evaluate to a set of nodes of an XML document, path ex-
pressions in nSPARQL evaluate to a set of pairs of nodes within of an RDF graph. This
is due to the fact that XPATH expressions are always evaluated with respect to a context
node, while this is not necessarily the case for nSPARQL expressions.

The following examples illustrate the syntax and semantics of nSPARQL path ex-
pressions evaluated over an RDF graph G:

– next::a allows the navigation from one node in an RDF graph to another node
via an edge labelled a in a composed nSPARQL path expression. It evaluates to all
pairs of nodes connected via a predicate labeled a: {(x,y) | (x,a,y) ∈ G}. The axis
next−1 can be used to navigate in the reverse direction.

– edge::a allows the navigation from a node x to an edge y within an RDF graph,
if the graph contains the triple (x,y,a). It evaluates to {(x,y) | (x,y,a) ∈G}. The axis
edge−1 is used to navigate from predicates of triples to their subjects.

– node:a allows the navigation from an edge x to a node y if the corresponding triple
has subject a. It evaluates to {(x,y)|(a, x,y) ∈ G}. node−1 is used for navigating in
the reverse direction.

– nSPARQL path expressions are combined just like XPATH step expressions by the
/ sign: The nSPARQL expression next::a/next::b finds pairs of nodes con-
nected via two triples with predicate names a and b over an arbitrary intermediate
node. The URI of the intermediate node can be checked by using the self axis:
next::a/self::c/next::b.

– The evaluation of nested nSPARQL path expressions is more complex. The seman-
tics of edge::[exp] is given by {(x,y) | ∃z,w.(x,y,z) ∈G∧ (z,w) ∈ [[exp]]G}, where
[[exp]]G is the semantics of exp over G. Nested path expressions including the axes
self, next and node are similarly involved.

SPARQLeR A different approach for extending SPARQL with regular path expres-
sions is taken by the language SPARQLeR described in [103]. In contrast to nSPARQL,
entire paths are bound to so-called path variables, which are distinguished from ordi-
nary SPARQL variables in that they are prefixed by % instead of ?. The bindings of path

23 http://arc.semsol.org/home

42 F. Bry et al.

variables are themselves represented as RDF sequences, which allows to put further re-
strictions on the bindings in SPARQL WHERE clauses, as the following example from
[103] demonstrates:

CONSTRUCT %path
2 WHERE { r %path s . %path rdfs:_1 p . }

Listing 1.13. A simple SPARQLeR path query

The query in Listing 1.13 finds all directed paths between a resource r and a re-
source s that have p as the first predicate. Bindings for the path variable %path in the
above query are of the form p1,n1, p2,n2, . . . , pi,ni, pi+1, such that the triples (r, p1,n1),
(n1, p2,n2), . . ., (ni−1, pi,ni) and (ni, pi+1, s) are in the queried graph. Since these bind-
ings are represented as RDF sequences (as exemplified in Listing 1.14), triples in the
same WHERE clause can be used to put restrictions on the bindings to path variables.

_:Path1 rdfs:_1 p1,
2 _:Path1 rdfs:_2 n1,
_:Path1 rdfs:_3 p2,

4 ...

Listing 1.14. The RDF representation of bindings to SPARQLeR path variables

Since bindings to SPARQLeR path variables are represented as RDF sequences
represented by blank nodes, the use of path variables within SELECT query forms
hardly makes sense. Imagine Listing 1.13 with the SELECT keyword at the place of
the CONSTRUCT keyword. The result of this query is a list of blank nodes generated
by the SPARQLeR query generator, which means that the only information returned is
the number of paths found within the queried graph. To deal with this inconvenience,
SPARQLer introduces a list operator that extracts all resources from the paths. In
the case of multiple bindings for a path variable, however, the application of the list
operator merges the resources from all paths into a single list, thereby preventing the
user from recognizing the actual paths.

SPARQLeR provides a second method for constraining paths at the aid of a ternary
regex method to be used within FILTER clauses of SPARQLeR queries. The first
argument to this method is the name of the path variable whose bindings are to be
constrained, the second one is a regular path expression, and the third are options spec-
ifying whether the path must be directed, if it must be made up of schema classes,
instances, or literals, and if rdfs:subPropertyOf inferencing is to be considered.
SPARQLeR regular path expressions allow alternatives, concatenation, Kleene’s star,
wildcards, negations and reverse predicates. The SPARQLeR length method is used
to find paths of a minimal, maximum or exact length.

While SPARQLeR seems to be a sensible suggestion for an extension of SPARQL,
there are two obvious points of criticism:

– The fact that predicate names can be specified within path expressions, but subjects
and objects cannot, seems to be an arbitrary design choice which is not motivated
in [103].

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 43

– Representing bindings to variables as RDF sequences that are not part of the origi-
nal RDF graph and allowing these RDF sequences to be queried within the SPAR-
QLeR WHERE clause may be confusing for novices in that the WHERE clause is
successfully evaluated on a graph which does not entail every single triple of the
clause.

XSPARQL [7] advocates the reuse of plain XML and HTML data of the Web as
RDF data on the Semantic Web, and vice versa and introduces the notions of lifting
– i.e. transforming “syntactic” XML data into “semantic” RDF data – and lowering
– transforming RDF data into XML. Starting out from the insight that current tools
and languages are not adequate for translating between syntactic and semantic web
data, they propose an integration of SPARQL into XQuery, which they dub XSPARQL,
together with use-cases and a formal semantics. Since it aims at being data-versatile in
the same sense as Xcerpt does, we take a closer look at XSPARQL in this section.

<relations>
2 <person name="Alice">

<knows>Bob</knows>
4 <knows>Charles</knows>

</person>
6 <knows>Charles</knows>

</person>
8 <person name="Charles/>
</relations>

Listing 1.15. XML example data

1 @prefix foaf: <...foaf/0.1/> .
_:b1 a foaf:Person;

3 foaf:name _:b2;
foaf:knows _:b3 .

5 _:b2 a foaf:Person;
foaf:name "Bob";

7 foaf:knows _:b3 .
_:b3 a foaf:Person;

9 foaf:name "Charles" .

Listing 1.16. RDF example data

Listing 1.17 shows how the lifting task is solved in XSPARQL for the example data
given in Listings 1.15 and 1.16. In line 3 all names of persons of the XML input file
are selected. Names are either given as the name attribute of a person element or as
XML text nodes within knows elements. In order to make sure that the list $persons
contains each name exactly once, duplicates are elminitated in the where clause by
testing the absence of elements on the following axis that contain the same name. In
this way duplicates are eliminated and only the last occurrence of a name is selected.
In line 6, a numeric identifier is computed for each person which serves to construct
unique blank nodes in the SPARQL construct pattern starting at line 8. The construct
keyword is not part of the XQuery syntax, but newly introduced in XSPARQL to mark
the beginning of a SPARQL construct pattern. Inside of SPARQL construct patterns,
XQuery code is embedded within curly braces. In this way nested XSPARQL queries
are constructed. While the outer XSPARQL query (lines 3 to 10) serves to represent the
persons found in the XML source as RDF blank nodes with associated names and type,
the inner SPARQL query translates the acquaintance relationships. Note that the triples
constructed in line 18 are duplicates of the ones constructed in line 10, i.e. this line is
superflous.

declare namespace foaf="...foaf/0.1/";
declare namespace rdf="...-syntax-ns#";

44 F. Bry et al.

3 let $persons := //*[@name or ../knows] return
for $p in $persons
let $n := if (@p[@name]) then $p/name else $p

6 let $id := count($p/preceding::*) + count($p/ancestor::*)
where not(exists($p/following::*[@name=$n or data(.)=$n]))
construct

9 _:b{$id} a foaf:Person;
foaf:name { data($n) }.

{ for $k in $persons
12 let $kn := if ($k[@name]) then $k/@name else $k

let $kid := count($k/preceding::*) + count($k/ancestor::*)
where $kn = data(//*[@name=$n/knows) and

15 not(exists($kn/../following::*[@name=$kn or
data(.)=$kn]))

construct
_:b{$id} foaf:knows _:b{$kid} .

18 _:b{$kid} a foaf:Person .
}

Listing 1.17. Lifting in XSPARQL

XSPARQL does not set out to be a query language that natively supports XML and
RDF querying in an intuitive and coherent way. Instead it explores how SPARQL can
be integrated into XQuery, how the semantics of this integration can be defined and pro-
poses an implementation on top of existing XQuery and SPARQL engines. XSPARQL
succeeds in its coherent treatment of schema heterogeneous RDF/XML files, and due
to the large expressiveness of XQuery it allows the formulation of many queries not
expressible in SPARQL alone. On the other hand it suffers from the following deficien-
cies:

– Intertwined querying and construction. As can be observed in Listing 1.17, there is
no clear separation of querying and construction in XSPARQL queries, a deficiency
which is inherited from XQuery. While it is clear that there are queries that cannot
be expressed by a single rule with a single query and construction pattern, this is
not the case for the query above.

– Complicated blank node construction. An RDF query language should support au-
tomatic construction of blank nodes without the need of computing blank node
identifiers within a program. Since blank node construction is essentially the same
as the introduction of skolem terms within logic programs, languages such as RD-
FLog and Xcerpt achieve the same result in a much easier and straightforward way.

– Absence of path patterns. While XSPARQL inherits the complexity of XQuery,
it suffers also from the limitations of SPARQL such as no support for containers,
collections and reification, and limited support for negation. Above all, XSPARQL
lacks rich path patterns to navigate RDF graphs at arbitrary depth, such as the ones
proposed by nSPARQL and SPARQLeR.

– Jumbling of query paradigms. Due to the popularity of XQuery as an XML query
language and SPARQL as an RDF query language, Listing 1.17 is easy to under-
stand for most people familiar with (Semantic) Web querying. For people unfamil-

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 45

iar with one or both of these languages, it may be confusing that a functional lan-
guage such as XQuery is intermingled with a rule based language such as SPARQL.
With Xcerptwe introduce a purely rule based language based on the clear design
principles of Xcerpt.

SPARQL update Similar as for the XML query language XQuery, SPARQL has been
conceived primarily as a data selection language, not as a data manipulation language.
In fact, the SELECT, DESCRIBE and ASK query forms of SPARQL can only be used
to extract parts of a graph, not to manipulate data or construct new data. The SPARQL
CONSTRUCT query form allows limited transformations between one RDF dialect to
another, but cannot be used to modify existing RDF stores. The W3C member submis-
sion SPARQL update sets out to elminate this restriction.

SPARQL update consists of two sets of directives – one for updating graphs and the
other for graph management. The set of directives for updating existing RDF graphs
with SPARQL update constists of the following seven commands:24

– The DELETE DATA FROM directive is used to delete a set of ground triples from a
named or the default graph. In the latter case, the FROM keyword is omitted.

– The INSERT DATA INTO statement is used to insert a new set of ground triples
into an existing graph identified by a URI. If the triples are to be inserted into the
default graph, then the INTO keyword is omitted.

– The MODIFY operation consists of a delete and an insert statement (see below)
issued on the same graph.

– The DELETE FROM ... WHERE operation is used to delete a set of triples from a
graph. In contrast to the DELETE DATA operation discussed above, this command
may specify the triples to be deleted in a non-ground form, i.e. with SPARQL vari-
ables bound in the WHERE clause. If the WHERE clause consists of the empty graph
pattern, this command is indeed equivalent to the DELETE DATA operation above.
In case the FROM keyword is omitted, the default graph is manipulated.

– INSERT FROM ... WHERE is the non-ground version of the INSERT DATA com-
mand. Its relationship to INSERT DATA is analogous to the relationship from
DELETE FROM ... WHERE to the DELETE DATA operation. Together with the
DELETE FROM ... WHERE operation, this operation can be used to move data
from one RDF graph to another.

– The LOAD primitive copies all RDF triples from one named graph to another named
graph or the default graph.

– The CLEAR primitive removes all triples from the default graph, or a named graph.
It can be simulated by a DELETE FROM ... WHERE operation selecting all triples
of a graph.

Graph management in SPARQL update is achieved by the two operations CREATE
GRAPH and DROP GRAPH which have the exact same semantics as the SQL operations
CREATE TABLE and DROP TABLE. Only when a graph has been created by the CREATE
GRAPH operation it is available for modification by one of the seven above mentioned

manipulation directives.

24 We only briefly sketch the commands for the sake of brevity.

46 F. Bry et al.

To sum up, SPARQL update is a straight-forward extension of SPARQL to include
mechanisms for creating new and changing existing RDF graphs, much inspired by
SQL. The difference between the Web considered as a huge database and ordinary
databases is, however, that the Web is open and generally readable and processable
by any person or computer connected to the Internet. As a result RDF graphs will more
likely to be reasoned with and transformed than updated. Write access to RDF graphs is
restricted to the content provider, but deriving new knowledge from existing one, which
is the fundamental use case for Semantic Web use-cases, is possible for all Web users
and will be achieved with rule languages, not update languages. Under these consider-
ations, update primitives have been excluded from Xcerpt.

SPARQL and Rules [126] defines translation rules for SPARQL rules to datalog
rules and thus opens up the possibility to rule chaining, i.e. the translation of multi-
ple SPARQL rules to Datalog and the combined evaluation of the resulting rule set by
a logic programming engine, thus allowing intermediate results to be constructed and
queried. This extension gives SPARQL an obvious boost in expressivity (recursion)
and affects its termination properties. In the following, the translation procedure from
SPARQL to Datalog given in [126] is quickly illustrated by an example, as it opens up
the possibility for easy implementations also of single rule SPARQL queries on top of
existing logic programming engines.

For this purpose reconsider the SPARQL query in Listing 1.18 and the RDF graph in
Listing 1.19 available via the URL http://www.example.org/bob. The result
of the translation is given in Listing 1.20.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
2 SELECT ?name ?mbox
FROM http://example.org/bob

4 WHERE
{ ?x foaf:name ?name .

6 ?x foaf:mbox ?mbox }

Listing 1.18. A simple SPARQL select-query

_:B foaf:name bob .
2 _:B foaf:nick bobby .
_:B foaf:mbox bob@example.org .

Listing 1.19. RDF Graph with some FOAF information

1 triple(S, P, O, default) :- rdf(http://example.org/bob, S, P,
O) .

answer_1((Name, Mbox), default) :-
3 answer_2(vars(Name, X), default),

answer_3(vars(Mbox, X), default) .
5 answer_2(vars(Name, X), default) :- triple(X, foaf:name, Name,

default) .
answer_3(vars(Mbox, X), default) :- triple(X, foaf:name, Mbox,

default) .

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 47

Listing 1.20. Translation of the SPARQL query in Listing 1.18 to Datalog with external
predicates

The translation makes use of the external predicate rdf that takes four arguments:
the graph to be queried as input, and the subject, predicate and object of triples as output.
The external predicate rdf can thus be used to enumerate all triples within an RDF
graph given by the input URI. The first rule in Listing 1.20 defines the 4-ary relation
triple. In the case of multiple FROM or FROM NAMED clauses in the original SPARQL
query, the relation triple will obviously be defined by the corresponding number of
clauses. Since Listing 1.18 only contains conjunctions of triple patterns, but no UNION,
OPTIONAL or FILTER expression, the translation remains of manageable size, and we
focus the discussion of the tranlsation procedure on conjunctive triple patterns.

As can be observed in Listing 1.20, each triple pattern in the SPARQL query trans-
lates to a single Datalog rule, and each conjunction of triple patterns translates to a rule
with body atoms referencing the rules obtained by the translation of its conjuncts. As
expected, disjunctions (UNION) of triple patterns are translated to sets of rules. For
details on the tranlsation procedure, involving more complex SPARQL queries with
FILTER and OPTIONAL, the interested reader is referred to [126].

While reusing existing rule languages together with the enormous body of knowl-
edge about their semantics, evaluation methods and complexity is certainly a sensible
way for designing a rule language for the Semantic Web, the approach taken in [126] is
not completely satisfactory for the following reasons:

– Blank node construction in rule heads has been largely ignored, especially the dif-
ferent modes of blank node construction as pointed out by [34].

– This approach inherits the weakness of SPARQL concerning negation: implicit
negation as failure is provided by the combination of the OPTIONAL directive and
the unbound predicate. For newcomers to the language this feature is hard to dis-
cover, and should be better declared as what it is.

– The expressivity of SPARQL graph patterns is limited when compared to languages
that allow possibly recursive path expressions such as Versa on RDF graphs or
Conditional XPath[111, 110] and Xcerpt on XML documents. This limitation is
obviously inherited by all rule extensions to SPARQL.

– Rule extensions of SPARQL remain pure RDF query languages and therefore can-
not deal with the versatility requirements for modern Web query languages.

1.7 Versatile Semantics

Having given an informal, example-driven introduction to the language Xcerpt, its eval-
uation principles and intuitive semantics in the preceding sections, this section intro-
duces the precise semantics for Xcerpt query terms through a formal definition of query
term simulation (Section 1.8), and programs through an iterative fixpoint procedure
(Section 1.9). Previous publications on the semantics of Xcerpt have considered the
class of stratified Xcerpt programs only. Section 1.9 extends the semantics of Xcerpt
programs to the class of locally stratified programs, which is a true superset of the set

48 F. Bry et al.

of stratifiable Xcerpt programs, and which is inspired by the notion of local stratifica-
tion in logic programming [52]. In Section 1.10 the well-founded semantics for general
logic programs is adapted to Xcerpt, thereby also giving a semantics to programs that
are not locally stratified. Although not formally proven, we argue that locally stratifi-
able Xcerpt programs have a two-valued well-founded model which coincides with the
model computed by the iterative fixpoint procedure over its local stratification.

While this section transfers the notion of local stratification and well-founded se-
mantics to Xcerpt only, the proposed method can be applied to any other rule-based
language with non-monotonic term negation and disjunction-free heads, that provides
the same interface to terms as Xcerpt does (defined in Section 1.3).

1.8 Versatile Semantics I:
Simulation as Foundation for Versatile Querying

Simulation between Xcerpt terms is inspired by rooted graph simulation [115, 85], but
is by far more involved since Xcerpt terms feature constructs for specifying incom-
pleteness in depth, breadth, and order, allow variables, regular expressions and negated
subterms. This section formally defines a subset of Xcerpt25 variables, descendant
constructs, subterm negation, incompleteness in breadth and with respect to order, mul-
tiple variables, multiple occurrences of the same variable, and variable restrictions. In
comparison to full Xcerpt query terms as described in [68, 133] and for the sake of
brevity, this definition does not include term identifiers and references, non-injective
subterm specifications, optional subterms, qualified descendants, label variables, and
the new syntax for XML attributes. Based on this definition of Xcerpt query, con-
struct and data terms, ground and non-ground query term simulation is defined as the
formal semantics for the evaluation of Xcerpt query terms on semi-structured data.

Definition 2 (Xcerpt query term). Query terms over a set of labels N , a set of
variablesV, and a set of regular expressions R are inductively defined as follows:

– for each label l ∈ N , l{{ }} and l{ } are atomic query terms. l is a short hand
notation for l{{ }}. The formal treatment of square brackets in query terms is
omitted in this contribution for the sake of brevity.

– for each variable X ∈ V, var X is a query term
– for each regular expression r ∈ R, /r/{{ }} and /r/{ } are query terms. /r/ is a

shorthand notation for /r/{{ }}. With L(r) we denote the set of labels matched
by r, i.e. the language defined by the regular expression.

– for each variable X ∈ V and query term t, var X as t is a query term. t is called
a variable restriction for X.

– for each query term t, desc t is a query term and called depth-incomplete or in-
complete in depth.

25 Chapter 1.3 introduces both Xcerpt and Xcerpt query, construct and data terms. In this
section we concentrate on Xcerpt terms, but most of the results and design principles also
apply to Xcerpt terms. We write ”Xcerpt term” to denote the abstract concept of terms in
both Xcerpt and Xcerpt, and ”Xcerpt term” to refer to Xcerpt terms only.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 49

– for each query term t, without t is a query term and called a negated subterm.
– for each query term t optional t is an optional query term.
– for each label or regular expression l and query terms t1, . . . , tn with n ≥ 1,

q1 = l{{ t1, . . ., tn }}

q2 = l{ t1, . . ., tn }

are query terms. q1 is said to be incompletely specified in breadth, or simply
breadth-incomplete, whereas q2 is completely specified in breadth, or simply breadth-
complete.

A variable X is said to appear positively in an Xcerpt query term q, if it is in-
cluded in q not in the scope of a without construct. It appears negatively within q if it
is included within the scope of a without construct. Note that the same variable may
appear both positively and negatively within q – e.g. X within a{{ var X, without

var X }}.

Definition 3 (Xcerpt data terms). An Xcerpt data term is a ground Xcerpt

query term that does not contain the constructs without, optional, desc, regular
expression and double braces.

Definition 4 (Xcerpt construct terms). Xcerpt construct terms over a set of vari-
ablesV and a set of labels L are defined as follows:

– an Xcerpt data term d over L is a construct term
– for each variable X ∈ V, var X is a construct term
– for a construct term c, all c is a construct term
– for a construct term c, optional c is a construct term
– for a construct term c, and a sequence of variables X1, . . . ,Xk ∈ V all c group

by {X1, . . . ,Xk} is a construct term
– for a label l ∈ L and set of construct terms c1, . . . ,cn, l{c1, . . . ,cn} is a construct

term.

In the following, we let D and Q denote the set of all Xcerpt data and query
terms, respectively.

A query term and a data term are in the simulation relation, if the query term
“matches” the data. Matching Xcerpt query terms with data terms is very similar
to matching XPath queries with XML documents – apart from the variables and the
injectivity requirement in query terms. The formal definition of simulation of a query
term with semi-structured data is somewhat involved. To shorten the presentation, we
first introduce some notation:

Definition 5 (Injective and bijective mappings). 26

Let I := {t1
1, . . . , t

1
k }, J := {t2

1, . . . , t
2
n} be sets of query terms and π : I⇒ J be a mapping.

26 This definition of injectivity and bijectivity concerns the subterms – or nodes – of a query term
only. Therefore it is also referred to as node injectivity. In previous publications about Xcerpt,
we have used position injectivity instead, which concerns the edges between parent and child
terms. In the absence of references (as in Definition 4), however, node and position injectivity
are semantically equivalent. Therefore, and for the sake of simplicity, we use node injectivity
in this contribution.

50 F. Bry et al.

– π is injective, if all t1
i , t

1
j ∈ I satisfy t1

i , t1
j ⇒ π(t1

i) , π(t1
j).

– π is bijective, if it is injective and for all t2
j ∈ J there is some t1

i ∈ I such that π(t1
i) =

t2
j .

We use the following abbreviations to reference parts of a query term q:

l(q): the string or regular expression used to build the query term. For a variable v, l(v)
is undefined.

ChildT (q): the set of direct subterms of q
ChildT +(q): the set of positive direct subterms (i.e. those direct subterms which are not

of the form without . . .),
ChildT−(q): the set of negated direct subterms (i.e. the direct subterms of the form

without . . .),
Desc(q): the set of direct descendant subterms of q (i.e. those of the from desc . . .),
S ubT (q): the direct or indirect subterms of q, i.e. all direct subterms as well as their

subterms.
ss(q): the subterm specification of q. It can either be complete (single curly braces) or

incomplete (double curly braces).
vars(q): the set of variables occurring somewhere in q.
pos(q): q′, if q is of the form without q′, q otherwise.

Definition 6 (Label subsumption). A term label l1 subsumes another term label l2 iff
l1 and l2 are strings and l1 = l2, or l1 is a regular expression and l2 is a string such that
l1 matches with l2, or l1 and l2 are both regular expressions and l1 matches with any
label that l2 matches with.

Definition 7 (Ground query term simulation). Let q be a ground query term27 and d
a data term. A relation S ⊆ (S ubT (q)∪ {q})× (S ubT (d)∪ {d}) is a simulation of q into
d if the following holds:

– q S d
– if q := l1{{q1, . . . ,qn}} S l2{d1, . . . ,dm} =: d then l1 must subsume l2, and there must

be an injective mapping π : ChildT +(q)→ChildT +(d) such that qi S π(qi) for all i ∈
ChildT +(q). Moreover, there must not be a q j ∈ ChildT−(q) and dl ∈ ChildT +(d) \
range(π) such that pos(q j) � dl (note the recursive reference to ‘�’ here).

– if q := l1{q1, . . . ,qn} S l2{d1, . . . ,dm} =: d then l1 must subsume l2, and there must
be a bijective mapping π : ChildT +(q)→ ChildT +(d) such that qi S π(qi) for all
i ∈ChildT +(q). We impose no further requirements on the set ChildT−(q) of negated
direct subterms of q. The totality of π already ensures that there is no extension of π
to some element q j ∈ChildT−(q) such that pos(q j) � dl for some dl ∈ChildT +(d)\
range(π). Therefore the semantics of query terms is independent from the presence
of negated direct subterms within breadth-complete query terms.

– if q = desc q′ S d then q′ S d or q′ S d′ for some subterm d′ of d.

We say that q simulates into d (short: q � d) if and only if there is a relation S that
satisfies the above conditions. To state the contrary we write q� d.

27 For the sake of brevity we assume that q does not contain any optional subterms.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 51

Since every Xcerpt data term is also a query term, the above definition of simu-
lation between a query term and a data term can be extended to a relation between pairs
of query terms. For the sake of brevity this full definition of extended ground query term
simulation is given in the appendix of [35].

The existence of a ground query term simulation states that a given data term satis-
fies the conditions encapsulated in the query term. Many times, however, query authors
are not only interested in checking the structure and content of a document, but also
in extracting data from the document, and therefore query terms may contain logical
variables. To formally specify the data that is extracted by matching a query term with a
data term, the notion of non-ground query term simulation is introduced (Definition 8).
Substitutions are defined as usual, and the application of a substitution to a query term
is the consistent replacement of the variables by their images in the substitution.

Definition 8 (Non-ground query term simulation). A query term q with variables
simulates into a data term d iff there is a substitution σ : Vars(q)→D such that qσ
simulates into d.

In some cases query terms are not expressible enough or inconvenient for specifying
a query in the body of a rule. Conjunctions of query terms are needed if more than one
resource is queried and the results are to be joined. Disjunctions of query terms are
convenient to extract data from different resources and wrap them into a common XML
fragment or RDF graph. Finally the absence of data simulating with a given query term
is tested by query negation. The notion of a query combines conjunctions, disjunctions
and negations of query terms:

Definition 9 (Xcerpt query).

– an Xcerpt query term is an Xcerpt query
– for a set of Xcerpt queries q1, . . . ,qn, the conjunction C := and(q1, . . . ,qn), the dis-

junctionD := or(q1, . . . ,qn) and the negation N := not(q1) are Xcerpt queries. If
a variable X appears positively within a qi (1≤ i≤ n) then it also appears positively
within C and D, but negatively within N . If X appears nevatively within qi, it also
appears negatively within C,D and N .

Definition 10 (Xcerpt rule, goal, fact, program). Let q be a query over a set of labels
L, a set of variablesV and a set of regular expressions R and c a construct term over
L and V. Then CONSTRUCT c FROM q END is an Xcerpt rule, GOAL c FROM q END

is an Xcerpt goal, and CONSTRUCT c END is an Xcerpt fact. An Xcerpt program is a
sequence of range-restricted Xcerpt rules, goals and facts.28

The construct term c is called the head of an Xcerpt rule or goal, the query q is called
its body. An Xcerpt fact can also be written as an Xcerpt rule with an empty body. An
Xcerpt rule, goal or fact is called range restricted, if all variables that appear in its head
also appear positively in its body. In a forward chaining evaluation of a program, the
distinction between goals and facts is unnecessary. In a backward chaining evaluation,

28 Since facts and goals are a kind of rules, we refer to Xcerpt programs as a sequence of rules
in the following.

52 F. Bry et al.

however, the goals are the starting point of the resolution algorithm. In contrast to Logic
programming, goals are not a single term only, but an entire rule to ensure answer
closedness of Xcerpt programs. Especially for the task of information integration on
the Web, answer closedness is indispensable.

1.9 Versatile Semantics II:
Negation and Versatile Queries—Local Stratification

While Section 1.8 defines the semantics of single query terms and queries, this section
defines the semantics of Xcerpt rules and programs. Special attention is laid on the
interplay between simulation unification and non-monotonic negation in rule bodies.

The problem of evaluating rule based languages with non-monotonic negation has
received wide-spread attention throughout the logic programming community (See [10]
and [31] for surveys). A multitude of semantics have been proposed for such languages
(program completion semantics, stable-model semantics [74], well-founded semantics
[147], inflationary semantics [104]). Especially the well-founded and stable-model se-
mantics have been found to comply with the intuition of program authors and are there-
fore implemented by logic programming engines such as XSB [132] and DLV [61].
Several classes of logic programs have been defined for which some of the above men-
tioned semantics coincide. Among these classes are definite programs, stratifiable pro-
grams, locally stratifiable programs [129] and modularly stratifiable programs [131].
The well-founded semantics and the stable model semantics coincide on the class of
locally stratifiable programs.

In the following we introduce stratifiable and locally stratifiable Xcerpt programs.
In adapting these concepts to Xcerpt, one has to pay close attention to the differences
introduced by the richer kind of unification employed.

Definition 11 (Stratification). A stratification of an Xcerpt program P consisting of the
rules r1, . . .rn is a partitioning of r1, . . .rn into strata S 1, . . . ,S k, such that the following
conditions hold:

– All facts are in S 1.
– If a rule r1 contains a positive query term q that simulates with the contstruct term

c of another rule r2, then r1 positively depends on r2, and r1 is in the same or a
higher stratum than r2.

– If a rule r1 contains a negated query term not q such that q simulates with the
construct term c of another rule r2, then r1 negatively depends on r2 and is in a
strictly higher stratum than r2.

Given the stratification of a program P, its semantics can be defined by the iterative
fixpoint procedure suggested for general logic programs. For finite programs, stratifica-
tion is decidable. However, there are Xcerpt programs, such as the one in Listing 1.21,
that are not stratifiable, but which may be evaluated bottom up.

Listing 1.21 is a formulation of the single source shortest path problem over a di-
rected social graph, which is given by the facts (lines 1 to 5) in Listing 1.21 and which

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 53

is depicted in Figure 1.3. The program computes for each node n in a directed graph the
shortest distance to some source node s, in this case anna.

This program uses a slight extension of Xcerpt’s term syntax. The term

Acquaintance[anna, ≤ i]

simulates with the data terms Acquaintance[anna, j] if and only if i and j are
natural numbers and j ≤ i. Furthermore, the terms Acquaintance[anna, ≤ i] and
Acquaintance[anna, i] simulate with Acquaintance[anna, > j] if and only
if i > j. The symbol ‘>’ can be interpreted as a hint by the programmer to the evaluation
engine, that a rule can only be used to derive atoms with integer values greater than a
certain natural number. The example in Listing 1.21 serves to illustrate the problems and
challenges for defining the semantics and evaluation of possibly recursive rule programs
with non-monotonic negation and rich unification. These challenges are encountered
independent of the specific kind of rich unification, be it SPARQL query evaluation,
Xcerpt query term simulation, or XPath query evaluation.

Fig. 1.3 Social graph corresponding to the facts in Listing 1.21

Anna Chuck

Bob

To see that Program P in Listing 1.21 is not stratifiable, consider the negated query
term not q, with q = Acquaintance [var P, ≤ var D] in the body of the only
rule of P. q simulates with the head h = Acquaintance [var P, D + 1 > 0] of
the same rule. Thus the rule should be in a strictly higher stratum than itself, which is a
contradiction.

CONSTRUCT knows[anna, bob] END
2 CONSTRUCT knows[bob, chuck] END
CONSTRUCT knows[anna, chuck] END

4 CONSTRUCT knows[chuck, anna] END

6 CONSTRUCT Acquaintance[anna, 0] END

8 CONSTRUCT
Acquaintance[var P, var D + 1]

10 FROM
and (

12 Acquaintance[var P’, var D],
knows[var P, var P’],

14 not (Acquaintance[var P, ≤ D])
END

Listing 1.21. Single source shortest path problem for the source node ’anna’

54 F. Bry et al.

To see that P can nevertheless be evaluated in a bottom up manner, consider a
ground instance g of the recursive rule in Listing 1.21. The term constructed by the
head of g contains an integer value i which is exactly by one larger than the integer
values of terms that may simulate with (negated or positive) query terms in the body of
g. Thus, in a bottom up evaluation of the program, we may first compute the fixpoint
of the program considering only terms containing the integer value 0, followed by the
fixpoint computation for terms with the value 1, and so on. Since a valid rule application
will only construct terms containing the value n + 1 using terms with values n, it may
never be the case that the body of a rule once found true is invalidated by the derivation
of a fact at a later point in time. Figure 1.4 visualizes the resulting stratification.

Fig. 1.4 Local stratification for Listing 1.21

Acquaintance[anna,1]

knows[chuck,anna]

Acquaintance[chuck,0]

Acquaintance[anna,≤0]

Acquaintance[bob,1]

Acquaintance[anna,0]

knows[anna,bob] Acquaintance[bob,≤0]

+ -

+

+
-

Acquaintance[bob,2]

+

+ -

Acquaintance[bob,≤1]

+

 +

P1

P2

P3

+

+

With the concept of local stratification we distinguish the class of locally stratifiable
Xcerpt programs, which is a true superset of the class of stratifiable Xcerpt programs,
and thereby introduce a more general characterization of Xcerpt programs that guaran-
tees that these programs can be evaluated by an iterative fixpoint procedure in a bottom
up manner. A local stratification partitions the Herbrand universe of an Xcerpt program
rather than the rules of the program into strata.

Definition 12 (Xcerpt Herbrand universe, Xcerpt Herbrand base). The Herbrand
universe of an Xcerpt program P are all Xcerpt data terms that can be constructed over
the vocabulary of P.29 Since Xcerpt programs consist only of terms without predicate
symbols, the Herbrand base of P is defined to be the same as the Xcerpt Herbrand
universe.

Note that the above definition deviates from the Herbrand universe for logic pro-
grams as follows: While Prolog function symbols have always an associated arity,
Xcerpt labels may be used to construct terms with arbitrary many children. Thus a
program over the vocabulary V = {a} has the Herbrand universe { a{ }, a{ a }, a{
a{ a } }, a{ a, a } . . .}. In the following discussion of the well-founded semantics

29 The vocabulary of P is the set of labels appearing in P.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 55

we will, however, not consider the entire Herbrand universe for computing unfounded
sets, but restrict them to the terms that occur in ground instances of the rules.

Definition 13 (Local stratification). A local stratification of an Xcerpt program P is a
partitioning of the Herband universe of P into strata such that the following conditions
hold:

– All facts in P are in stratum 1.
– If a term q appears positively within the body of a rule R in the Herbrand instan-

tiation of P, and c appears in its head, then q must be in the same or in a higher
stratum than c.

– If a term q appears negatively within the body of R and c in its head, then q is in a
strictly higher stratum than c.

– If a term q simulates into a term c, then q is in the same or in a higher stratum than
q.

The definition of local stratification of Xcerpt programs coincides with the defini-
tion of local stratification for general logic programs in the first three points. The fourth
condition is necessitated by the richer unification relation induced by simulation uni-
fication in Xcerpt. While in logic programming two ground terms unify if and only if
they are syntactically identical, this is not true for Xcerpt terms (consider e.g. the terms
a{{ }}, a[[]] and a{ b }).

Example 1.22 underligns the necessity of the fourth condition in Definition 13: By
Definition 13, Program P in Listing 1.22 is not locally stratifiable, but it would be,
if the last condition were not part of the definition. In fact, the semantics for P is un-
clear, and it cannot be evaluated by an iterative fixpoint procedure. Figure 1.5 shows the
dependency graph for Listing 1.22, which contains a cycle including a negative edge.
The dependency graph for a ground Xcerpt program simply includes all rule heads and
body literals as nodes, and all simulation relations between query and construct terms
and negative and positive dependencies of rule heads on their body literals. The depen-
dency graph for a non-ground Xcerpt program is the dependency graph of its Herbrand
Instantiation. An Xcerpt program P is locally stratifiable, if its dependency graph does
not contain any negative cycles (i.e. cycles including at least one negative edge).

CONSTRUCT a{ b } FROM not(c{{ desc b{{ }} }}) END
2 CONSTRUCT c[b] FROM a{{ }} END

Listing 1.22. An Xcerpt program that is not locally stratifiable

Since Listing 1.22 is not locally stratifiable, its semantics cannot be defined by a
fixpoint procedure over its stratification. Similar programs – except for the simulation
relation – have been studied in logic programming. For example, the logic program
{(a← ¬c), (c← a)} is not locally stratifiable, still the well-founded semantics of the
program is given by the empty interpretation {}. To give Xcerpt programs a semantics,
no matter if they are locally stratified or not, we adapt the well-founded semantics to
Xcerpt programs in the Section 1.10.

56 F. Bry et al.

Fig. 1.5 Dependency graph for Listing 1.22

a{ b }

c[b]

c{{ desc b }}

a{{ }}

−

+

��

1.10 Versatile Semantics III: Negation and Versatile
Queries—Well-Founded Semantics

For the sake of simplicity this section only considers Xcerpt programs without the
grouping constructs all. Moreover queries are assumed to be either simple query terms,
negations of query terms or conjunctions of positive or negated query terms. In the ab-
sence of grouping constructs or aggregate functions, a rule involving a disjunction in
the rule body can be rewritten into an equivalent set of rules that are disjunction free.
Also negations of conjunctions can be rewritten to conjunctions with only positive or
negative query terms as conjuncts.30

Definition 14 (Xcerpt literal). An Xcerpt literal is either an Xcerpt data term or the
negation not d of some Xcerpt data term d. For a set S of Xcerpt literals, pos(S)
denotes the positive literals in S , neg(S) the negative ones.

Definition 15 (Consistent sets of Xcerpt literals). For a set of Xcerpt literals S we
denote with ¬ · S the set of terms obtained by negating each element in S . Let p and
n =not d be a positive and negative literal, respectively, and let S be a set of literals.
p and S are consistent, iff not p is not in S . n and S are consistent iff d is not in S . S
is consistent, if it is consistent with each of its elements.

Definition 16 (Partial interpretation of an Xcerpt program (adapted from [146])).
Let P be an Xcerpt program, and HB(P) its Herbrand base. A partial interpretation I
is a consistent subset of HB(P)∪¬ ·HB(P).

Definition 17 (Satisfaction of Xcerpt terms). Let I be a partial interpretation for a
program P. The model relationship between I and an Xcerpt term is defined as follows.

– Let q be a positive query term.
– I satisfies q (I � q) iff there is some data term d ∈ pos(I) with q � d
– I falsifies q (I 2 q) iff for all data terms d ∈ HBP holds q � d⇒ d ∈ neg(I).
– Otherwise, q is undefined in I.

– Let q = not q′ be a negative query term.
– I satisfies q (I � q) iff for all data terms d holds q′ � d⇒ d ∈ neg(I).

30 This normalization of Xcerpt rules is similar to finding the disjunctive normal form of logical
formulae.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 57

– I falsifies q (I 2 q) iff there is some data term d ∈ pos(I) with q′ � d.
– Otherwise, q is undefined in I.

Definition 18 (Satisfaction of Xcerpt queries). Let I be a partial interpretation and q
a conjunction of Xcerpt terms. I satisfies q if I satisfies each conjunct in q.31

Definition 19 (Xcerpt Unfounded Sets (adapted from [146])). Let P be an Xcerpt
program, HBP its Herbrand base, and I a partial interpretation. We say A ⊆ HBP is an
unfounded set of P with respect to I if each atom p ∈ A satisfies the following condition.
For each instantiated rule R of P with head p and body Q at least one of the following
holds:

1. For some positive literal q ∈ Q holds that for all d ∈ HBP holds q � d⇒ d ∈ A∨d ∈
neg(I).

2. Some negative literal q ∈ Q is satisfied in I.

The greatest unfounded set of P with respect to an interpretation I is the union of
all unfounded sets of P with respect to I.

Definition 20 (Well-founded semantics of an Xcerpt program). The well-founded
semantics of an Xcerpt program P is defined as the least fixpoint of the operator
WP(I) := TP(I)∪¬ ·UP(I) where UP and IP are defined as follows:

– a postive Xcerpt literal l is in TP(I) iff there is some ground instance Rg of some
rule R in P with construct term l and query Q such that I � Q.

– UP(I) is the greatest unfounded set of P with respect to I.

Consider the program P in Listing 1.23. Its Herbrand base is HB(P) = {a{ }}. Start-
ing with the empty interpretation I0, TP(I0) = ∅, UP(I0) = ∅, and I1 := WP(I0) = ∅ = I0.
Thus the well-founded semantics of P is ∅.
CONSTRUCT a{ } FROM not(a{{ }}) END

Listing 1.23. Simple Negation through recursion and simulation (A)

1 CONSTRUCT a{ } FROM not(a{{ }}), not(b{ }) END
CONSTRUCT a{ b } END

Listing 1.24. Simple Negation through recursion and simulation (B)

As a second example, consider program Q in Listing 1.24 with Herbrand base
HB(Q) = { a{ b }, a{ }, b{ }}. We obtain the following fix point calculation:

– I0 = ∅

– TQ(I0) = { a{ b } }

– UQ(I0) = { a{ }, b{ } }

– I1 = WQ(I0) = { a{ b }, not a{ }, not b{ } }

– TQ(I1) = { a{ b } }

31 Xcerpt rules are assumed to be in disjunctive normal form. Therefore disjunctions need not be
considered here. Satisfaction of negations is treated in Definition 17 above.

58 F. Bry et al.

– UQ(I1) = { a{ }, b{ } }

– I2 = WQ(I1) = { a{ b }, not(a{ }), not(b{ }) } = I1

As a final example, consider the stratified and locally stratified program R in Listing
1.25 with Herbrand universe HB(R) = { b{ }, a{ b }, a{ }, c{ c } }.

CONSTRUCT b{ } FROM not(a{{ }}) END
2 CONSTRUCT a{ b } FROM not(c{{ }}) END
CONSTRUCT a{ } FROM not(c{{ }}) END

4 CONSTRUCT c{ c } END

Listing 1.25. Simple Negation through recursion and simulation (C)

We obtain the following fixpoint calculation:

– I0 = ∅

– TR(I0) = { c{ c } }

– UR(I0) = ∅

– I1 = WR(I0) = { c{ c } }

– TR(I1) = { c{ c } }

– UR(I1) = { a{ }, a{ b } }

– I2 = WR(I1) = { c{ c }, not(a{ }), not(a{ b }) }

– TR(I2) = { c{ c }, b{ } }

– UR(I2) = { a{ }, a{ b } }

– I3 = WR(I2) = { c{ c }, b{ }, not(a{ }), not(a{ b }) }

– TR(I3) = TR(I2)
– UR(I3) = UR(I2)
– WR(I3) = WR(I2)

It is immediate that the well-founded semantics of R coincides with the fixpoint
calculated over the stratification of R – a fact that is true for every locally stratified
Xcerpt program.

Theorem 1. For a locally stratified Xcerpt program P, the well-founded semantics of P
is total and coincides with the fixpoint calculated over the local stratification of P.

In [128] the class of weakly stratified logic programs is introduced, which is a true
superset of the class of locally stratified programs and has a well-defined, two-valued
intended semantics. Put briefly, to decide whether a logic program is locally stratifiable
one considers the dependency graph constructed from the entire Herbrand instantiation
of the logic program. In contrast, the decision for weak stratification is based on the
absence of negative cycles within the dependency graph constructed from a subset of
the Herbrand interpretation. This subset excludes instantiated rules containing literals of
extensional predicate symbols that are not given in the program. The standard example
for a program that is weakly stratified but not locally stratified is the following:

win(X) : −move(X,Y)∧¬win(Y)

A position X is a winning position of a game, if there is a move from X to position
Y and Y is a losing position. As mentioned above, weak stratification depends on the

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 59

extension of extensional predicate symbols (move in the above example), and the pro-
gram above is only weakly stratifiable in the case that move has an acyclic extension.
Obviously this program can be formulated also as an Xcerpt program, and the class of
locally stratified Xcerpt programs could be extended to the class of weakly stratified
Xcerpt programs in a straight-forward manner. We leave the formal definition of weak
stratification for Xcerpt and the question on how the richer kind of unification employed
in Xcerpt affects the applicability of weak stratification for future work.

1.11 Versatile Semantics III:
A Relational Perspective on Versatile Queries

Versatile queries form the central innovation of XML and RDF query languages, as
illustrated in the previous sections: They allow the query author to introduce controlled
forms of incompleteness or “don’t cares” such as “here don’t care about the order” or
“here don’t care about the path between two nodes as long as there is one”. They are
controlled in that they have to be explicitly requested by the query user and in that they
have a precise logical semantics (rather than being based on approximation or ranking
as in Web search engines).

The logical semantics of versatile queries is the focus of the following section.
Rather than directly assigning meaning to versatile Web queries using simulation (Sec-
tion 1.8) and investigating the affects on the semantics of rule languages build upon
such queries (Section 1.9 and Section 1.10), we show how to reduce versatile queries
to standard first-order logic, more precisely to Datalog with negation value invention.
This is an interesting and well understood fragment of first-order logic: though compu-
tationally as expressive as full first-order logic it provides more controlled means for the
creation of new terms (or “complex values”) and can be easily mapped to SQL which
provides similarly constrained means for value creation.

1.11.1 Contributions

Casting the semantics of versatile queries in general and Xcerpt in particular in terms
of Datalog allows us to compare and contrast them with previous database languages.
In particular, we use this logical semantics of Xcerpt

1. to study the complexity and expressiveness of Xcerpt and several sub-languages of
Xcerpt. In particular, we show that
a) Xcerpt expresses all computable queries modulo copy removal (Section 1.11.4);
b) the same applies already to stratified Xcerpt (Section 1.11.4);
c) weakly-recursive Xcerpt has the combined -complete. Intuitively, a

weakly-recursive Xcerpt program is an Xcerpt program that limits recursion to
rules that do not increase either the nesting depth or the breadth. Thus we can
rearrange the program to postpone value invention to the end of query evalua-
tion and do not suffer complexity penalties for value invention (Section 1.11.4);

d) non-recursive Xcerpt on tree data has data complexity in 1 and program com-
plexity -complete (Section 1.11.4).

60 F. Bry et al.

2. to implement versatile queries on top of relational databases by translating them
into SQL (Section 1.11.5). For such a translation to be efficient, we also need a rela-
tional representation of versatile graph-shaped data that is both space efficient and
provides efficient access to graph properties such as edge traversal or reachability.
Such a representation (by means of a novel labeling scheme) with linear space and
time complexity for evaluating acyclic Web queries on many graphs is provided by
, see Section 1.13.

3. to provide a common logical foundation for versatile queries. This allows us,
as shown in Section 1.11.6, to integrate different Web query languages such as
XQuery, SPARQL, and Xcerpt and to evaluate them with the same query engine.
This differs notably from other approaches for the integration of Web query lan-
guages where the evaluation of the integrated languages remains separate and en-
ables cross-language optimization and planning. Yet, thanks to the novel graph
representation with , we can evaluate each language as efficient as the best
known approaches limited to that language.

1.11.2 Preliminaries

XML and RDF Data as Relational Structures Following [16], we consider an XML
tree as a relational structure: An XML tree is considered a relational structure T over
the schema ((Labλ)λ∈Σ , Rchild, Rnext-sibling, Root). The nodes of this tree are labeled
using the symbols from Σ which are queried using Labλ (note, that λ is a single la-
bel not a label set). The parent-child relations are represented by Rchild. The order
between siblings is represented by Rnext-sibling. The root node of the tree is identified
by Root. There are some additional derived relations, viz. Rdescendant, the transitive,
Rdescendant-or-self the transitive reflexive closure of Rchild, Rfollowing-sibling, the transitive
closure of Rnext-sibling, Rself relating each node to itself, and Rfollowing the composition of
R−1

descendant-or-self ◦Rfollowing-sibling ◦Rdescendant-or-self. Each node n is also related by Rarity
to |{n′ : Rchild(n,n′)}|. Finally, we can compare nodes based on their label using � which
contains all pairs of nodes with same label, based on their node identity using = which
relates each node only to itself, and based on their structure deep equality =deep which
holds for two nodes if there exists an isomorphism between their respective sub-trees.
The above ignores some XML specifics such as attributes, comments, or processing
instructions but these can be added easily. For also allow an all-distinct(n1, . . . ,nk) con-
straint as generalisation of = from two nodes to k nodes.

For example, the XML document (using subscripts to indicate node identities)

<a>1 2 <c>3<c/>4</c>

is represented as T = (Laba = {1}, Labb = {2}, Labc = {3,4}, Rchild = {(1,2), (1,3), (3,4)},
Rnext-sibling = {(2,3)}, Root = {1}) over the label alphabet {a,b,c}. All other relations can
be derived from this definition.

In some contexts, a graph view of XML data is preferable as chosen in the descrip-
tion of Xcerpt in Section 1.4. This view does not affect the signature of the relational
structure32, but adds additional pairs of nodes to the extensions of Rchild and Rnext-sibling

32 Though we might obviously also choose to provide both views of the XML data simultane-
ously by additional relations instead of modified extensions of the existing ones.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 61

and all relations derived from them. Say we want to treat ID/IDREF links like child
relations resulting from element nesting in the XML document. This adds additional
pairs of referencing and referenced node to Rchild.

In the following, we choose this graph view of XML unless explicitly stated other-
wise. We also allow unions of such structures, i.e., graphs consisting in multiple con-
nected components each with its own root node (graph view of “XML forests”).

An RDF graph can be represented similarly as a relational structure. The main dif-
ferences are the lack of order, the addition of edge labels, and the presence of node types
such as literal, blank node, and resource: An RDF graph is considered a relational struc-
ture T over the schema ((Labλ)λ∈Σ , , ,Edge,Literal,Blank,Named). As in the case
of XML, Labλ provides labels from Σ = U∪L, but labels both nodes and edges. A label
is either an URI or a literal. Nodes are typed by the three characteristic relations Edge,
Literal, Blank, and Named into edges, literals, blank nodes, and named resources. The
four sets are pairwise disjoint. Following [125], we represent labeled edges as first class
elements of the domain and provide separate relation for navigating from the source
node of an edge to that edge () and from that edge to its sink () node. There
are some additional derived relations, viz. Rchild = ◦ , Rλchild = ◦ Labλ ◦
and R(λ)

descendant the transitive closure of R(λ)
child. Each node n is also related by Rarity to

|{e′ : n e′)}| and each edge e to |{n′ : e n′)}|. Finally, we can compare nodes and
edges with the same equality relations as in the XML case.

For example, the following RDF graph (using subscripts to indicate node or edge
identities)

1 @prefix ex: <http://example.org/libraries/#> .
@prefix bib: <http://www.edutella.org/bibtex#> .

3 ex:smith20051 ex:isPartOf2 [3 a4 bib:Journal5 ;
bib:number6 "11"7; bib:name8 "Computer Journal"9] ;

is represented as T = (Labex:smith2005 = {1}, Labex:isPartOf = {2}, Labrdf:type = {4},
Labbib:Journal = {5}, Labbib:number = {6}, Lab11 = {7}, . . . , = {(1,2), (3,4), (1,6), (1,8)},

= {(2,3), (4,5), (6,7), (8,9)}, Edge = {2,4,6,8}, Literal = {7,9}, Blank = {3}, Named =

{1,5}). All other relations can be derived from this definition.

Datalog with Value Invention For investigating the formal properties of languages
with versatile queries and for implementing them in a relational database, we use Data-
log with negation and value invention (short Datalog¬new) as a convenient, well-studied
fragment of first-order logic [2]. Datalog¬new extends Datalog with negation and a means
for creating new values.

Rule bodies are as in standard Datalog¬, though we also allow disjunction in rule
bodies. Rule heads are extended with conjunction and a means for value invention. We
use a value invention term new(x0, x1, . . . , xn), i.e., a function that maps each binding
tuple for the invention variables x0, . . . , xn to a unique new value. We will usually use
some unique constant c domain for x0 to distinguish different value invention terms. In
this case, we write also newc(x1, . . . , xn). It is easy to see that we can transform such
value invention terms to the notation from [2]. In addition to the simple value invention,
we also add a deep copy or clone facility. The deep clone term deep-copy(x0, x1, . . . , xn)

62 F. Bry et al.

is also a function on the binding tuples of x0, . . . , xn that returns a unique new value t, but
also adds t to all unary relations that contain xn and a pair (t, t′) to each binary relation
containing a pair (xn, x′) where t′ = deep-copy(x0, x1, . . . , xn−1, x′).33

For convenience, we allow conditionals in the head: some part of the head may
depend on whether some variables are bound or not. A conditional rule has the form h
∧ if X then hc1 else hc2 ←− b and can be rewritten to rules without conditional
constructions as follows:

h ∧ hc1 ←− b ∧ bound(X).
2 h ∧ hc2 ←− b ∧ not(bound(X)).

Answer variables are variables that occur in the head outside of the condition of a
conditional expression.

The usual safety restrictions for Datalog¬ apply to ensure that all rules are range-
restricted, see [2]: For each negation, all answer variables must occur also in a positive
expression in the rule body. For each disjunction, all nested expressions have the same
answer variables. Finally, each answer variable must also occur in the body.

Adapting the notation of [88], we call an invention atom an atom containing new
terms. The relation name of such an atom is called an invention relation name. A rule
is a non-invention rule, if it contains no invention atom in the head, otherwise it is an
invention rule.

1.11.3 Logical Semantics for Xcerpt

In Section 1.8, we give a semantics for versatile Xcerpt queries by using the notion
of simulation. Though simulation provides us with an intuitive, concise notion for
the semantics of Xcerpt queries, it is a non-standard notion specifically designed for
Xcerpt. Here, we choose a different approach: a semantics based on Datalog¬new, a well-
understood and extensively investigated fragment of standard first-order logic.

To keep the presentation focus on the salient points of the translation, we will only
consider a slightly simplified version of Xcerpt queries (a logical semantics for full
Xcerpt is given in [70, 68]). Specifically, we omit optional as well as sub-term negation
(without) from query terms as they can be rewritten the queries with top-level nega-
tion (not), though potentially at exponential cost. We also omit construction of ordered
terms, position, and label variables. Regular expressions to limited to * as label wild-
card (matching nodes with any label). For simplicity, we assume in the following that
term identifiers and variables are disjoint.

Query Terms To gently introduce the translation for Xcerpt, we start again with a few
examples. In this section, we consider only query terms. Recall that Xcerpt query terms
serve to select data from the input graph and to provide bindings for any contained
variables. Intuitively, a query term can be seen like a pattern or example for the data to
be selected. For details on Xcerpt query terms see Section 1.4. The translation of basic
query terms is fairly straight-forward:

conference{{ desc paper{{ author{{}} }} }}

33 For cyclic graphs, each node is cloned only once using standard memoization.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 63

is translated to

1 Root(v1) ∧ Labconference(v1) ∧ Rdescendant(v1, v2) ∧ Labpaper(v2) ∧ Rchild(v2,

v3) ∧ Labauthor(v3).

We ask for root nodes (bound to v1) with label conference and their descendants (bound
to v2) with label paper. For these descendants we are also interested in authors.

The previous example contains only partial query terms with a single sub-term each.
Total query terms are translated very similarly but with an additional constraint on the
arity of the respective node. For instance, paper{ author{{ }} } (where paper is
total rather than partial as above) is translated to

Labpaper(v2) ∧ Rarity(v2, 1) ∧ Rchild(v2, v3) ∧ Labauthor(v3).

If we consider terms with more than one sub-term, we have to distinguish or-
dered and unordered terms. In an unordered term such as paper{{ author{{ }},

title{{ }} }} multiple sub-terms lead to node inequality constraints:

Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v2, v4) ∧ Labtitle(v4) ∧
v3 , v4.

In an ordered term such as paper[[author{{ }}, title{{ }}]] multiple sub-
terms lead to order constraints:

Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rfollowing-sibling(v3, v4) ∧ Labtitle

(v4).

Finally, Xcerpt allows multiple occurrences of query variables and requires that all
occurrences are structurally (or deep) equal. For instance, the following Xcerpt term

1 conference{{ desc paper{{ var X → author }}, var X }}

is translated to

1 Root(v0) ∧ Labconference(v0) ∧ Rchild(v0,v1) ∧ Rdescendant-or-self(v1, v2) ∧

Labpaper(v2) ∧ Rchild(v2, v3) ∧ Labauthor(v3) ∧ Rchild(v1, v4) ∧ v1 , v4
∧ v3 =deep v4.

Notice also, how we split the Rdescendant relation used above into Rchild and Rdescendant-or-self
relations to allow for the inequality constraint amidst the children of conference.
Though in this case, we can observe that bindings of v1 and v4 can never be the same,
as bindings for v1 must be labeled paper and bindings of v4 (since it is deep equal to
v3) author. Therefore, we can simplify to

1 Root(v1) ∧ Labconference(v1) ∧ Rdescendant(v1, v2) ∧ Labpaper(v2) ∧ Rchild(v2,

v3) ∧ Labauthor(v3) ∧ Rchild(v1, v4) ∧ v3 =deep v4.

To provide an easier to grasp manner in which denote more complex Datalog¬new
expressions we introduce a graphical notation for queries (that also needed later to
define structural properties queries). The two last Datalog¬new expressions are shown in
Figure 1.6.

This representation of queries as graphs is used throughout this section and Sec-
tion 1.13: Query variables are represented as nodes with labels. Root constraints are
denoted by an incoming arrow. Two nodes are connected if there is an atom involving

64 F. Bry et al.

Fig. 1.6 Translation of Xcerpt variables with =deep

0

1

2

3

child
desc-or-self

ch
ild

4

child

,

=deep

1

2

3

child

de
sc

en
da

nt

4

child

,

=deep

conference

paper

author

conference

paper

author

the two variables. The edge is labeled with the respective relation name. Answer vari-
ables are marked by darker rectangles whereas normal variables are indicated by lighter
circles.

Formally, we define the translation of Xcerpt query terms to Datalog¬new expres-
sions by means of the tqterm function shown in Table 1.7. Xcerpt contains two context-
sensitive features: multiple occurrences of Xcerpt variables as well as references (de-
fined using @ and referenced using ˆ). Occurrences of Xcerpt variables and references
are managed in a environment E that contains always the Datalog variable associ-
ated with the last occurrence of an Xcerpt variable or reference (if there is any). With
E[X← v] we denote the assignment (possibly overwriting existing values) of X to v in
E. Otherwise, the translation function is defined by structural recursion over the Xcerpt
query term grammar. It returns for each Xcerpt term the Datalog¬new expression cor-
responding to the given term as well as the modified environment and the top-level
Datalog¬new variable. The top-level variable is needed to express the different semantics
of ordered versus unordered term lists.

The translation function tqterm is given in three parts, the first showing the trans-
lation of terms with sub-term specification, the second the translation of variables and
references, and the third the remaining base cases. A term with sub-term specification
is translated by assigning a new Datalog variable v′, adding atoms for any label restric-
tion, and translating all its sub-terms. The top-level variables returned by the translation
of its sub-terms are collected and associated with v′: If it is an ordered term, the top-
level variable of the first child is connected to v′ with Rchild, the remaining chained with
successive Rfollowing-sibling relations (which imply that they are also children of v′). If
it is an unordered term, all top-level variables are connected to v′ using Rchild and an
all-distinct constraint between all top-level variables is added.

Variables and references are translated roughly in the same way: If the environment
already contains a Datalog variable for the Xcerpt variable or reference, an equality
constraint between the two variables is added. The environment is updated in any case
(thus only linear many equality constraints are created). Variables and references differ
in the choice of the equality: Variables result in a structural or deep equality constraints

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 65

query term Datalog¬new expression

tqterm(E)〈λ{{t1, . . . , tn}}〉 = (En,v′,Labλ(v′) ∧ F1 ∧ . . . ∧ Fn ∧ Rchild(v′,v1) ∧ . . . ∧
Rchild(v′,vn)∧all-distinct(v1, . . . ,vn))
where v′ new variable

(E,v,F) = tqterm(E,v′)〈t1〉
...

(En,vn,Fn) = tqterm(En−1,v′)〈tn〉
tqterm(E)〈λ{t1, . . . , tn}〉 = (E′,v′,F′∧Rarity(v′,n))

where (env′,v′,F′) = tqterm(E,v)〈λ{{t1, . . . , tn}}〉
tqterm(E)〈λ[[t1, . . . , tn]]〉 = (En,v′,Labλ(v′) ∧ F1 ∧ . . . ∧ Fn ∧ Rchild(v′,v1) ∧

Rfollowing-sibling(v1,v2)∧ . . .∧Rfollowing-sibling(vn−1,vn))
where v′ new variable

(E1,v1,F1) = tqterm(E,v′)〈t1〉
...

(En,vn,Fn) = tqterm(En−1,v′)〈tn〉
tqterm(E)〈λ[t1, . . . , tn]〉 = (E′,v′,F′∧Rarity(v′,n))

where (env′,v′,F′) = tqterm(E,v)〈λ[[t1, . . . , tn]]〉

tqterm(E)〈var X → t〉 = (E′[X← v′],v′,Q∧

(v′ =deep v′′) if (X,v′′) ∈ E
> else

)

where (E′,v′,Q) = tqterm(E,v)〈t〉

tqterm(E)〈var X〉 = (E′[X← v′],v′,

(v′ =deep v′′) if (X,v′′) ∈ E
> else

)

where v′ is a new variable

tqterm(E)〈tid@ t〉 = (E′[tid← v′],v′,Q∧

(v′ = v′′) if (tid,v′′) ∈ E
> else

)

where (E′,v′,Q) = tqterm(E,v)〈t〉

tqterm(E)〈ˆtid〉 = (E′[tid← v′],v′,

(v′ = v′′) if (tid,v′′) ∈ E
> else

)

where v′ is a new variable
tqterm(E)〈desc t〉 = (E′,v1,Rdesc-or-self(v1,v2)∧Q)

where v1 is a new variable
(E′,v2,Q) = tqterm(E,v1)〈t〉

tqterm(E)〈"string"〉 = (E,v′,Labstring(v′)∧Rarity(v′,0)
where v′ is a new variable

Table 1.7. Translating Xcerpt query terms

66 F. Bry et al.

(=deep), references in node equality constraints (=). If we also add label variables (that
are omitted here for conciseness), also label equality constraints (�) are generated, see
[68].

To keep the translation concise, the resulting Datalog¬new expressions are not always
minimal. For instance, we add an atom Rchild followed by a Rdesc-or-self atom even when
there is only a single sub-term (prefixed with desc). However, it is easy to remove
these redundancies, in particular to remove all occurrences of >, Lab*, and to compact
relations where possible.

Construct Terms Construct terms serve in Xcerpt to reassemble new graphs given
variable bindings obtained in related query terms. As above, we start with a few ex-
amples illustrating the translation of Xcerpt construct terms. The following assumes
that we have obtained an environment E from the associated query term containing the
mappings (X,v1) and (Y,v2), i.e., the representative Datalog¬new variable for the Xcerpt
variable X (Y) is v1 (v2). We also abbreviate newi(v1, . . . ,vn) with i(v1, . . . ,vn).

Again translating basic construct terms is fairly straight-forward:

1 authors{ author{ var X }, paper{ var Y, "best" } }

is translated to the following (conjunctive) Datalog¬new rule head:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2()) ∧ Labauthor(1()) ∧ Rchild(2(),
deep-copy3(v1)) ∧ Rchild(1(), 4()) ∧ Labpaper(4()) ∧ Rchild(4(), deep-copy

5(v2)) ∧ Rchild(4(), 6()) ∧ Labbest(6())

Graphically we denote heads of Datalog¬new rules similarly as their bodies (but in blue
hues rather than red ones). Use of query variables for copying and grouping is indicated
by dotted resp. dashed arrows. Figure 1.7 shows the graphical representation of the
above rule head. The rule head specifies that there is a new value to be added to the

Fig. 1.7 Translation of Xcerpt construct term

1

2

3

child

ch
ild

4

5

ch
ild

6

child

child

deep
copy

1

deep
copy

2

authors

author paper

“best”

Root relation. That same value (1()) is labeled authors and stands in Rchild relation

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 67

to two other new values. One of those is labeled author and contains a single child,
the deep copy of the query variable v1. The other is labeled paper and contains two
children, one the deep copy of the query variable v2, the other a new value labeled best.

In the translation, we only give the immediate binary relations Rchild (and Rfollowing-sibling
if considering ordered construct terms). Derived relations can be either automatically
added to each rule head or be derived by additional rules, see [68].

Beyond what is shown in the first example, the main additional feature of construct
terms is the possible presence of grouping expressed using all. The following is a simple
example of such a construct term, where all bindings of X are listed (rather than only
one as above), each wrapped in an author element which are all inside the same authors
element:

1 authors{ all author{ var X } group-by(var X) }

This is translated very similarly as above, but now value invention (and deep copy)
terms depend on query variables. More specifically, each value invention term depends
on the grouping variables in whose scope the corresponding construct term occurs:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2(v1)) ∧ Labauthor(1(v1)) ∧ Rchild(2(v1),
deep-copy3(v1, v1))

Obviously, with nested groupings this becomes more involved as in the following,
final example: Here we create one pair of author and paper elements for each unique
binding of X. Within paper we group all bindings of Y for the current binding of X:

1 authors{ all(author{ var X }, paper{
all var Y group-by (Y), "best" }

3) group-by (X) }

The translation makes the dependence of the terms inside the second grouping on Y and
X explicit:

1 Root(1()) ∧ Labauthors(1()) ∧ Rchild(1(), 2(v1)) ∧ Labauthor(1(v1)) ∧ Rchild(2(v1),
deep-copy3(v1, v1)) ∧ Rchild(1(), 4(v1)) ∧ Labpaper(4(v1)) ∧ Rchild

(4(v1), deep-copy5(v1, v2, v2)) ∧ Rchild(4(v1), 6(v1)) ∧ Labbest(6(v1))

Formally, we define the translation from Xcerpt construct terms to Datalog¬new by
means of the function tcterm shown in Table 1.8. As for query terms, we use an environ-
ment E to store associations between Xcerpt query variables or references and Datalog
variables. Additionally, E also holds the current sequence of grouping variables, which
is initially empty. tcterm returns, similar to tqterm, the updated environment, the top-level
construct variable, and the Datalog¬new (conjunctive) head formula. Again, the defini-
tion is divided in three part. The first case describes the semantics of unordered terms
(ordered terms are omitted here) and empty terms. The second part that of variables
and references and the final third part that of grouping terms. Grouping terms are re-
sponsible for modifying the initially empty sequence of iteration variables E.iter: For its
sub-terms the input E.iter is extended by its grouping variables X1, . . . ,Xn. Thus value
invention (and deep copy) terms inside that grouping term depend also on X1, . . . ,Xn.

Grouping in Xcerpt is always modulo structural or deep equivalence, i.e., all node
invention and deep copy terms produce a new value only for each equivalence class

68 F. Bry et al.

construct term Datalog¬new expression

tcterm(E)〈tid@λ{t1, . . . , tn}〉 = (En,v,Labλ(v)∧Rchild(v,v1)∧C1∧ . . .∧Rchild(v,vn)∧Cn)

where v =

v′ if (tid,v′) ∈ E
id(E.iter) with id new identifier

(Ei,Ci,ni) = tcterm(Ei−1)〈ti〉 with E0 = E[tid← v]
tcterm(E)〈"string"〉 = (E,v,Labstring(v))

where v = id(E.iter) with id new identifier

tcterm(E)〈var X〉 = (E,deep-copy(E.iter,E(X)),>)

tcterm(E)〈ˆtid〉 = (E[tid← v],

v′ if (tid,v′) ∈ E
id(E.iter) with id new identifier

,>)

tcterm(E)〈all t
group-by(X1, . . . ,Xn)〉

= tcterm(E′)〈t〉
where E′ = E with E′.iter = E.iter◦ [E(X1), . . . ,E(Xn)]

Table 1.8. Translating Xcerpt construct terms

modulo deep equal over the binding tuples. In other words, if there are two binding
tuples where the bindings for all grouping variables are deep equal, we only produce a
single new value.

Xcerpt Datalog¬new expression

trXcerpt〈CONSTRUCT head
FROM body END〉

= C←−Q where (E,Q) = tq(∅)〈query〉
C = tc(E)〈body〉

tc(E)〈cterm〉 = root(v)∧C where (E′,v,C) = tcterm(E)〈cterm〉

tq(E)〈and(t1, t2)〉 = (E2, (Q1∧Q2)) where (E1,Q) = tq(E)〈t1〉, (E2,Q) = tq(E1)〈t2〉
tq(E)〈or(t1, t2)〉 = (E′, ((Q1∧ vX = v1)∨ (Q2∧ vX = v2)))

where (E1,Q) = tq(E)〈t1〉, (E2,Q) = tq(E)〈t2〉
E′ = E2[X← vX] for all X with (X,v1) ∈ E1, (X,v2) ∈ E2

tq(E)〈not(t)〉 = (E′,¬(Q)) where (E′,Q) = tq(E)〈t〉
tq(E)〈qterm〉 = (E′,root(r)∧Q)

where (E′,r,Q) = tqterm(E)〈qterm〉

Table 1.9. Translating Xcerpt rules

Queries and Rules Based on the logical semantics for construct and query terms es-
tablished in the previous sections, we can finally conclude the semantics by considering
full Xcerpt rules. Rules are translated using trXcerpt as shown in Table 1.9. It delegates
the translation of rule bodies and heads to different functions which each create root
atoms where necessary.

An Xcerpt rule body is translated using tq which takes care of all top-level disjunc-
tion, conjunction, or negations. Note, that for conjunctions we propagate the environ-
ment returned by the translation of the first operand to the translation of the second

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 69

operand, thus ensuring that matches are deep equal (as within the same query term).
For disjuncts, however, we do not propagate variable mappings, but rename answer
variables (i.e., variables that occur in both disjuncts) to gather bindings from both dis-
juncts into one variable (vX for answer variables X). This assumes that, as usual, that
non-answer variables are standardized apart for each disjunct.

The following proposition is an immediate consequence of the above construction:
Variables can occur negatively only in parts of the query resulting from a negated query
term where the same safety restrictions apply as for Datalog¬new.34

Proposition 1. Let R be a range-restricted Xcerpt rule. Then trXcerpt(R) is a safe
Datalog¬new rule.

It is easy to verify that in each step of the above translations the resulting Datalog¬new
expression is linear in the input query term. Furthermore, each case treats one or more
input constructs. Therefore we can surmise:

Theorem 2. The size of the Datalog¬new expression Q returned by trXcerpt for a given
Xcerpt rule P is linear in the size of P.

To complete the semantics we also need to consider Xcerpt goals. Goals are treated
the same as normal rules, but root nodes of goals are constructed in the relation answer-
root rather than in Root. This also prevents the result of goals to partake in the rule
chaining (observe that rule bodies only match data starting with a node in Root).

Definition 21 (Logical Semantics of Xcerpt). Let P = {R1, . . . ,Rn} be an Xcerpt pro-
gram. Then Pd = trXcerpt(R1)∪ . . .∪ trXcerpt(Rn) is a safe Datalog¬new program. The logi-
cal semantics of P is the relational structure obtained by removing the Root relation and
all references to nodes not reachable from a node in answer-root from the semantics of
Pd (as defined in [2]).

Example of the Full Translation To conclude the discussion of the logical semantics
for Xcerpt, we give a final example of the semantics. The following Xcerpt goal selects
papers containing “Cicero” as author and “puts them in a shelf”.

1 GOAL
shelf{ all var X group-by(var X) }

3 FROM
conference{{

5 var X → paper{{
desc author{{ "Cicero" }} }} }}

7 END

Applying trXcerpt to that rule yields the following Datalog¬new program, also depicted
in Figure 1.8:

1 Root(1()) ∧ Labshelf(1()) ∧ Rchild(1(), deep-copy(v2, v2))

←− Root(v1) ∧ Labconference(v1) ∧ Rchild(v1, v2) ∧ Labpaper(v2) ∧ Rdescendant(v2,

v3) ∧ Labauthor(v3) ∧ Rchild(v3, v4), LabCicero(v4) ∧ Rarity(v4, 0).

34 We use inequalities outside of the translation of negated query terms, but only in a safe manner,
see Table 1.7.

70 F. Bry et al.

Fig. 1.8 Example of rule translation

1

2

1

2

3

4
child

descendant
child

group by

deep copy

conference

paper

author

‘Cicero’

0

shelf

The query variable v2 is used in the head to specify which part of the data to copy and
how often. Recall that deep-copy(v2,v2) indicates that, for each unique binding of v2,
a new node should be created that is a deep copy of v2 itself.

Outlook: Xcerpt The above treatment of Xcerpt is focused on Xcerpt. Though
extending the translation to Xcerpt is not difficult, it requires a number of adjustments
that are briefly summarized in the following.

– Most importantly, the above translation considers only XML data. If we also want
to query RDF data we have to extend the translation rules to the specifics of that
data model. Section 1.11.2 outlines how to represent RDF data in a relational struc-
ture that can be queried using Datalog¬new.

– RDF and Xcerpt distinguish different node types such as blank nodes, named
resources, and literals and contain named edges. All these features require slight
adaptations to the translation. To give a flavor of these adaptations consider the
following Xcerpt query term:

var X {{ foaf:knows → _:1{{ foaf:name → "Julius Caesar"}}
}}

It queries for persons that know someone who is named “Julius Caesar”. Its trans-
lation uses and for named edge traversal (rather than Rchild as for unnamed
edge traversal in XML) and requires each Datalog¬new to be a specific kind of RDF
node or edge.

1 Named(n1) ∧ Labex:anna(n1) ∧ (n1, e1) ∧ Edge(e1) ∧ Labfoaf:knows(e1) ∧

(e1, n2) ∧ Blank(n2) ∧ (n2, e2) ∧ Edge(e2) ∧ Labfoaf:name

(e2) ∧ (e2, n3) ∧ Literal(n3) ∧ LabJulius Caesar(n3)

– Xcerpt contains not just term (there called “graph”) variables as discussed in the
previous sections, but a number of additional variable kinds. Node and predicate
(label) variables can easily be added to the above semantics. Essentially they are
treated the same as label variables in [68]. More challenging are CBD-variables

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 71

that select concise bounded descriptions of a matching node. A concise bounded
description is similar to a term variable in that it binds to a structure (rather than
just to a single label as label variables). But that structure may be only an excerpt
of the actual sub-graph rooted at a matching node: It includes only all paths up to
and including the first named resource on that path. CBD-variables can be added
to the translation without any changes to the target language Datalog¬new as they
can be expressed through recursive Datalog¬new rules. However, such a realisation
is likely to be inefficient. Therefore adding a specific operator for these variables is
preferable.

In the following, we will continue considering only Xcerpt, except for Sec-
tion 1.11.6 where we briefly revisit the integration of Xcerpt and Xcerpt. How-
ever, it is easy to check that all the results below transfer also to Xcerpt as all of
the added or changed features can be expressed in Datalog¬new over relational structures
representing RDF graphs. Also the features can be translated to Datalog¬new expressions
in linear time and space, as in the case of Xcerpt.

This concludes the definition of the logical semantics of Xcerpt by translation to
Datalog¬new. The following sections exploit this semantics to prove complexity and ex-
pressiveness properties of Xcerpt and several sub-languages of Xcerpt (Section 1.11.4)
and to implement Xcerpt on top of relational database (Section 1.11.5).

1.11.4 Expressiveness and Complexity of Xcerpt

From the previous section, we obtain a linear translation of Xcerpt programs to Datalog¬new
programs. Here we show how to use that translation to adapt or extend a number of
existing results on expressiveness and complexity of Datalog¬new to Xcerpt and some
interesting sub-languages of Xcerpt.

Xcerpt: Query Complete First, let us consider full Xcerpt. The above translation es-
tablishes that we can find a Datalog¬new program to compute the semantics of any Xcerpt
program and that this translation is linear. What about the other direction? It turns out,
that we can encode each Datalog¬new program in an equivalent Xcerpt program of at
most quadratic size:

Theorem 3. Xcerpt has the same expressiveness, complexity, and completeness proper-
ties as Datalog¬new (and thus ILOG [88]).

Proof. By the translation above, we can give a Datalog¬new program for each Xcerpt
program.

On the other hand, each Datalog¬new program P can be encoded as an Xcerpt program
P′ preserving the semantics of P in the following way:

Each atom in the body is represented as an ordered, total Xcerpt query term with the
predicate symbol as term label, replacing Datalog¬new variables by Xcerpt variables and
Datalog¬new constants c by "c". The head atom is represented as an ordered, total Xcerpt
construct term, replacing Datalog¬new variables by Xcerpt variables and Datalog¬new con-
stants c by "c". An invention symbol in the head is replaced by the Xcerpt term

72 F. Bry et al.

new[t1, . . . , tn] where t1, . . . tn are the non-invention variables or constants in that head
and new is a unique symbol not otherwise used in the program or data. Thus a resulting
term simulates only with other instances of the same head by virtue of the unique term
label new. Essentially we generate a new term for each unique binding tuple of t1, . . . , tn
(modulo deep equal).

It is easy to see that if P |= p(t1, . . . , tn) then there is an isomorphism κ from Xcerpt
terms with new labels to invention constants such that p[t′1, . . . , t

′
n] can be derived with

the rules in P′, t′i = ti if ti is a normal constant, and t′i = κ(ti) otherwise.
This translation is at worst quadratic in the size of the Datalog¬new program: In-

vention symbols may lead to duplication of variable occurrences, but since only non-
invention variables and constants are ever included this duplication does not lead to
exponential size.

For the following corollary we exploit several results on ILOG [88], a syntactic
variant of Datalog¬new. First, we call two answers equivalent up to “copy removal” if
they differ only in invented values and those invented values are deep or structurally
equivalent. Second we recall the class of (list) constructive queries from [42] which are
designed to capture precisely the queries expressible in languages such as Datalog¬new,
ILOG, or Xcerpt. It coincides with the class of queries where the new domain elements
in the output can be viewed as hereditary finite lists constructed over the domain el-
ements of the input. Hereditary finite lists are lists constructed over a given set U of
“ur-elements” from the input domain such that each element of the list is either from U
or a hereditary finite list over U. With this definitions and respective results on ILOG
from [88] and [43] we obtain that

Corollary 1. 1. Xcerpt is Turing complete. 2. Xcerpt is query complete modulo copy
removal, i.e., it expresses all computable queries modulo copy removal. 3. Xcerpt is
(list) constructive complete.

The reason for the limitation to “modulo copy removal” is that Xcerpt uses deep
or structural equivalence as equivalence relation for grouping and can not distinguish
between two terms that are deep equal.35

This result shows that while Xcerpt is indeed Turing complete that expressive power
is justified as it can express all computable queries modulo deep equal. Since the whole
language is Turing complete, it is worth investigating sub-languages with better com-
putational properties. Before we turn to that question, let us briefly consider the effect
of stratification on expressiveness and complexity:

Stratified Xcerpt: Still Query Complete In the translation above as well as most parts
of Section 1.3 we only consider programs with a limited form of negation, viz. stratified
negation.

Recall the definition of stratified Xcerpt from Section 1.9, here recast using the
dependency graph on Xcerpt rules, as we make use of that notation also for defining

35 This issue is closely related to the issue of lean vs. non-lean RDF graphs as answers in lan-
guages such as SPARQL or RDFLog [38]: That Xcerpt is complete “modulo copy removal”
means that it can not create answers (or groupings) with several instances of the same, struc-
turally equivalent graph, i.e., it can only produce the term equivalent of lean answers.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 73

some sub-languages of Xcerpt below. Given an Xcerpt rule R we define its top-level
query terms as usual: A query terms in R is called top-level if it occurs inside the body
of R nested only inside (arbitrary combinations) of and, or, and not.

Definition 22 (Dependency graph for Xcerpt programs). Let P = R1, . . . ,Rn be an
Xcerpt program. Then the dependency graph D(P) = (N,E) for P is defined as follows:

– The nodes of D(P) are the rules of P.
– There is an edge from Ri to R j in D(P) iff one of the top-level query terms q of Ri

simulates with the construct term of R j. The edge is negative if q occurs inside a
not in Ri, otherwise it is positive.

Using the notion of dependency graph, we can define stratified Xcerpt programs as
follows:

Definition 23 (Stratified Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program. Then P is
called stratified, if there is a partitioning of P into strata S 1, . . . ,S k such that there is no
negative edge from an R ∈ S i to an R′ ∈ S j with i < j.

Proposition 2. Let P be a stratified Datalog¬new program. Then the Xcerpt encoding
of P by the proof of Theorem 3 is a stratified (and therefore locally stratified) Xcerpt
program.

Proof. A stratification of P immediately gives us a stratification of its Xcerpt encoding
P′ as any negated query term t in P′ yields from a negated atom in P and the cor-
responding rule can all construct terms in lower strata have top-level labels that are
different from the top-level label of t and thus do not unify. Otherwise the predicate that
construct term is the encoding of depends on the negated atom already in P, yet is in a
lower stratum in contrast to the assumption that P is stratified.

From this result and [43] which shows that stratified Datalog¬new has the same ex-
pressive power as full Datalog¬new and thus can express all computable queries modulo
copy removal we can deduce the same observation for Xcerpt:

Corollary 2. Stratified Xcerpt already expresses all computable queries modulo copy
removal.

In other words, the class of queries expressible in Xcerpt does not shrink if we
constrain ourselves to stratified programs. This contrast to the case of Datalog¬ with-
out value invention where stratification is indeed a limitation on the kind of queries
expressible in the language.

Weakly-Recursive Xcerpt: Finite Models A first decidable sub-language of Xcerpt is
inspired by the notion of weakly acyclic Datalog¬new [88] that is also used extensively,
e.g., in the data exchange setting. Essentially combining recursion and value invention
is dangerous as we can no longer give a bound on the number of ground terms entailed
by a program (in other words the active domain is no longer finite). The notion of
weak acyclicity is a sufficient condition to guarantee finite active domains: We allow
recursion but only if no new values can be created on by the recursive rules. In terms of

74 F. Bry et al.

the dependency graph of the program: we allow cycles in the dependency graph as long
as they are not through invention atoms.

Directly applying this notion to Xcerpt is unsatisfying as every Xcerpt rule generates
new nodes. However, since we generate new nodes modulo deep equality, we only need
to ensure that the number of different terms a program can generate is finite.

Given two terms t and t′. We define the nesting depth of t in t′ as usual: If t = t′ then
the nesting depth is 0. Otherwise, if t′ is nested inside a term t′′ in t with nesting depth
d then t′ has nesting depth d + 1. If t′ occurs several times in t then its nesting depth is
the minimum of the nesting depths of its occurrences.

Definition 24 (Weakly-recursive Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program.
Then P is called weakly-recursive, if for each edge (Ri,R j) in D(P) the following holds:

– The construct term c of R j does not contain any grouping terms (no all).
– For each variable in c the nesting depth of its occurrence in c is less or equal to the

nesting depth in any top-level query term q in Ri that simulates with c.

Weakly-recursive Xcerpt is the fragment of Xcerpt containing all such programs.

Roughly speaking the absence of grouping terms prevents terms with unbounded
breadth and the second condition places a bound on the breadth of terms.

Theorem 4. Weakly-recursive Xcerpt is decidable and the combined complexity of its
evaluation is -complete.

Proof. Weakly-recursive Xcerpt is -hard as we can reduce weakly-recursive
Datalog¬new which is known to be -complete [43] to weakly-recursive Xcerpt
by the construction in the proof of Theorem 3. The resulting Xcerpt programs are in-
deed weakly-recursive, as the construction never creates grouping terms and the nesting
depth only increases when translating invention atoms.

On the other hand, weakly-recursive Xcerpt is also obviously in : For a
given input program we can compute the maximum depth and breadth of a term as well
as the number of distinct labels for a given input term of depth d, breadth b, and number
of distinct labels l.

We generate each of the O(bd · l) different terms that can be generated with these
bounds. Then we compute the Xcerpt program by a standard fixpoint operator, but in-
stead of generating new terms we only mark those terms we have already derived. If
there are no more rules that mark additional terms or all terms are marked, the evalu-
ation terminates. A single derivation step is obviously in NP. Since each step marks at
least one term, there are at most O(bd · l) steps

Non-Recursive Xcerpt: Parallelizable Though weakly-recursive Xcerpt is decidable
it is still fairly expensive to evaluate. An obvious further restriction is to allow no recur-
sion in Xcerpt at all:

Definition 25 (Non-recursive Xcerpt). Let P = R1, . . . ,Rn be an Xcerpt program. Then
P is called non-recursive, if its dependency graph D(P) is acyclic. Non-recursive Xcerpt
is the fragment of Xcerpt containing all such programs.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 75

Though this restriction limits the construction of new values, it turns out that even
the application of a single Xcerpt rule can be potentially expensive due to the use of
deep-equal. For arbitrary Xcerpt terms this is as hard as graph isomorphism for which
no polynomial time algorithms are known. Therefore, we also limit ourselves to trees-
shaped data as input and disallow references in rules.

It turns out that with these two restriction, we obtain a sub-language that is effi-
ciently parallelizable (wrt. data complexity):

Proposition 3. Non-recursive Xcerpt on trees has data complexity in 1 ⊆ and pro-
gram complexity -complete.

Proof. We can obtain a non-recursive Datalog¬ program with deep-equal by 1. com-
puting the (now acyclic) dependency graph, 2. indexing all relations in the head of each
rule with a unique identifier, 3. replacing references to the relation in the body of each
rule with a disjunction referencing the indexed relations of all rules they may depend
on. The resulting program is a non-recursive Datalog¬ program with deep-equal and is
at most exponential in the size of the input Xcerpt program. A Datalog¬ program with
deep-equal can be evaluated with data complexity in 1 and program complexity in
(which is thus not affected by the exponential translation size) since deep-equal
on trees is 1-complete [90].

1.11.5 From Xcerpt to SQL: A Foundation for a Relational Implementation

With the translation to Datalog¬new for Xcerpt programs, we not only achieve a purely
logical semantics, but also the foundation for a relational implementation: First notice,
that each stratified Datalog¬ program can be translated into a, possibly recursive, SQL
expression. SQL recursion (introduced in SQL:1999 and refined in SQL:2003) is ex-
pressed using with and is limited to monoton recursion: A relation P may be defined
by means (including negation) of a relation Q only if adding tuples to Q cannot cause
any triple of P to be deleted. Fortunately, stratified Datalog¬ programs are designed to
be allow only monoton recursion.

With the addition of ranking operators in SQL:1999 controlled value generation has
been standardized as well. When translating a Datalog¬new program to SQL, we employ
the ROW NUMBER or DENSE RANK function to generate new node IDs based on the
invention variables. For details see [81] where these are used in the context of XQuery
iteration.

The chief disadvantage of translating Xcerpt (in this or other ways) to SQL for
implementation is that the nave relational representation discussed in Section 1.11.2
does not perform well in practice. This has been observed frequently and, for tree data,
labeling schemes such as the pre-/post-encoding [80], ORDPATH [121], or BIRD [152]
have been suggested to provide better XML storage. They provide linear time and space
processing of XML tree queries on tree data. However, when querying graph data these
approaches do not immediately apply. Therefore, we have developed a labeling scheme
for graph data that not only provides linear time and space evaluation for tree data but
also for many graphs, see Section 1.13.

76 F. Bry et al.

1.11.6 Versatile Semantics: Adding XPath, XQuery, and SPARQL

The above translation has been focused so far on Xcerpt with a brief outlook to
Xcerpt. However, Datalog¬new together with the relation representations for RDF and
XML data from Section 1.11.2 can form a common basis for analysing and evaluating
a far larger set of query languages.

In fact in [70, 68], we show how to map not only Xcerpt but also XPath, XQuery, and
SPARQL to Datalog¬new. Combined with the labeling scheme and evaluation for tree and
graph data discussed in Section 1.13 this allows us the use of the same, efficient evalua-
tion engine for all this languages. In particular, we can integrate queries written in these
very different languages. Though such integration has been suggested previously (e.g.,
in [127]), none of the previous approaches achieves language integration also on the
level of the evaluation engine. By translating both languages to Datalog¬new we open up
opportunities for cross language optimization. Furthermore, the labeling scheme pro-
pose in Section 1.12 allows for such integration without sacrificing efficiency for the
more restricted languages (e.g., for XPath on tree data).

Example: Language Integration As illustration let us consider an example of such
language integration where we allow XPath and SPARQL queries to occur in the body
of an Xcerpt rule. XPath queries are always only filters, i.e., they do not provide variable
bindings. SPARQL queries may provide variable bindings, though such variables are
always label variables only. The same variables may be used in body parts of different
languages and are understood as multiple variable occurrences in Xcerpt. However,
if Xcerpt term variables are used in SPARQL or XPath only their top-level label is
considered. For simplicity we assume that XPath and Xcerpt query the same XML data,
but SPARQL queries a separate RDF graph. Of course, we could also access different
data sets in each language.

The following example selects the names of authors of conference papers in a
variable X if they contain “Cicero” in an Xcerpt query. An XPath filter constraints
these bindings by requiring that there is also a member of the organizers from Plato’s
“Akademia” with the same name. Finally, we also select all resources in the RDF data
whose dc:creator has the same full-name.

1 GOAL
shelf{ all author { var X, all var A group-by A } group-by X

}
3 FROM

and(
5 conference{{

paper{{
7 desc author{{ var X → /.*/ }} }} }},

9 //organizers/member[affiliation[text() = ’Akademia’]
name[text()=$X]],

11 SELECT ?A
WHERE { ?A dc:creator ?P AND ?P vcard:FN ?X }

13)

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 77

END

The translation to Datalog¬new is very much along what we have seen in Sec-
tion 1.11.3:

Root(1()) ∧ Labshelf(1()) ∧ Rchild(1(), 2(v2)) ∧ Labauthor(2(v2)) ∧ Rchild(2(v2),
deep-copy(v2, v2)) ∧ Rchild(2(v2), deep-copy(v2, s1, s1))

2 ←− Root(v1) ∧ Labconference(v1) ∧ Rchild(v1, v2) ∧ Labpaper(v2) ∧ Rdescendant(v2,

v3) ∧ Labauthor(v3) ∧ Rchild(v3, v4), Rarity(v4, 0) ∧

4 Root(x1) ∧ Rdescendant-or-self(x1, x2) ∧ Laborganizers(x2) ∧ Rchild(x2, x3) ∧

Labmember(x3) ∧ Rchild(x3, x4) ∧ Labaffiliation(x4) ∧ Rchild(x4, x5) ∧

LabAkademia(x5) ∧ Rchild(x3, x6) ∧ Labname(x6) ∧ Rchild(x6, x7) ∧
x7 � v4 ∧

6 (s1, e1) ∧ Edge(e1) ∧ Labdc:creator(e1) ∧ (e1, s2) ∧ (s2, e2) ∧

Edge(e2) ∧ Labvcard:FN(e2) ∧ (e2, s3) ∧ s3 � v4.

Obviously, in this case the use of XPath affords little gain compared to Xcerpt only
queries, but the same technique can be applied to integrate XPath into SPARQL or
SPARQL into XQuery. Full translations for SPARQL, XPath, and XQuery can be found
in [68].

1.11.7 Outlook

Xcerpt and versatile Web queries in general are a powerful and convenient tool for ac-
cessing Web data. In this section, we show that, both their semantics and evaluation, can
nevertheless be cast in terms of existing logical foundations and technology. In particu-
lar, we show how Xcerpt can be translated to Datalog¬new and use that translation to proof
several formal properties of Xcerpt and interesting sub-languages thereof. Perhaps even
more important is that the suggested translation can also be achieved for such diverse
Web query languages as SPARQL, XPath, or XQuery. Not only does that provide us
with a playground for comparing and investigating these languages, it also allows us,
as discussed in the last two Sections, to integrate and implement these languages in a
common engine. We have only outlined first ideas towards this integration here. There
remain a plethora of open issues such as the right mapping of variable bindings. One
of the most crucial of these issues is the question whether the use of such a common
engine does not sacrifice performance for the more restricted languages such as XPath.
The following Section 1.12 essentially answers this question negative: We can provide
a common engine for these languages based on a uniform evaluation of tree and graph
data, that nevertheless provides a linear time and space (and thus optimal) evaluation
for XPath (tree queries on tree data). It even extends this complexity to many graphs in
contrast to all previous approaches.

78 F. Bry et al.

approach reachability time labeling time labeling size

2-Hop [53] O(n) O(n4) O(n)
HOPI [136] O(n) O(n3) O(n)

Graph labeling [6] O(n) O(n3) O(n)
SSPI [48] O(n) O(n2) O(n)

Dual labeling [150] O(1) O(n3) O(n)
GRIPP [144] O(n) O(n2) O(n)

Table 1.10. Complexity of graph labeling schemes for reachability test on arbitrary graphs (la-
beling size is per node). n ≥ eg: number of non-tree edges.

1.12 Versatile Evaluation

In the previous sections, we have shown how versatile query languages advance the
state-of-the-art for querying the Web, where often the same application needs access to
data published in different formats.

Employing a versatile query language may be convenient, but what about the cost?
If the price is that we have to forgo efficient evaluation methods that exploit the specific
limitations of the involved data formats, versatile query languages may often not be
practical.

Fortunately, we show in this section that in two crucial aspects this concern is not
justified: First, we present a uniform evaluation algorithm that is capable of dealing
with arbitrary graphs (as they occur in RDF data), but (seamlessly) processes trees and
even many non-trees

1.13 Versatile Evaluation I:
Structure Scaling with CIQCAG

What makes Web queries different from those used in centralized, relational databases
is the emphasize on versatile, flexible structure conditions. Web queries are often writ-
ten against data, where neither the exact shape of the children of a node nor of the paths
connecting two nodes is known. This observation leads to emphasize on a flexible rep-
resentation of Web data, be it tree- or graph-shaped, where we can not assume a fixed,
recursion- and repetition-free schema.

Labeling schemes have become a popular means for providing efficient queries to
Web data, in particular if that Web data is represented relationally. Labeling schemes
assign each node a unique (constant36) label such that we can decide whether two nodes
stand in a certain structural relations given only their labels. For tree data, several label-
ing schemes with constant time membership test have been proposed [80, 121, 152].

36 As most other works on labeling schemes, we consider label size to be bounded in practice
and thus as constant. More precisely, label size is in O(logn) where n is the number of nodes
in the document.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 79

On arbitrary graph data testing adjacency (or reachability) in both constant time
and constant per-node space is not possible.37 Labeling schemes have therefore focused
on heuristics for finding compact representations of reachability and adjacency. These
heuristics come in roughly two kinds (here and in the following n,m are the number of
nodes and edges in a given graph):

– For reachability in arbitrary graphs, the 2-hop cover [53] is a set of shortest paths
such that for any two nodes there is a concatenation of two such paths that is a
shortest path for those two nodes. Such a 2-hop cover can be exploited to assign
labels for reachability testing: Each node v is labeled with two sets (Lout(v),Lout(v))
such that Lout(v)∩ Lin(v′) for each node v′ reachable from v. However, finding an
optimal 2-hop labeling -hard and there are graphs whose optimal 2-hop labeling
is at least Ω(n ·m1/2) in size. Further work on 2-hop labeling has focused mostly on
efficient approximation algorithms [136].

– Often sparse graphs are almost tree-shaped with only few non-tree edges. This is
exploited by a several approaches [6, 48, 150, 144] for extending tree labelings,
mostly pre-/post-labelings [80], to graphs. However, for all of these approaches the
largest interesting class of graphs where they can still guarantee constant time and
per-node space reachability tests are trees. On arbitrary graphs they either degener-
ate in space or time complexity.
Roughly speaking all three four approaches extend pre-/post-tree labeling to arbi-
trary graphs by first labeling a spanning tree. They differ in how they deal with
non-tree edges: In [6] nodes get additional pre-/post-intervals for descendants not
reachable by tree edges at the cost of up to linear space per node. In [48] non-tree
edges are iterated at query time at the cost of up to linear time for testing reachabil-
ity. In [150] the transitive closure of non tree edges is computed and stored at the
cost of up to linear space per node space. Finally, [144] presents a refined combi-
nation of [6] and [48] that performs on sparse graphs often significantly better, but
does not improve the worst-case space or time complexity.

Table 1.10 summarizes these time and per-node space complexity.

1.13.1 Contributions

In this chapter, we present a novel characterization of a class of graphs that is a
proper, non-trivial superclass of trees that still exhibits a labeling scheme with con-
stant time, constant per-node space adjacency and reachability tests. Furthermore, we
give a quadratic algorithm that computes, for an arbitrary graph, such a labeling if one
exists.

Constant time membership test almost immediately yields linear time evaluation
for existential acyclic conjunctive queries on tree data. However, nave approaches for
n-ary universal queries take at least quadratic time in the graph size. We show how
the above labeling scheme can be exploited to give an algorithm for evaluating acyclic
conjunctive queries that is O(n · q) wrt. time and space complexity, i.e., linear in both

37 As there are 2n2
different graphs, yet constant per-node space allows only for 2n different

representations.

80 F. Bry et al.

Fig. 1.9 Sharing: On the Limits of Continuous-image Graphs
1

2

1

3

2

4

5

2

6 72

1

1

1

2

4

1

5

2

2

31

2

1

Fig. 1.10 Sharing: On the Limits of Continuous-image Graphs
1

2

1

3

2

4

5

2

6 72

1

1

1

2

4

1

5

2

2

31

2

1

data and program complexity. Furthermore, our algorithm guarantees iteration in the
size of the related nodes rather than in all nodes.

1.13.2 Labeling Beyond Trees: Continuous-Image Graphs

Tree data, as argued above, allows us to represent relations on that data more compactly,
e.g., using various interval-based labeling schemes. Here, we introduce a new class of
graphs, called continuous-image graphs (or s for short), that generalize features of
tree data in such a way that we can evaluate (tree) queries on s with the same time
and space complexity as techniques such as twig joins [30] which are limited to tree
data only.

Continuous-image graphs are a proper superset of (ordered) trees. On trees we re-
quire that each node has at most one parent. For continuous-image graphs, however,
we only ask that we can find a single order on all nodes of the graph such that the
children of each parent form a continuous interval in that order. Formally, we define
a continuous-image graph by means of the image interval property (a generalization
of corresponding properties of tree-shaped relations or closure relations of tree-shaped
base relations. Recall that we denote with R(n) for a node n ∈ N and a binary relation R
over the domain N the set {n′ ∈ N : (n,n′) ∈ R}.

Definition 26 (Continuous-image Graph). Let R be a binary relation over a domain
(of nodes) N. Then R is a continuous-image graph, short , if it carries the image
interval property: there is a total order <i on N with the induced sequence S over N
such that for all nodes n ∈ N, R(n) = ∅ or R(n) = {S [s], . . . ,S [e] : s ≤ e ∈ N}.

The definition of continuous image graphs allows graphs where some or all children
of two parents are “shared” (in contrast to trees where this is never allowed). However,

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 81

it limits the degree of sharing: Figure 1.10 shows two minimal graphs that are not s.
Incidentally, both graphs are acyclic and, if we take away any one edge in either graph,
the resulting graph becomes a . The second graph is actually the smallest (w.r.t. the
number of nodes and edges) graph that is not a . The first is only edge minimal but
illustrates an easy to grasp sufficient but not necessary condition for violating the image
interval property: if a node has at least three parents and each of the parents has at least
one (other) child not shared by the others then the graph can not be a .

On continuous-image graphs we can exploit similar techniques for representing
structural relations as on trees, most notably we can label each node with a single,
continuous interval for its children and/or descendants. Together with a simple index to
represent that nodes position in the underlying order, we obtain constant space labels
(three integers), yet can test adjacency and/or reachability in constant time (with two
integer comparisons).

Testing for CIGs: consecutive ones property Moreover, whether a given graph is a
 (and in what order its node must be sorted to arrive at continuous intervals for each
parent’s children) is just another way of saying that its adjacency matrix carries the
consecutive ones property [67]. For the consecutive-ones problem [24] gives the first
linear time (in the size of the matrix) algorithm based on so called PQ-trees, a compact
representation for permutations of rows in a matrix. More recent refinements in [83]
and [87] show that simpler algorithms, e.g., based on the PC-tree [86], can be achieved.
We adapt these algorithms to obtain a linear time (in the size of the adjacency matrix)
algorithm for deciding whether a graph is a and computing a -order.

From a practical perspective, s are actually quite common, in particular, where
time-related or hierarchical data is involved: If relations, e.g., between Germany and
kings, are time-related, it is quite likely that there will be some overlapping, e.g., for
periods where two persons were king of Germany at the same time. Similarly, hierar-
chical data often has some limited anomalies that make a modelling as strict tree data
impossible. Figure 1.11 shows actual data38 on relations between the family (red nodes,
non-ruling member 1 , co-emperor or heir designate 10 , emperors 2) of the Roman
emperors in the time of the “Five Good Emperors” (Edward Gibbon) in the 2nd cen-
tury. It also shows, for actual emperors, which of the four new provinces (I) added
to the roman empire in this period each emperor ruled (the other provinces remained
mostly unchanged and are therefore omitted). Arrows between family members indi-
cate, natural or adoptive, fathership39. Arrows between emperors and provinces show
rulership, different colors are used to distinguish different emperors. Despite the rather
complicated shape of the relations (they are obviously not tree-shaped and there is con-
siderable overlapping, in particular w.r.t. province rulership).

The previous example also highlights the intuition behind continuous-image graphs:
we allow some overlapping between among the children of different nodes, but only in

38 The name and status of the province between the wall of Hadrian and the wall of Antonius
Pius in northern Britain is controversial. For simplicity, we refer to it as “Caledonia”, though
that actually denotes all land north of Hadrian’s wall.

39 Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus were
adopted by their predecessor and are therefore often referred to as “Adoptive Emperors”.

82 F. Bry et al.

Fig. 1.11 “The Five Good Emperors” (after Edward Gibbon), their relations, and
provinces.

2Nerva

4Trajan

6Hadrian

9Antonius Pius

11Marcus Aurelius

13Commodus

14Septimus Severus

1

Marcus Ulpius Traianus

3

Publius Aurelius Hadrianus Afer

5

Titus Aurelius Fulvus

8

Marcus Annius Verus

I

Mesopotamia

II

Arabia Petraea

III

Dacia

IV

Caledonia

7

Lucius Ceionius Commodus Verus

10

Lucius Aelius

12

Lucius Verus

ruling emperor (“augustus”) co-emperor (“caesar”) non-ruling family member

parent-child relation ruled relation

such a way that the images can still be represented (over some order on the nodes)
as continuous intervals. Figure 1.12 illustrates the intervals on the Roman provinces for
representing the ruled provinces of each emperor: With the given order on the provinces,
each image is a single interval (e.g., Trajan I–III and Septimus Severus II–IV) even
though the data is clearly not tree-shaped (or a closure relation of a tree-shaped relation).

How continuous-image graphs differ from tree-shaped data (or closure relations
over tree-shaped data) is further detailed in Figure 1.13: Tree data carries the image dis-
jointness property as, under the order on the nodes induced by a breadth-first traversal,
the nodes in the image of any parent node in the tree form a continuous, non-overlapping
interval. Closure relations over tree data (i.e., relations such as XPath’s descendant)
carry the image containment property as, e.g., under the order on the nodes induced by
a depth-first traversal, again the nodes in the image of any parent node form a continu-

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 83

Fig. 1.12 Overlapping of province children in the “The Five Good Emperors” example,
Figure 1.9

198 principles and motivation

2Nerva

4Trajan

6Hadrian

9Antonius Pius

11Marcus Aurelius

13Commodus

14Septimus Severus

I

Mesopotamia

II

Arabia Petraea

III

Dacia

IV

Caledonia

Figure 42. “#e Five Good Emperors” (a$er Edward Gibbon), their relations, and
provinces.

emperors, which of the four new provinces (I) added to the roman empire in
this period each emperor ruled (the other provinces remainedmostly unchanged
and are therefore omitted). Arrows between family members indicate, natural or
adoptive, fathership4. Arrows between emperors and provinces show rulership,
di%erent colors are used to distinguish di%erent emperors. Despite the rather
complicated shape of the relations (they are obviously not tree-shaped and there
is considerable overlapping, in particular w.r.t. province rulership).

10.3 SEQUENCE MAP : STRUCTURE -AWARE STORAGE OF TREE
CORE RESULTS

Locality of
dependencies in tree
queries

When we evaluate tree queries, we can observe that for determining matches for
a given query node only the match for its parent and child in the query tree are
relevant. Intuitively, this “locality” property holds as in a tree there is at most
one path between two nodes. To illustrate, consider, e.g., the XPath query //a//b//c
selecting c descendants of b descendants of a’s. Say there are n a’s in the data
nested into each other withm b’s nested inside the a’s and !nally inside the b’s

4 Note that all emperors of the Nervan-Antonian dynasty except Nerva and Commodus were
adopted by their predecessor and are therefore o$en referred to as “Adoptive Emperors”.

Trajan
Hadrian

M
arcus Aurelius
Com

m
odus

Antonius Pius
Septim

us Severus

84 F. Bry et al.

Fig. 1.13 Overlapping of images in trees, closure relations over trees, and continuous-
image graphs

1

2 6 7

3 4 5 8 9

1

2 6 7

3 4 5 8 9

1 2 3 4 56 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 56 7 8 9

Tree:

Closure over Tree:

Continuous-Image Graph:

1 2 7

2
1

7

2
1

7
3

ous interval and overlapping is limited: either two such intervals do not overlap at all or
one is contained within the other.

Continuous-image graphs (as shown in the right of Figure 1.13) carry, as stated
above, the image interval property, i.e., there is some order on the nodes such that
the nodes in the image of each parent form a continuous interval. Here, the intervals
may overlap arbitrarily as illustrated in Figure 1.13. However, in contrast to the tree
or closure relation over tree case the required order on the nodes is no longer known a-
priori but must be determined for each graph using, e.g., the above described algorithms.

1.13.3 Intermediary Answers as Interval Labels

When we evaluate acyclic conjunctive or tree queries, we can observe that for deter-
mining matches for a given query node only the match for its parent and child in the
query tree are relevant. Intuitively, this “locality” property holds as in a tree there is at
most one path between two nodes. To illustrate, consider, e.g., the XPath query //a//b//c
selecting c descendants of b descendants of a’s. Say there are n a’s in the data nested
into each other with m b’s nested inside the a’s and finally inside the b’s (again nested
in each other) l c’s. Then a naive evaluation of the above query considers all triples
(a,b,c) in the data, i.e., n×m× l triples. However, whether a c is a descendant of a b
is independent of whether a b is a descendant of an a. If a b is a descendant of several
a’s makes no difference for determining its c descendants. It suffices to determine in
at most n×m time and space all b’s that are descendants of a, followed by a separate
determination of all c’s that are descendants of such b’s in at most m× l time and space.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 85

Indeed, if we consider the answer relation for a tree query, i.e., the relation with
the complete bindings as rows and the query’s nodes as columns, this relation always
exhibits multivalue dependencies [64]: We can normalize or decompose such a relation
for a query with n nodes into n− 1 separate relations that together faithfully represent
the original relation (and from which the original relation can be reconstructed using
n−1 joins). This allows us to compact an otherwise potentially exponential answer (in
the data size) into a polynomial representation.

This is the first principle of the algorithm: decompose the query into separate bind-
ing sequences for each query node with “links” or pointers relating bindings of different
nodes. We thus obtain an exponentially more succinct data structure for (intermediary)
answers of tree queries than if using standard (flat) relational algebra. In this sense,
a sequence map can be considered a fully decomposed column store for the answer
relation.

Fig. 1.14 Selecting sons, type, name, and ruled provinces for all members of the impe-
rial family in the data of Figure 1.11.

1

2

3

4

5

6

Imperial Family Member

Imperial Family Member Type Name Province

Name

To illustrate this, consider the query in Figure 1.14 on the data of Figure 1.11. The
query selects sons and ruled provinces of members of the imperial family. We also
record type and name of the family member and name of the province to easier talk
about the retrieved data. The answers for such a query, if expressed, e.g., in relational
algebra or any language using standard, flat relations to represent n-ary answers, against
the data from Figure 1.11 yields the flat relation represented in Figure 1.15. As argued
above, we can detect multivalue dependencies and thus redundancies, e.g., from em-
peror to province, from province to province name, from emperor (Imp-ID) to type and
name.

To avoid these redundancies, we first decompose or normalize this relation along
the multivalue dependencies as in Figure 1.16. For the sequence map, we use always a
full decomposition, i.e., we would also partition type and name into separate tables as
in a column store.

Storing Intermediary Results as Intervals Once we have partitioned the answer re-
lation into what subsumes to only link tables as in column stores, we can observe even
more regularities (and thus possibilities for compaction) if the underlying data is a tree
or continuous-image graph. Look again at the data in Figure 1.11 and the resulting an-
swer representation in Figure 1.16: Most emperors have not only ruled one of the new
provinces Mesopotamia, Arabia Petraea, Dacia, and Caledonia but several. However,

86 F. Bry et al.

Fig. 1.15 Answers for query from Figure 1.14, single, flat relation.

Imp-ID Type Name Son-ID Ruled-ID Ruled-Name

1 non-ruling Marcus Ulpius Traianus 4 – –
2 augustus Nerva 4 – –
3 non-ruling P. Aurelius Hadrianus Afer 6 – –
4 augustus Trajan 6 I Mesopotamia
4 augustus Trajan 6 II Arabia Petraea
4 augustus Trajan 6 III Dacia
5 non-ruling Titus Aurelius Fulvus 9 – –
6 augustus Hadrian 9 II Arabia Petraea
6 augustus Hadrian 10 II Arabia Petraea
6 augustus Hadrian 9 III Dacia
6 augustus Hadrian 10 III Dacia
7 non-ruling L. Ceionius Commodus Verus 10 – –
8 non-ruling M. Annius Verus 11 – –
9 augustus Antonius Pius 11 II Arabia Petraea
9 augustus Antonius Pius 12 II Arabia Petraea
9 augustus Antonius Pius 11 IIi Dacia
9 augustus Antonius Pius 12 III Dacia
9 augustus Antonius Pius 11 IV Caledonia
9 augustus Antonius Pius 12 IV Caledonia
10 caesar Lucius Aelius 12 – –
11 augustus Marcus Aurelius 13 II Arabia Petraea
11 augustus Marcus Aurelius 13 III Dacia
12 caesar Lucius Verus – – –
13 augustus Commodus – II Arabia Petraea
13 augustus Commodus – III Dacia
14 augustus Septimus Severus – II Arabia
14 augustus Septimus Severus – III Arabia
14 augustus Septimus Severus – IV Caledonia

Fig. 1.16 Answers for query from Figure 1.14, no multivalue dependencies.

Imp-ID Type Name

1 non-ruling M. Ulpius Traianus
2 augustus Nerva
3 non-ruling P. A. Hadrianus Afer
4 augustus Trajan
5 non-ruling Titus Aurelius Fulvus
6 augustus Hadrian
7 non-ruling L. C. Commodus Verus
8 non-ruling M. Annius Verus
9 augustus Antonius Pius
10 caesar Lucius Aelius
11 augustus Marcus Aurelius
12 caesar Lucius Verus
13 augustus Commodus
14 augustus Septimus Severus

Imp-ID Son-ID

1 4
2 4
3 6
4 6
5 9
6 9
6 10
7 10
8 11
9 11
9 12

10 12
11 13

Imp-ID Prov-ID

4 I
4 II
4 III
6 II
6 III
9 II
9 III
9 IV

13 II
13 III
14 II
14 III
14 IV

Prov-ID Name

I Mesopotamia
II Arabia Petraea
III Dacia
IV Caledonia

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 87

Fig. 1.17 Answers for query from Figure 1.14, multiple relations, interval pointers. The
first table from Figure 1.16 remains unchanged.

Imp-ID Son Range

1 4
2 4
3 6
4 6
5 9
6 9–10
7 10
8 11
9 11–12
10 12
11 13

Imp-ID Prov Range

4 I–III
6 II–III
9 II–IV

13 II–III
14 II–IV

since the data is a continuous-image graph there is an order (indeed, the order of the
province IDs if interpreted as roman numerals) on the provinces such that the provinces
ruled by each emperor form a continuous interval w.r.t. that order. Thus we can actually
represent the same information much more compactly using interval pointers or links
as in Figure 1.17 where we do the same also for the father-son relation (although there
is far less gain since most emperors already have only a single son).

Instead of a single relation spanning 28 rows and 6 columns (168 cells), we have
thus reduced the information to 5 ·2+11 ·2+14 ·3 = 74 cells. This compaction increases
exponentially if there are longer paths in a tree query (e.g., if the provinces would be
connected to further information not related to the emperors). It increases quadratically
with the increasing size of the tables, e.g., if we added the remaining n provinces of the
Roman empire ruled by all emperors in our data we would end up with 7 ·n additional
rows of 6 columns in the first case (each of the 7 emperors in our data ruled all these
provinces), but only n · 2 additional cells when using multiple relations and interval
pointers.

Formally, we represent (intermediary) answers to an acyclic query as a mapping
from the set of query variables V to sequences of matches for that query node. A match
for query node v in itself is the actual data node or edge v is matched with and a set of
pairs of child nodes of v to start and end positions. Intuitively, it connects the match for
v to matches of its child nodes in the tree query. We obtain in this way a data structure
as shown in Figure 1.18 for a query selecting roman emperors with their names and
ruled provinces on the data of Figure 1.11.

Note, that we allow for each child node of v multiple intervals. If the data is a , it
is guaranteed that only a single interval is needed and thus the overall space complexity
of a sequence map is linear in the data size. However, we can also employ a sequence
map for non- graphs. In this case, we often still benefit from the interval pointers, but
in worst-case we might need |N ∪E| many interval pointers to relate to all bindings of a
child variable. Overall, a sequence map for non- graphs thus may use up to quadratic
space in the data size.

88 F. Bry et al.

Fig. 1.18 Sequence Map: Example. For a query selecting roman emperors together with their
name and ruled provinces on the data of Figure 1.11.

Trajan

Hadrian

Antonius P.

M. Aurelius

Commodus

Septimus S.

Name

4N
point1 P st

ar
t

1 en
d 3

6N

point2 P st
ar

t

2 en
d 3

9N

point3 P st
ar

t

2 en
d 4

11N

point4 P st
ar

t

2 en
d 3

13N

point5 P st
ar

t

2 en
d 3

14N

point6 P st
ar

t

2 en
d 4

Emperor

Mesopotamia

Arabia

Dacia

Caledonia

Province

Representing intermediary results: A Comparison As stated above, the sequence
map is heavily influenced by previous data structures for representing intermediary an-
swers of tree queries. Figure 1.19 shows the most relevant influences. Complexity and
supported data shapes are compared below after discussing the actual evaluation of tree
queries using the interval labeling for data and intermediary results. Here, we illus-
trate that the above discussed choices when designing a data structure for intermediary
answers of tree queries are actually present in many related systems: We can find sys-
tems such as Xcerpt 1.0 [134], many early XPath processors (according to [76]), and
tree algebras such as TAX [89] that use exponential size for storing all combinations
of matches for each query node explicitly. [76] shows that XPath queries can in fact
be evaluated in polynomial time and space, which is independently verified in SPEX
[117], the first streaming processor for navigational XPath with all structural axes. Like
SPEX and our approach, complete answer aggregates [113] use interval compaction for
relating matches between different nodes in a tree query. CAAs are also most closely re-
lated to our approach w.r.t. the decomposition of the answer relation: fully decomposed
without multivalue dependencies. In contrast, Pathfinder [22] uses standard relational
algebra but for the evaluation of structural joins a novel staircase join [82] is employed
that exploits the same interval principles used in CAAs and our approach.

Streaming or cursor-based approaches such as twig join approaches [30, 48] con-
sider the data in a certain order rather than all at once. In such a model, it is possible
and desirable to skip irrelevant portions of the input stream (or relations) and to prune

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 89

Fig. 1.19 Data structures for intermediary results (of a tree query)
keys pointers

se
ts

se
qu

en
ce

s

CAA [113]

Pathfinder [80]

SPEX [117]

Polynom. XPath [76]

relational
(FNF)

Xcerpt 1.0 [134],
NFNF (tree)

twig joins [30]

Xcerpt 1.5 [36];
NFNF (graph)

partial answers as soon as it is clear that we can not complete such answers. Recent
versions of SPEX [37, 117] contain as most twig join approaches, mechanisms to skip
over parts of the stream (at least for some query nodes) if there can not be a match (e.g.,
because there is no match for a parent node and we know that matches for parent nodes
must come before matches for child nodes). Both twig joins and SPEX also prune re-
sults as soon as possible. However, twig joins are limited to vertical relations (child and
descendant) whereas SPEX and can evaluate all XPath axes, though only on
tree data.

To summarize, though our approach to representing intermediary answers is sim-
ilar in its principles to several of the related approaches in Figure 1.19, it combines
efficient intermediary answer storage as in CAAs with fully algebraic processing as in
Pathfinder and efficient skipping and pruning as in twig joins.

Furthermore, where most of the related approaches are limited to tree data (with the
notable exception of Xcerpt), our approach allows processing of many graphs, viz. s,
as efficient as previous approaches allow for trees.

1.13.4 Evaluating Tree Queries on Interval Labels

For evaluating acyclic conjunctive queries (or tree queries) the essential operation is a
join that allows us to gather results of the evaluation of the constituent query atoms in
a consistent manner: Only where variables are bound the same in answers to different
query atoms those answers are “joined” together to form a larger answer.

There are some other operations needed for implementing full acyclic conjunctive
queries, most importantly selection, but they are omitted here for clarity of presentation.
For full details see [68].

The join operation for interval representations of relations is defined as follows:

Definition 27 (Sequence map join (disjoint edge covers)). Let D be a relational struc-
ture, Q a tree query, and S 1,S 2 two interval representations for D over Q such that there

90 F. Bry et al.

is no edge in Q that is covered by both S 1 and S 2. Then on[](S 1,S 2) returns an interval
representation S 3 such that

1. the induced relation of S 3 is the natural join of the induced relations of S 1 and S 2.
2. S 3|domS 1∪domS 2 = S 3 (S 3 contains bindings only for variables mapped either in S 1

or in S 2).

Note that this definition yields an interval representation that leaves bindings for
non-shared variables unchanged from the input representations. These variables occur
only in one of the query parts covered by the input, but not in the other. For shared
variables, only those bindings are retained that occur in both representations. This also
applies to the (interval pointer) references from bindings of a parent variable v to a
child variable v′ of v: They are contained only in one of the sequence maps (due to
the edge cover restriction), for the other sequence map the induced relation records any
combination of bindings by definition.

The restriction on the edge covers on S 1 and S 2 is imposed to ensure that for any pair
of variables v,v′ only one of the interval representations may contain interval pointers
from v to v′, though both may contain bindings for v and v′. In other words, each edge
of the query is enforced by at most one of the two sequence maps.

For a given tree query expression, the edge cover of each sub-expression can be de-
termined statically, without knowledge about the data the expression is to be evaluated
against. Thus, we can also statically determine whether a join expression is valid or
violates the edge cover restriction defined above. For the evaluation of tree queries we
never need joins with overlapping edge covers.

Algorithm 25 computes an interval representation that represents the join of the
induced relations as demanded in the definition of on[](), but may be inconsistent: It
“bombs” bindings not contained in both sequence maps rather than dropping them en-
tirely. This has the effect that interval pointers can remain unchanged (but now point to
an interval containing possibly bombed entries). Note, that interval pointers to bindings
of a variable occur only in one of the two input interval representations as the incoming
edge of each variable is unique (since the query is tree-shaped) and the edge covers
are disjoint. This allows line 16 where we simply throw together intervals from both
sequence maps. Finally, observe that by the definition of the initialization of a sequence
map, bindings for the same query variable occur in the same order in all sequence maps
for that query. Thus the bindings of a variable shared between the two interval repre-
sentations are ordered the same.

These observations are exploited in Algorithm 25 to give a merge-join [72] style
algorithm for the join of two interval representations with disjoint edge cover that has
linear time complexity in the (combined) size of the inputs. Since the bindings are
already in the same order, we can omit the sort phase of the merge join and immediately
merge the two binding sequences. However, we need to ensure that not only the order
but also the number of bindings (and the position of eventual failure markers, cf. lines
18–20) reflects that for the same variable v in the sequence map where v’s incoming
edge is in the edge cover (lines 9–11).

Theorem 5. Algorithm 25 computes on[](S 1,S 2) for interval representations with dis-
joint edge cover and set of shared variables Shared in O(btotal

Shared · i) ≤ O(|Shared| ·n · i)

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 91

Algorithm 1: on[](S 1,S 2)
input : Interval representations S 1 and S 2 with disjoint edge covers
output: Interval representation res representing the join of the induced relations

of the inputs

1← edgeCover(S 1); 2← edgeCover(S 2);1

AllVars← domS 1∪domS 2;2

SharedVars← domS 1∩domS 2;3

res← ∅ ;4

foreach v ∈ AllVars do5

if v < domS 2 then res← res∪{(v,S 1(v))} ;6

else if v < domS 1 then res← res∪{(v,S 2(v))};7

else // v is in both8

// 1 is the primary (fallback if v is in neither edge cover)
iter← S 1(v); alt← S 2(v) ;9

if (v′,v) ∈ 2 for some v′ then10

// v is sink in 2, thus the order and number of entries must be as in 2
(it can not be sink in 1 as Q tree query and edge covers disjoint)

iter← S 2(v); alt← S 1(v);11

S ← ∅; i, j,k← 1 ;12

while i ≤ |iter| do13

(n1, i)← nextBinding(S 1(v), i); (n2, j)← nextBinding(S 2(v), j); if14

n1 = n2 then // Retain binding if same
S [k] = (n1, intervals(iter[i])∪ intervals(alt[j])) ;15

i++; j++; k++;16

else if n1 < n2 then // “bomb” if in iter but not in alt17

S [k] = ;18

i++; k++;19

else // skip binding if in alt but not in iter20

j++;21

22

res← res∪{(v,S)} ;23

24

return res25

time where btotal
Shared is the total number of bindings associated in either input with a

variable in Shared and i is the maximum number of intervals associated with any such
binding. For tree, forest, and data i = 1, for arbitrary graph data i ≤ n.

Proof. Algorithm 25 computes S =on[](S 1,S 2): For any variable v, if a binding for
v occurs in the induced relation of both interval representations, it occurs also in S
due to lines 15–17. If v’s incoming edge is in the edge cover of one of the interval
representations S ′, lines 9–11 ensure that the sequence of bindings for v is the same

92 F. Bry et al.

Algorithm 2: NextBinding(S, i)
input : Sequence S containing, possibly, failure markers and start index i
output: The next element in S at or after i that is not a failure marker and its

index or (∞,∞) if no such binding exists

for j← i to |S | do1

if S [j] is not a failure marker then break;2

if j = |S | and S [j] failure marker then return (∞,∞) ;3

return (S [j], j)4

(except that some bindings are “bombed”) in S as in S ′. For the parent v′ of v, if a
binding is retained the set of intervals from both interval representations are copied en
block. There are only intervals in S ′ (as (v′,v) is not in the edge cover of the other
interval representation) and thus only those relations between bindings of v and v′ as
in the induced relation of S ′ are retained. This is proper as in the induced relation
of the other interval representation all bindings of v are related to all bindings of v′

by definition of the induced relation. Both input sequences may be inconsistent: The
presence of failure markers in either sequence does not affect the correctness of the
algorithm: failure markers in alt are skipped, failure markers in iter are retained (lines
15–17) as intended. Dangling bindings do not affect the algorithm.

Algorithm 25 loops over all shared variables of S 1 and S 2 and for each such variable
it iterates over all bindings in the primary interval representation iter and corresponding
bindings in alt, skipping, if necessary, bindings in alt not in iter. In the loop lines 13–22 i
or j is incremented (possibly multiple times, if failure markers are skipped in NextBind-
ing) until either i > |iter|. If j ever becomes > |alt| subsequent calls of binding(()alt[j])
return, by definition, a value larger than all n ∈ Nodes(D).

Thus the algorithm touches, for each shared variable, each entry in either interval
representation at most once (and touches one proper (not a failure mark) entry in each
step of the loop 13–22). Thus it runs in O(btotal

Shared · i) where btotal
Shared is the total number

of bindings in both interval representations for a shared variable and i is the maximum
number of intervals per binding. This is bound by O(|Shared| · n · i) for any interval
represenation (including those for arbitrary graphs).

It is worth pointing out, that a tree query any variable is shared at most once for each
in- or outgoing edge and for each unary relation associated with the variable. Thus, even
if there are O(q) joins in the expression, the accumulated number of shared variables
among all those joins is also only O(q) an thus the total complexity for only those joins
is bounded by O(q ·n · i).

1.13.5 Comparison

The above outlined algorithm for a join on interval representations can be easily ex-
tended to an algorithm for full tree queries, see [68]. In the following we compare our
approach, called , to previous approaches for tree query evaluation on XML (i.e.,
limited to tree data).

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 93

time space

Structural Joins, relational
join

O(q ·n · logn) O(q ·n2)

—————, structure-aware
join

O(q ·n) O(q ·n2)

Twig or Stack Joins O(q ·n) O(q ·n + n ·d)

PDA-based (here: SPEX) O(q ·n ·d) O(q ·n)

Interval-based (here:) O(q ·n) O(q ·n)

Table 1.19. Approaches for XML Tree Query Evaluation. n: number of nodes in the data, d:
depth of data; q: size of query. We assume constant membership test for all structural relations.

To keep the discussion focused we ignore index-based evaluation of XML. Though
path indices such as the DataGuide [75] or IndexFabric [55] and more recent variants
[51] can significantly speed up path queries they suffer from two anomalies: First, if a
tree query contains many branching nodes (i.e., nodes with more than one children) they
generally do not perform better than, e.g., the structural join approach below. Second,
even though only path queries can be directly answered from the index, the index size
can be significantly higher than the size of the original XML documents.

We can classify most of the remaining approaches to the evaluation of XML tree
queries in four classes (the corresponding complexity for evaluation XPath (and similar)
tree queries on tree data is summarized in Table 1.19):

1. Structural joins: The first class is most reminiscent of query evaluation for rela-
tional queries and arguable inspired by earlier research on acyclic conjunctive queries
on relational databases [77]. Tree queries are decomposed into a series of (structural)
joins. Each structural join enforces one of the structural properties of the given query,
e.g., a child or descendant relation between nodes or a certain label. Proposed first in
[8], structural joins have also been used to great effect for studying the complexity of
XPath evaluation and proposing the first polynomial evaluation of full XPath [76]. Due
to its similarity with relational query evaluation it has proved to be an ideal foundation
for implementing XPath and XQuery on top of relational databases [79]. It turns out,
however, that the use of standard joins is often not an ideal choice and structure- or tree-
aware joins [22] (that take into consideration, e.g., that only nodes in the sub-tree routed
at another node can be that nodes a-descendants) can significantly improve XPath and
XQuery evaluation.

2. Twig joins: In sharp contrast, the second class employs a single (thus called
holistic) operator for solving an entire tree query rather than decomposing it into struc-
tural joins. These approaches are commonly referred to as twig or stack join [30, 49]
and essentially operate by keeping one stack for each step in, e.g., an XPath query rep-
resenting partial answers for the corresponding node-set. Theses stacks are organized
hierarchically with (where possible, implicit) parent pointers connecting partial answers
for upper stack entries to those of lowers. The approaches mostly vary in how the stacks

94 F. Bry et al.

are populated. In contrast to the other approaches, twig joins are limited to vertical, i.e.,
child and descendant, axes and have not been adapted for the full range of XPath axes.
They also, like structure-aware joins [22], exploit the tree-shape of the data and can, at
best, be adapted to DAGs [48].

3. PDA-based: Where twig joins assume one stream of nodes from the input doc-
ument for each stack (and thus XPath step), the third class of approaches based on
pushdown automata aims to evaluate XPath queries on a single input stream similar
to a SAX event stream. SPEX, e.g., [118, 119, 117] also maintains a record of partial
answers for each XPath step, but minimizes used memory more efficiently and exploits
the existential nature of most XPath steps by maintaining only generic conditions rather
than actual pointers to elements from the XML stream (except for candidates of the ac-
tual results set, of course). Also it supports all XPath axes in contrast to the twig join
approaches. The cost is a slightly more complex algorithm.

4. Interval-based: Finally, interval-based approaches are a combination of the tree
awareness in twig joins and SPEX and the structural join approach: The query is de-
composed into a series of structural relations, but each relation is organised in such a
way that all elements related to one element of its parent step are in a single continu-
ous interval. This allows both an efficient storage and join of intermediate answers. The
first interval-based approach are the Complete Answer Aggregates (CAA) [114, 113].
Here the algebra is proposed which improves on the complexity of CAA (to the
linear complexity given in Table 1.19) and covers, in contrast to CAA, arbitrary tree-
shaped relations. It is also shown that interval-based approaches can be extended even
to a large, efficiently detectable class of graph data (so called continuous-image graphs)
that is not covered by any of the other linear time approaches discussed above.

Currently, extensions of the above algorithms for larger classes of graph data are
investigated, e.g., in [48] and [68].

1.13.6 Conclusion

In this chapter, we present a novel characterization of a class of graphs that is a
proper, non-trivial superclass of trees that still exhibits a labeling scheme with con-
stant time, constant per-node space adjacency and reachability tests. Furthermore, we
give a quadratic algorithm that computes, for an arbitrary graph, such a labeling if one
exists.

Constant time membership test almost immediately yields linear time evaluation
for existential acyclic conjunctive queries on tree data. However, nave approaches for
n-ary universal queries take at least quadratic time in the graph size. We show how
the above labeling scheme can be exploited to give an algorithm for evaluating acyclic
conjunctive queries that is O(n · q) wrt. time and space complexity, i.e., linear in both
data and program complexity. Furthermore, our algorithm guarantees iteration in the
size of the related nodes rather than in all nodes.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 95

1.14 Versatile Evaluation II:
Rule Scaling under Rich Unification

In the preceeding sections, we have considered the efficient evaluation of Xcerpt queries
by a translation to a relational normal form. This section deals with the subsumption
relationship between Xcerpt query terms. Deciding subsumption has traditionally been
an important means for optimizing multiple queries against the same set of data and
can be used for improving termination of Xcerpt programs in a backward chaining
evaluation engine.

Xcerpt query terms (Definition 2) are an answer to accessing Web data in a rule-
based query language. Like most approaches to Web data (or semi-structured data, in
general), they are distinguished from relational query languages such as SQL by a set
of query constructs specifically attuned to the less rigid, often diverse, or even entirely
schema-less nature of Web data. As Definitions 2 (Xcerpt Query Term) and 7 suggest,
Xcerpt terms are similar to normalized forward XPath (see [120]) but extended with
variables, deep-equal, a notion of injective match, regular expressions, and full nega-
tion. Thus, they achieve much of the expressiveness of XQuery without sacrificing the
simplicity and pattern-structure of XPath.

When used in the context of Xcerpt, query terms serve a similar role to terms of first-
order logic in logic languages. Therefore, the notion of unification has been adapted for
Web data in [133], there called “simulation unification”. Simulation is recapitulated in
Definition 8. This form of unification is capable of handling all the extensions of query
terms over first-order terms that are needed to support Web data: selecting terms at
arbitrary depth (Rdescendant), distinguishing partial from total terms, regular expressions
instead of plain labels, negated subterms (without), etc.

The notions of query term, simulation and substitution sets are exemplified in Sec-
tion 1.3 and formally defined in 1.7. In this section, we consider query containment
between two Xcerpt terms.

Subsumption or containment of two queries (or terms) is an established technique
for optimizing query evaluation: a query q1 is said to be subsumed by or contained in a
query q2 if every possible answer to q1 against every possible data is also an answer to
q2. Thus, given all answers to q2, we can evaluate q1 only against those answers rather
than against the whole database.

For first-order terms, subsumption is efficient and employed for guaranteeing termi-
nation in tabling (or memoization) approaches to backward chaining of logic [143, 50].
However, when we move from first-order terms to Web queries, subsumption (or con-
tainment) becomes quickly less efficient or even intractable. Xcerpt query terms have,
as pointed out above, some similarity with XPath queries. Containment for various frag-
ments of XPath is surveyed in [138], both in absence and in presence of a DTD. Here,
we focus on the first setting, where no additional information about the schema of the
data is available. However, Xcerpt query terms are a strict super-set of (navigational)
XPath as investigated in [138]. In particular, the Xcerpt query terms may contain (mul-
tiple occurrences of the same) variables. This brings them closer to conjunctive queries
(with negation and deep-equal), as considered in [151] on general relations, and in
[18] for tree data. Basic Xcerpt query terms can be reduced to (unions of) conjunctive
queries with negation. However, the injectivity of Xcerpt query terms (no two siblings

96 F. Bry et al.

may match with the same data node) and the presence of deep-equal (two nodes are
deep-equal iff they have the same structure) have no direct counterpart in conjunctive
query containment. Though [99] shows how inequalities in general affect conjunctive
query containment, the effect of injectivity (or all-distinct constraints) on query con-
tainment has not been studied previously. The same applies to deep-equal, though the
results in [102] indicate that in absence of composition deep-equal has no effect on
evaluation and thus likely on containment complexity.

For Xcerpt query terms, subsumption is, naturally, of interest for the design of a
terminating, efficient Xcerpt engine. Beyond that, however, it is particularly relevant in
a Web setting. Whenever we know that one query subsumes another, we do not need to
access whatever data the two queries access twice, but rather can evaluate both queries
with a single access to the basic data by evaluating the second query on the answers of
the first one. This can be a key optimization also in the context of search engines, where
answers to frequent queries can be memorized so as to avoid their repeated computation.
Even though today’s search engines are rather blind of the tree or graph structure of
HTML, XML and RDF data, there is no doubt that some more or less limited form
of structured queries will become more and more frequent in the future (see Google
scholar’s “search by author, date, etc.”). Query subsumption, or containment, is key to
a selection of queries, the answers to which are to be stored so as to allow as many
queries as possible to be evaluated against that small set of data rather than against the
entire search engine data. Thus, the notion of simulation subsumption proposed in this
chapter can be seen as a building block of future, structure-aware search engines.

Therefore, we study in this section subsumption of Xcerpt query terms. The main
building blocks of this section are the following.

– we introduce and formalize a notion of subsumption for Xcerpt query terms, called
simulation subsumption, in Section 1.14.2. To the best of our knowledge, this is
the first notion of subsumption for queries with injectivity of sibling nodes and
deep-equal.

– we show, also in Section 1.14.2, that simulation on ground query terms is equivalent
to simulation subsumption.40 This also shows that ground query term simulation as
introduced in [133] indeed captures the intuition that a query term that simulates
into another query term subsumes that term.

– we define, in Section 1.14.3, a rewriting system that allows us to reduce the test for
subsumption of q in q′ to finding a sequence of syntactic transformations that can
be applied to q to transform it into q′.

– we show, in Section 1.14.4, that this rewriting system gives rise to an algorithm
for testing subsumption that is sound and complete and can determine whether q
subsumes q′ in time O(n!n). In particular, this shows that simulation subsumption
is decidable.

40 With small adaptions of the treatment of regular expressions and negated subterms in query
term simulation.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 97

1.14.1 Xcerpt Basics: Query Terms and Simulation

Query terms are an abstraction for queries that can be used to extract data from semi-
structured trees. In contrast to XPath queries, they may contain (multiple occurrences
of the same) variables and demand an injective mapping of the child terms of each term.
For example, the XPath query /a/b[c]/c demands that the document root has label
a, and has a child term with label b that has itself a child term with label c. The subterm
c that is given within the predicate of b can be mapped to the same node in the data as
the child named c of b. Therefore, this XPath query would be equivalent to the query
term a{{b{{c}}}}, but not to a{{b{{c,c}}}}. Simulation could be, however, easily modified
to drop the injectivity requirement.

1.14.2 Simulation Subsumption

In this section, we first introduce simulation subsumption (Definition 28), then for sev-
eral query terms we discuss whether one subsumes the other to give an intuition for
the compositionality of the subsumption relationship. Subsequently, the transitivity of
the subsumption relationship is proven (Lemma 4), some conclusions about the mem-
bership in the subsumption relationship of subterms, given the membership in the sub-
sumption relationship of their parent terms are stated. These conclusions formalize the
compositionality of simulation subsumption and are a necessary condition for the com-
pleteness of the rewriting system introduced in Section 1.14.3.

In tabled evaluation of logic programs, solutions to subgoals are saved in a solu-
tion table, such that for equivalent or subsumed subgoals, these sets do not have to
be recomputed. As mentioned before, this avoidance of re-computation does not only
save time, but can, in certain cases be crucial for the termination of a backward chain-
ing evaluation of a program. In order to classify subgoal as solution or look-up goals,
boolean subsumption as specified by Definition 28 must be decided. Although Xcerpt
query terms may contain variables, n-ary subsumption as defined in [138] would be too
strict for our purposes. To see this, consider the Xcerpt query terms q1 := a{{var X}} and
q2 := a{{c}}. Although all data terms that are relevant for q2 can be found in the solutions
for q1, q1 and q2 cannot be compared by n-ary containment, because they differ in the
number of their query variables.

Definition 28 (Simulation Subsumption). A query term q1 subsumes another query
term q2 if all data terms that q2 simulates with are also simulated by q1.

Example 1 (Examples for the subsumption relationship). Let the query terms q1, . . .q5
be given by:

– q1 := a{{}}
– q2 := a{{desc b,desc c,d}}
– q3 := a{{desc b,c,d}}
– q4 := a{{without e}}
– q5 := a{{without e{{without f }}}}

Then the following subsumption relationships hold:

98 F. Bry et al.

– q2 subsumes q3 because it requires less than q3: While q3 requires that the data has
outermost label a, subterms c and d as well as a descendant subterm b, q2 requires
not that there is a direct subterm c, but only a descendant subterm. Since every
descendant subterm is also a direct subterm, all data terms simulating with q3 also
simulate with q2.
But the subsumption relationship can also be decided in terms of simulation: q2
subsumes q3, because there is a mapping π from the direct subterms ChildT (q2) of
q2 to the direct subterms ChildT (q3) of q3, such that qi subsumes π(qi) for all qi in
ChildT (q2).

– q3 does not subsume q2, since there are data terms that simulate with q2, but not
with q3. One such data term is d := a{b,e{c},d}.
Again, the subsumption relationship between q3 and q2 (in this order) can be de-
cided by simulation. There is no mapping π from the direct subterms of q3 to the
direct subterms of q2, such that a simulates into π(a).

– q1 subsumes q4 since it requires less than q4. All data terms that simulate with q4
also simulate with q1.

– q4 does not subsume q1, since the data term a{{e}} simulates with q1, but does not
simulate with q4.

– q5 subsumes q4, but not the other way around.

Proposition 4. The subsumption relationship between query terms is transitive, i.e. for
arbitrary query terms q1, q2 and q3 it holds that if q1 subsumes q2 and q2 subsumes q3,
then q1 subsumes q3.

Proposition 4 immediately follows from the transitivity of the subset relationship.
Query term simulation and subsumption are defined in a way such that, given the sim-
ulation subsumption between two query terms, one can draw conclusions about sub-
sumption relationships that must be fulfilled between pairs of subterms of the query
terms. Lemma 1 formalizes these sets of conclusions.

Lemma 1 (Subterm Subsumption). Let q1 and q2 be query terms such that q1 sub-
sumes q2. Then there is an injective mapping π from ChildT +(q1) to ChildT +(q2) such
that qi

1 subsumes π(qi
1) for all qi

1 ∈ChildT +(q1).
Furthermore, if q1 and q2 are breadth-incomplete, then there is a (not necessarily

injective) mapping σ from ChildT−(q1) to ChildT−(q2) such that pos(σ(q j
1)) subsumes

pos(q j
1) for all q j

1 ∈ChildT−(q1).
If q1 is breadth-incomplete and q2 is breadth-complete then there is no q j

1 in
ChildT−(q1) and qk

2 ∈ChildT +(q2) \ range(π) such that pos(q j
1) � qk

2.

Lemma 1 immediately follows from the equivalence of the subsumption relationship
and the extended query term simulation (see Lemma 4 in the appendix of [35]).

1.14.3 Simulation Subsumption by Rewriting

In this section, we lay the foundations for a proof for the decidability of subsumption
between query terms according to Definition 28 by introducing a rewriting system from

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 99

a{{
b{c, var X},
desc d,
without e{{ f }}

}}

a{{ b{c, var X},
desc d,
without e{{ f

}},
var Y

}}

a{{ b{var X, c},
/.*/{{ desc d

}},
without e{{ f

}},
var Y

}}

a{{ b{var X, c},
g{{ desc d }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ /.*/{{

desc d }} }},
var Y,
without e{{ f }}

}}

a{{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}}

a{ b{var X, c},
g{{ h{{ d }} }},
var Y,
without e{{ f }}

}

a{ b{var X, c},
g{{ h{{ d }} }},
i{ },
without e{{ }}

}

Equation 1.6

Equations 1.5, 1.7, 1.10

Equations 1.11, 1.7

Equation 1.5

Equation 1.11

Equation 1.4

Equation 1.9, 1.12, 1.10

one query term to another, which is later shown to be sound and complete. Furthermore,
this rewriting system lays the foundation for the complexity analysis in Section 1.14.4.

The transformation of a query term q1 into a subsumed query term q2 is exemplified
in Figure 1.14.3.

Definition 29 (Subsumption monotone query term transformations). Let q be a
query term. The following is a list of so-called subsumption monotone query term trans-
formations.

– if q has incomplete subterm specification, it may be transformed to the analogous
query term with complete subterm specification.

a{{q1, . . . ,qn}}

a{q1, . . . ,qn}
, (1.4)

– if q is of the form desc q′ then the descendant construct may be eliminated or it may
be split into two descendant constructs separated by the regular expression /.*/,
the inner descendant construct being wrapped in double curly braces.

100 F. Bry et al.

desc q
q

,
desc q

desc /.∗ /{{desc q}}
(1.5)

– if q has incomplete-unordered subterm specification, then a fresh variable X may
be appended to the end of the subterm list. A fresh variable is a variable that does
not occur in q1 or q2 and is not otherwise introduced by the rewriting system.

X fresh⇒
a{{q1, . . . ,qn}},

a{{q1, . . . ,qn,var X}}
(1.6)

– if q has unordered subterm specification, then the subterms of q may be arbitrarily
permuted.

π ∈ Perms({1, . . . ,n})⇒
a{{q1, ..., qn}}

a{{qπ(1), ..., qπ(n)}}
(1.7)

π ∈ Perms({1, . . . ,n})⇒
a{q1, ..., qn}

a{qπ(1), ..., qπ(n)}
(1.8)

– if q contains a variable var X, which occurs in q at least once in a positive context
(i.e. not within the scope of a without) then all occurrences of var X may be
substituted by another Xcerpt query term.

X ∈ PV(q), t ∈ QTerms⇒
q

q{X 7→ t}
(1.9)

This rule may only be applied, if q contains all occurrences of X in q1. Furthermore,
no further rewriting rules may be applied to the replacement term t.
If a variable appears within q only in a negative context (i.e. within the scope of
a without), the variable cannot be substituted by an arbitrary term to yield a
transformed term that is subsumed by q. The query terms a{{ without var
X }} and a{{ without b{ } }} together with the data term a{ c } illus-
trate this characteristic of the subsumption relationship. For further discussion of
substitution of variables in a negative context see Example 2.

– if q has a subterm qi, then qi may be transformed by any of the transformations in
this list except for Equation 1.9 to the term t(qi), and this transformed version may
be substituted at the place of qi in q, as formalized by the following rule: 41 42

qi

t(qi)
⇒

a{{q1, . . . ,qn}}

a{{q1, . . . ,qi−1, t(qi),qi+1, . . .qn}}
(1.10)

– if the label of q is a regular expression e, this regular expression may be replaced by
any label that matches with e, or any other regular expression e′ which is subsumed
by e (see Definition 8 in the appendix of [35]).41

41 The respective rules for complete-unordered subterm specification, incomplete-ordered sub-
term specification and complete-ordered subterm specification are omitted for the sake of
brevity.

42 The exclusion of Equation 1.9 ensures that variable substitutions are only applied to entire
query terms and not to subterms. Otherwise the same variable might be substituted by different
terms in different subterms.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 101

e ∈ RE,e subsumes e’⇒
e{{q1, . . . ,qn}}

e′{{q1, . . . ,qn}}
(1.11)

– if q contains a negated subterm qi = without r and r′ is a query term such that
t(r′) = r (i.e. r′ subsumes r) for some transformation step t, then qi can be replaced
by q′i := without r′.

(qi = without r)∧
r′

r
∧ (q′i = without r′)⇒

a{{q1, . . . ,qi, . . . ,qn}}

a{{q1, . . . ,q′i , . . .qn}}
(1.12)

1.14.4 Properties of the Rewriting System

In this section, we show that the rewriting system introduced in the previous section
is sound (Section 1.14.4) and complete (Section 1.14.4). Furthermore, we study the
structure of the search tree induced by the rewriting rules, show that it can be pruned
without losing the completeness of the rewriting system and conclude that simulation
subsumption is decidable. Finally we derive complexity results from the size of the
search tree in Section 1.14.4.

Subsumption Monotonicity and Soundness

Lemma 2 (Monotonicity of the transformations in Definition 29). All of the trans-
formations given in Definition 29 are subsumption monotone, i.e. for any query term q
and a transformation from Definition 29 which is applicable to q, q subsumes t(q).

The proof of Lemma 2 is straight-forward since each of the transformation steps can
be shown independently of the others. For all of the transformations, inverse transfor-
mation steps t−1 can be defined, and obviously for any query term q it holds that t−1(q)
subsumes q.

Lemma 3 (Transitivity of the subsumption relationship, monotonicity of a se-
quence of subsumption monotone query term transformations). For a sequence
of subsumption monotone query term transformations t1, . . . , tn, and an arbitrary query
term q, q subsumes t1 ◦ . . .◦ tn(q1).

The transitivity of the subsumption relationship is immediate from its definition
(Definition 28) which is based on the subset relationship, which is itself transitive.

As mentioned above, the substitution of a variable X in a negative context of a query
term q by a query term t, which is not a variable, results in a query term q′ := q[X 7→ t]
which is in fact more general than q. In other words q[X 7→ t] subsumes q for any query
term q if X only appears within a negative context in q. On the other hand, if X only
appears in a positive context within q, then q′ is less general – i.e. q subsumes q′. But
what about the case of X appearing both in a positive and a negative context within q?
Consider the following example:

102 F. Bry et al.

Example 2. Let q := a{{ var X, without b{{ var X }} }}. It may be tempt-
ing to think that substituting X by c[] to give q′ makes the first subterm of q less gen-
eral, but the second subterm of q more general. In fact, a subterm b[c] within a
data term would cause the subterm without b{{ var X }} of q to fail, but the
respective subterm of q′ to succeed, suggesting that there is a data term that simulation
unifies with q′, but not with q, meaning that q does not subsume q′. However, there is no
such data term, which is due to the fact that the second occurrence of X within q is only
a consuming occurrence. When this part of the query term is evaluated, the variable X
is already bound.

The normalized form for Xcerpt query terms is introduced, because for an unnor-
malized query term q1 that subsumes a query term q2 one cannot guarantee that there
is a sequence of subsumption monotone query term transformations t1, . . . , tn such that
tn ◦ . . .◦ t1(q1) = q2. To see this, consider example 3.

Example 3 (Impossibility of transforming an unnormalized query term). Consider q1 :=
a{{var X as b{{c}},var X as b{{d}}}} and q2 := a{{b{{c,d}},b{{c,d}}}}. q2 subsumes q1, in
fact both terms are even simulation equivalent. But there is no sequence of subsumption
monotone query term transformations from q2 to q1, since one would have to omit
one subterm from both the first subterm of q2 and from the second one. But such a
transformation would in general not be subsumption monotone.

Besides opening up the possibility of specifying restrictions on one subterm non-
locally, duplicate restrictions for the same variable also allow the formulation of unsat-
isfiable query terms, as the following example shows:

Example 4 (Unsatisfiable query terms due to variable restrictions). Consider the query
terms q1 := a{{var X as b, var X as c}} and q2 := b{{}}. It is easy to see that q1 is
unsatisfiable, and thus q2 subsumes q1. However, there is no transformation sequence
from q2 to q1.

Also single variable restrictions may in some cases be problematic, because they
allow the specification of infinite, or at least graph structured data terms as example 5
shows:

Example 5 (Nested variable restrictions). Consider the query terms q1 := a{{var X as
b{{var X}}}} and q2 := a{{var Y as b{{b{{var Y}}}}}}.

To overcome this issue, query terms are assumed to be in normalized form (Defi-
nition 30). In fact, almost all Xcerpt query terms can be transformed into normalized
form.

Definition 30 (Query terms in normalized form). A query term containing only a
single variable restriction for each variable is a query term in normalized form. A
query term which can be converted into an equivalent query term in normalized form is
said to be normalizable.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 103

Unsatisfiability of query terms makes the decision procedure for subsumption more
complex, and thus it is to be avoided whenever possible. Allowing the specification of
unsatisfiable query terms does not add expressive power to a query language, and should
thus be disallowed. Apart from the normal form, also subterm injectivity is a means for
preventing the user of the Xcerpt query language from specifying unsatisfiable queries.

Example 6 (Unsatisfiability due to non-injectivity). In this example we use triple curly
braces to state that the mapping from the siblings enclosed within the braces need not
be injective. With this notation queries become less restrictive as the number of braces
in the subterm specification increases. Let q1 := a{{{b, without b}}}. Since q1 both re-
quires and forbids the presence of a subterm with label b, it is clearly unsatisfiable. Let
q2 := b{{}}. Although q2 subsumes q1, we cannot find a subsumption monotone trans-
formation sequence from q2 to q1.

The above example shows that the the proof for the decidability of the subsumption
relationship given in this section relies on the injectivity of the subterm mapping. Since
there is no injectivity requirement for multiple consecutive predicates in XPath, the
proof cannot be trivially used to show decidability of subsumption of XPath fragments.

Completeness

Theorem 6 (Subsumption by transformation). Let q1 and q2 be two query terms in
normalized form such that q1 subsumes q2. Then q1 can be transformed into q2 by a
sequence of subsumption monotone query term transformations listed in Definition 29.

Proof. We distinguish two cases:

– q1 and q2 are subsumption equivalent (i.e. they subsume each other)
– q1 strictly subsumes q2

The first case is the easier one. If q1 and q2 are subsumption equivalent, then there
is no data term t, such that t simulates with one, but not the other. Hence q1 and q2
are merely syntactical variants of each other. Then q1 can be transformed into q2 by
consistent renaming of variables (Equation 1.10), and by reordering sibling terms within
subterms of q (Equation 1.7). This would not be true for unnormalized query terms as
Example 3 shows.

The second is shown by structural induction on q1.
For both the induction base and the induction step, we assume that q1 subsumes

q2, but that the inverse is false. Then there is a data term d, such that q1 simulates
into d, but q2 does not. In both the induction base and the induction step, we give a
distinction of cases, enumerating all possible reasons for q1 simulating into d but q2 not.
For each of these cases, a sequence of subsumption monotone transformations t1, . . . tn
from Definition 29 is given, such that q′1 := tn ◦ tn−1 ◦ . . .◦ t1(q1) does not simulate into
d. By Lemmas 2 and 3, q′1 still subsumes q2. Hence by considering d and by applying
the transformations, q1 is brought “closer” to q2. If q′1 is still more general than q2,
then one more dataterm d′ can be found that simulates with q′1, but not with q2, and
another sequence of transformations to be applied can be deduced from this theorem.
This process can be repeated until q1 has been transformed into a simulation equivalent
version of q2. For the proof, see the appendix of [35].

104 F. Bry et al.

Decidability and Complexity In the previous section, we establish that, for each pair
of query terms q1,q2 such that q1 subsumes q2, there is a (possibly infinite) sequence of
transformations t1, . . . , tk by one of the rules in Section 1.14.3 such that tk ◦ . . .◦ t1(q) =

q2.
However, if we reconsider the proof of Theorem 6, it is quite obvious that the se-

quence of transformations can in fact not be infinite: Intuitively, we transform at each
step in the proof q1 further towards q2, guided by a data term that simulates in q1 but
not in q2. In fact, the length of a transformation sequence is bounded by the sum of the
sizes of the two query terms. As size of a query term we consider the total number of
its subterms.

Proposition 5 (Length of Transformation Sequences). Let q1 and q2 be two Xcerpt
query terms such that q1 subsumes q2 and n the sum of the sizes of q1 and q2. Then, there
is a sequence of transformations t1, . . . , tk such that tk ◦ . . .◦ t1(q1) = q2 and k ∈ O(n).

Proof. We show that the sequences of transformations created by the proof of The-
orem 6 can be bounded by O(n + m) if computed in a specific way: We maintain a
mapping µ from subterms of q1 to subterms of q2 indicating how the query terms are
mapped. µ is initialized with (q1,q2). In the following, we call a data term d discrimi-
nating between q1 and q2 if q1 simulates in d but not q2.

(1) For each pair (q,q′) in µ, we first choose a discriminating data term that matches
case 1 in the proof of Theorem 6. If there is such a data term, we apply Equation (1.11),
label replacement, once to q obtaining t(q) and update the pair in µ by (t(q),q′). This
step is performed at most once for each pair as (t(q),q′) have the same label and thus
there is no more discriminating data term that matches case 1.

(2) Otherwise, we next choose a discriminating data term that matches case 2.a.i or
2.b.i. In both cases, we apply Equation (1.6), variable insertion, to insert a new variable
and update the pair in µ. This step is performed at most |q2| − |q1| ≤ n times for each
pair.

(3) Otherwise, we next choose a discriminating data term that matches case 2.a.ii
and apply Equation (1.4), complete term specification and update the pair in µ. This
step is performed at most once for each pair.

(4) Finally, the only type of discriminating data term that remains is one with the
same number of positive child terms as q2. We use an oracle to guess the right mapping
σ from child terms of q1 to child terms of q2. Then we remove the pair from µ and add
(c,σ(c)) to µ for each child term of q1. This step is performed at most once for each pair
in µ.

Since query subterms have a single parent, we add each subterm only once to µ in a
pair. Except for case 2, we perform only a constant number of transformations to each
pair. Case 2 allows up to n transformations for a single pair, but the total number of
transformations (over all pairs) due to case 2 is bound by the size of q2. Thus in total
we perform at most 4 ·n transformations where n is the sum of the number of the sizes
of q1 and q2.

Though we have established that the length of a transformation sequence is bound
by O(n), we also have to consider how to find such a transformation sequence. The

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 105

proof of Proposition 5, already spells out an algorithm for finding such transforma-
tion sequences. However, it uses an oracle to guess the right mapping between child
terms of two terms that are to be transformed. A naive deterministic algorithm needs to
consider all possible such mappings whose number is bound by O(n!). It is worth not-
ing, however, that in most cases the actual number of such mappings is much smaller
as most query terms have fairly low breadth and the possible mappings between their
child terms are severely reduced just by considering only mappings where the labels of
child terms simulate. However, in the worst case the O(n!) complexity for finding the
right mapping may be reached and thus we obtain:

Theorem 7 (Complexity of Subsumption by Rewriting). Let q1 and q2 be two Xcerpt
query terms. Then we can test whether q1 subsumes q2 in O(n!n) time.

Proof. By proposition 5 we can find a O(n) length transformation sequence in O(n!n)
time and by Theorem 6 q1 subsumes q2 if and only if there is such a sequence.

1.14.5 Future Work in the area of Xcerpt Query Term Subsumption

Starting out from the problem of improving termination of logic programming based
on rich kinds of simulation such as simulation unification, this section investigates the
problem of deciding simulation subsumption between query terms. A rewriting sys-
tem consisting of subsumption monotone query term transformations is introduced and
shown to be sound and complete. By convenient pruning of the search tree defined
by this rewriting system, the decidability of simulation subsumption is proven, and an
upper bound for its complexity is identified.

Future work includes (a) a proof-of-concept implementation of the rewriting sys-
tem, (b) the development of heuristics and their incorporation into the prototype to
ensure fast termination of the algorithm in the cases when it is possible, (c) the study of
the complexity of the problem in absence of subterm negation, descendant constructs,
deep-equal, and/or injectivity, (d) the implementation of a backward chaining algorithm
with tabling, which uses subsumption checking to avoid redundant computations and
infinite branches in the resolution tree, and (e) the adaptation of the rewriting system
to XPath in order to decide subsumption and to derive complexity results for the sub-
sumption problem between XPath queries.

1.15 Conclusion

The Merriam-Webster dictionary defines versatile as “embracing a variety of subjects,
fields or skills”, as “turning with ease from one thing to another”, and as “having many
uses or applications”. As shown in this chapter, the query language Xcerpt embraces
both tree and graph-shaped data (in particular also relational data), Web and Semantic
Web data, semantic data embedded in HTML as microformats and purely semantic
data. It can be used to query data on a syntactic and on a semantic level, and it turns
easily between the formats that it supports, allowing the transformation of one format
to another within a single rule.

106 F. Bry et al.

Having isolated the concept of simulation unification as a matching algorithm that
can be adapted to any kind of semi-structured data, the single rule and multi-rule seman-
tics of Xcerpt become versatile in the sense that new forms of simulations for new Web
formats (e.g., topic maps) can be “plugged into” Xcerpt without having to adapt the
semantics of single rules, and the semantics of negation as failure of possibly recursive
multi-rule programs.

Datalog with negation and value invention can be used to precisely formulate the
semantics of Xcerpt rules, no matter of the type of data being queried. Since it is a
well-studied fragment of first order logic this provides an easy-to-understand semantics
of Xcerpt for query authors that have some background knowledge in rule based for-
malisms. In particular, we use this translation for proving a number of computational
properties of Xcerpt and some of its sub-languages.

Furthermore, the translation to Datalog with negation and value invention can serve
as a basis for an implementation of Xcerpt in a relational database. For this aim, we
also need a compact and efficient representation of both tree- and graph-shaped semi-
structured data. Such a representation is discussed in Section 1.13. We showed that
this representation allows constant time and constant per-node space reachability and
adjacency test for all trees and many graphs.

While this article aims at giving an answer to the design questions for versatile web
query languages, it has also raised a number of new questions and desires:

– Section 1.3 shows that Xcerpt is suitable for querying HTML, XML, RDF and
microformat data. Xcerpt queries for extracting data from microformats, however,
exhibit all the same underlying characteristics: excessive use of the descendant
axis, ignoring XML element labels by using regular expressions, filtering elements
according to the value of the class attribute. While in regular XML querying,
the child axis is often more prevalent than the attribute axis, and element labels
are more distinguishing than attribute values (except for id-attributes), these pairs
have switched roles in microformat querying. With microformats becoming the de
facto standard of the “lowercase semantic web” [96], query patterns specifically
aimed at micro-formats and sharing the same characteristics as simulation are a
valuable investigation. Alternatively a domain specific language for microformats
only could be of use for Semantic Web programmers.

– As mentioned in Section 1.7, the idea of weak stratification could be carried over
to rule based languages with a rich unficication algorithm such as simulation unifi-
cation.

– Guaranteeing termination of backward chaining evaluation of possibly recursive
multi-rule programs involving negation has received a large amount of attention in
the past [143, 132] [129]. Termination is even a bigger issue for recursive rule based
languages with a rich unification algorithm, since there is a larger variety of infi-
nite branches of subsumption monotone subgoals. A subsumption-aware resolution
algorithm for rule based languages with rich unfication and negation as failure is
currently being implemented by the authors.

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 107

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from relations to semistructured
data and XML. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Publishing
Co., Boston, MA, USA (1995)

3. Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wienerm, J.L.: The Lorel Query Lan-
guage for Semistructured Data. Intl. Journal on Digital Libraries 1(1) (1997) 68–88

4. Adida, B.: hGRDDL: Bridging microformats and RDFa. J. Web Sem. 6(1) (2008) 54–60
5. Adida, B., Birbeck, M.: RDFa primer 1.0 embedding RDF in XHTML. W3c working draft,

W3C (October 2007)
6. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships

in large data and knowledge bases. In: Proc. ACM Symp. on Management of Data (SIG-
MOD), New York, NY, USA, ACM (1989) 253–262

7. Akhtar, W., Kopecky, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between the
XML and RDF worlds – and avoiding the XSLT pilgrimage. In Hauswirth, M., Koubarakis,
M., Bechhofer, S., eds.: Proceedings of the 5th European Semantic Web Conference. LNCS,
Berlin, Heidelberg, Springer Verlag (June 2008)

8. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.: Structural
Joins: A Primitive for Efficient XML Query Pattern Matching. In: Proc. Int. Conf. on Data
Engineering, Washington, DC, USA, IEEE Computer Society (2002) 141

9. Apple Inc.: plist — Property List Format. (2003)
10. Apt, K.R., Bol, R.N.: Logic programming and negation: A survey. J. Log. Program. 19/20

(1994) 9–71
11. Assmann, U., Berger, S., Bry, F., Furche, T., Henriksson, J., Johannes, J.: Modular web

queries — from rules to stores. In: On the Move to Meaningful Internet Systems 2007:
OTM 2007 Workshops, Proceedings of International Workshop on Scalable Semantic Web
Knowledge Base Systems, Vilamoura, Algarve, Portugal (25th–30th November 2007). Vol-
ume 4805/2007 of LCNS. (2007)

12. Augurusa, E., Braga, D., Campi, A., Ceri, S.: Design and implementation of a graphical
interface to XQuery. In: SAC ’03: Proceedings of the 2003 ACM symposium on Applied
computing, New York, NY, USA, ACM (2003) 1163–1167

13. Backett, D.: Turtle—Terse RDF Triple Language. Technical report, Institute for Learning
and Research Technology, University of Bristol (2007)

14. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and semantic web query languages: A
survey. In: Reasoning Web, First International Summer School 2005. Volume 3564 of
LNCS. Springer-Verlag (2005)

15. Beckett, D., McBride, B.: RDF/XML Syntax Specification (Revised). Recommendation,
W3C (2004)

16. Benedikt, M., Koch, C.: Xpath leashed. ACM Computing Surveys (2007)
17. Berger, S., Bry, F., Bolzer, O., Furche, T., Schaffert, S., Wieser, C.: Xcerpt and visxcerpt:

Twin query languages for the semantic web. In: Proceedings of 3rd International Semantic
Web Conference, Hiroshima, Japan (7th–11th November 2004). LNCS (2004)

18. Björklund, H., Martens, W., Schwentick, T.: Conjunctive query containment over trees. In
Arenas, M., Schwartzbach, M.I., eds.: DBPL. Volume 4797 of Lecture Notes in Computer
Science., Springer (2007) 66–80

19. Boag, S., Berglund, A., Chamberlin, D., Siméon, J., Kay, M., Robie, J., Fernández,
M.F.: XML path language (XPath) 2.0. W3C recommendation, W3C (January 2007)
http://www.w3.org/TR/2007/REC-xpath20-20070123/.

108 F. Bry et al.

20. Bolzer, O.: Towards Data-Integration on the Semantic Web: Querying RDF with Xcerpt.
Diplomarbeit/diploma thesis, University of Munich (2005)

21. Bolzer, O.: Towards data-integration on the semantic web: Querying RDF with Xcerpt.
Diplomarbeit/diploma thesis, Institute of Computer Science, LMU, Munich (2005)

22. Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.: MonetDB/X-
Query: a fast XQuery Processor powered by a Relational Engine. In: Proc. ACM Symp. on
Management of Data (SIGMOD), New York, NY, USA, ACM Press (2006) 479–490

23. Bonifati, A., Ceri, S.: Comparative analysis of five xml query languages. SIGMOD Rec.
29(1) (2000) 68–79

24. Booth, K.S., Lueker, G.S.: Linear Algorithms to Recognize Interval Graphs and Test for
the Consecutive Ones Property. In: Proc. of ACM Symposium on Theory of Computing,
New York, NY, USA, ACM Press (1975) 255–265

25. Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML 1.0 (second edition)
(2006) W3C Rec. 16 August 2006.

26. Bray, T., Hollander, D., Layman, A., Tobin, R.: Namespaces in XML (2nd Edition). Rec-
ommendation, W3C (2006)

27. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, François: Extensible
markup language (xml) 1.0 (fourth edition) (2006)

28. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible Markup
Language (XML) 1.0 (Third Edition). Recommendation, W3C (2004)

29. Broekstra, Kampman, Harmelen: Sesame: A generic architecture for storing and querying
RDF and RDF Schema. (2003)

30. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Match-
ing. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, New York, NY, USA,
ACM Press (2002) 310–321

31. Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R., Wei,
F.: Foundations of rule-based query answering. In Antoniou, G., Aßmann, U., Baroglio, C.,
Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R., eds.: Reasoning Web. Volume 4636 of
Lecture Notes in Computer Science., Springer (2007) 1–153

32. Bry, F., Furche, T., Badea, L., Koch, C., Schaffert, S., Berger, S.: Querying the web recon-
sidered: Design principles for versatile web query languages. Journal of Semantic Web and
Information Systems (IJSWIS) 1(2) (2005)

33. Bry, F., Furche, T., Ley, C., Linse, B.: RDFLog—taming existence - a logic-based query
language for RDF (2007)

34. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like datalog for RDF.
In: Proceedings of 22nd Workshop on (Constraint) Logic Programming, Dresden (30th
September–1st October 2008). (2008)

35. Bry, F., Furche, T., Linse, B.: Simulation subsumption or déjà vu on the web (extended
version). Technical Report PMS-FB-2008-01, University of Munich (2007)

36. Bry, F., Furche, T., Linse, B., Schroeder, A.: Efficient Evaluation of n-ary Conjunctive
Queries over Trees and Graphs. In: Proc. ACM Int’l. Workshop on Web Information and
Data Management (WIDM), ACM Press (2006).

37. Bry, F., Coskun, F., Durmaz, S., Furche, T., Olteanu, D., Spannagel, M.: The XML Stream
Query Processor SPEX. In: Proc. Int’l. Conf. on Data Engineering (ICDE). (2005) 1120–
1121.

38. Bry, F., Furche, T., Ley, C., Linse, B.: Rdflog: Filling in the blanks in rdf querying. Tech-
nical Report PMS-FB-2008-01, University of Munich (2007)

39. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: Taming existence in rdf querying. In:
Proc. Int’l. Conf. on Web Reasoning and Rule Systems (RR). (2008)

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 109

40. Bry, F., Schaffert, S.: A Gentle Introduction into Xcerpt, a Rule-based Query and Trans-
formation Language for XML. In: Proc. Intl. Workshop on Rule Markup Languages for
Business Rules on the Semantic Web. (2002)

41. Buneman, P., Fernandez, M.F., Suciu, D.: UnQL: a query language and algebra for
semistructured data based on structural recursion. VLDB Journal: Very Large Data Bases
9(1) (???? 2000) 76–110

42. Bussche, J.V.D., Gucht, D.V., Andries, M., Gyssens, M.: On the completeness of object-
creating database transformation languages. Journal of the ACM 44(2) (1997) 272–319

43. Cabibbo, L.: The expressive power of stratified logic programs with value invention. Infor-
mation and Computation 147(1) (1998) 22–56

44. Carlos, J., Polleres, A., Polleres, A.: Sparql rules. Technical report, Universidad Rey Juan
Carlos (2006)

45. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs, provenance and trust. In:
WWW ’05: Proceedings of the 14th international conference on World Wide Web, New
York, NY, USA, ACM (2005) 613–622

46. Ceri, S., Comai, S., Damiani, E., Fraternali, P., Paraboschi, S., Tanca, L.: XML-GL: a
graphical language for querying and restructuring XML documents. (1998)

47. Chamberlin, D.D., Robie, J., Florescu, D.: Quilt: An XML query language for heteroge-
neous data sources. In Suciu, D., Vossen, G., eds.: WebDB (Selected Papers). Volume 1997
of Lecture Notes in Computer Science., Springer (2000) 1–25

48. Chen, L., Gupta, A., Kurul, M.E.: Stack-based algorithms for pattern matching on dags. In:
Proc. Int’l. Conf. on Very Large Data Bases (VLDB), VLDB Endowment (2005) 493–504

49. Chen, T., Lu, J., Ling, T.W.: On Boosting Holism in XML Twig Pattern Matching using
Structural Indexing Techniques. In: Proc. ACM SIGMOD Int. Conf. on Management of
Data, New York, NY, USA, ACM Press (2005) 455–466

50. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic programs. J.
ACM 43(1) (1996) 20–74

51. Chen, Z., Gehrke, J., Korn, F., Koudas, N., Shanmugasundaram, J., Srivastava, D.: Index
structures for matching xml twigs using relational query processors. Data & Knowledge
Engineering (DKE) 60(2) (2007) 283–302

52. Cholak, P., Blair, H.A.: The complexity of local stratification. Fundam. Inform. 21(4)
(1994) 333–344

53. Cohen, E., Halperin, E., Kaplan, H., Zwick, U.: Reachability and Distance Queries via
2-hop Labels. In: Proc. ACM Symposium on Discrete Algorithms, Philadelphia, PA, USA,
Society for Industrial and Applied Mathematics (2002) 937–946

54. Connolly, D.: Gleaning resource descriptions from dialects of languages (grddl). Recom-
mendation, W3C (2007)

55. Cooper, B., Sample, N., Franklin, M.J., Hjaltason, G.R., Shadmon, M.: A Fast Index for
Semistructured Data. In: Proc. Int. Conf. on Very Large Databases, San Francisco, CA,
USA, Morgan Kaufmann Publishers Inc. (2001) 341–350

56. Cowan, J., Tobin, R.: XML Information Set (2nd Ed.). Recommendation, W3C (2004)
57. Davis, I.: GRDDL primer (2006)
58. Deutsch, A., Fernández, M.F., Florescu, D., Levy, A.Y., Suciu, D.: XML-QL. In: QL.

(1998)
59. Dijkstra, E.W.: On the role of scientific thought (EWD447). In: Selected Writings on

Computing: A Personal Perspective. (1982) 60–66
60. Droop, M., Flarer, M., Groppe, J., Groppe, S., Linnemann, V., Pinggera, J., Santner, F.,

Schier, M., Schöpf, F., Staffler, H., Zugal, S.: Translating xpath queries into sparql queries.
In: On the Move (OTM 2007) Federated Conferences and Workshops (DOA, ODBASE,
CoopIS, GADA, IS), 6th International Conference on Ontologies, DataBases, and Applica-
tions of Semantics (ODBASE 2007). (2007) 9–10

110 F. Bry et al.

61. Eiter, T., Faber, W., Koch, C., Leone, N., Pfeifer, G.: DLV - a system for declarative problem
solving. In: Proceedings of the 8th International Workshop on Non-Monotonic Reasoning
(NMR’2000). (2000)

62. Euzenat, J., Valtchev, P.: An integrative proximity measure for ontology alignment. In
Doan, A., Halevy, A., Noy, N., eds.: Proceedings of the 1st Intl. Workshop on Semantic
Integration. Volume 82 of CEUR. (2003)

63. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in OWL-lite. In de Mántaras,
R.L., Saitta, L., eds.: Proceedings of the 16th European Conference on Artificial Intelli-
gence (ECAI-04), IOS Press (2004) 333–337

64. Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM
Transactions on Database Systems 2(3) (1977) 262–278

65. Fallside, D.C., Walmsley, P.: XML Schema Part 0: Primer Second Edition. Recommenda-
tion, W3C (2004)

66. Fernández, M., Malhotra, A., Marsh, J., Nagy, M., Walsh, N.: XQuery 1.0 and XPath 2.0
Data Model. Recommendation, W3C (2007)

67. Fulkerson, D.R., Gross, O.A.: Incidence Matrices and Interval Graphs. Pacific Journal of
Mathematics 15(3) (1965) 835–855

68. Furche, T.: Implementation of Web Query Language Reconsidered: Beyond Tree and
Single-Language Algebras at (Almost) No Cost. Dissertation/doctoral thesis, Ludwig-
Maxmilians University Munich (2008)

69. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF querying: Language con-
structs and evaluation methods compared. In: Reasoning Web, Second International Sum-
mer School 2006. Volume 4126 of LNCS. (2006)

70. Furche, T., Weinzierl, A., Bry, F.: Scalable, space-optimal implementation of xcerpt single
rule programs—part 1: Data model, queries, and translation. Deliverable I4-D15a, REW-
ERSE (2007)

71. Gandon, F.: GRDDL use cases: Scenarios of extracting RDF data from XML documents.
W3c working group note 6 april 2007, W3C (2007)

72. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book. Pren-
tice Hall (2002)

73. Garshol, L.M., Moore, G.: ISO 13250-2: Topic Maps — Data Model. International stan-
dard, ISO/IEC (2006)

74. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Pro-
ceeding of the Fifth Logic Programming Symposium. (1988) 1070–1080

75. Goldman, R., Widom, J.: Dataguides: Enabling query formulation and optimization in
semistructured databases. In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), San
Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1997) 436–445

76. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath Queries.
ACM Transactions on Database Systems (2005)

77. Gottlob, G., Leone, N., Scarcello, F.: The Complexity of Acyclic Conjunctive Queries.
Journal of the ACM 48(3) (2001) 431–498

78. Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N., Reinke, C.: Embedding
sparql into xquery/xslt. In: SAC ’08: Proceedings of the 2008 ACM symposium on Applied
computing, New York, NY, USA, ACM (2008) 2271–2278

79. Grust, T.: Accelerating XPath Location Steps. In: Proc. ACM Symp. on Management of
Data (SIGMOD). (2002)

80. Grust, T., Keulen, M.V., Teubner, J.: Accelerating XPath Evaluation in any RDBMS. ACM
Transactions on Database Systems 29(1) (2004) 91–131

81. Grust, T., Teubner, J.: Relational Algebra: Mother Tongue - XQuery: Fluent. In: Proc.
Twente Data Management Workshop on XML Databases and Information Retrieval. (2004)

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 111

82. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach A Relational DBMS to Watch
its (Axis) Steps. In: Proc. Int. Conf. on Very Large Databases. (2003)

83. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and Partition Refinement, with
Applications to Transitive Orientation, Interval Graph Recognition and Consecutive Ones
Testing. Theoretical Computer Science 234(1-2) (2000) 59–84

84. Hayes, P., McBride, B.: Rdf semantics. Recommendation, W3C (2004)
85. Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infi-

nite graphs. In: FOCS. (1995) 453–462
86. Hsu, W.L.: PC-Trees vs. PQ-Trees. In: Proc. Int’l. Conf. on Computing and Combinatorics.

Volume 2108 of LNCS. (2001)
87. Hsu, W.L.: A Simple Test for the Consecutive Ones Property. Journal of Algorithms 43(1)

(2002) 1–16
88. Hull, R., Yoshikawa, M.: Ilog: Declarative creation and manipulation of object identifiers.

In: Proc. Int’l. Conf. on Very Large Data Bases (VLDB), San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (1990) 455–468

89. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D., Thompson, K.: TAX: A Tree Algebra
for XML. In: Proc. Int. Workshop on Database Programming Languages. (2001)

90. Jenner, B., Köbler, J., McKenzie, P., Torán, J.: Completeness results for graph isomorphism.
Journal of Computer and System Sciences 66(3) (2003) 549–566

91. Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D.,
Scholl, M., Tolle, K.: RQL: A functional query language for RDF. In Gray, P.M.D., Ker-
schberg, L., King, P.J.H., Poulovassilis, A., eds.: The Functional Approach to Data Manage-
ment: Modelling, Analyzing and Integrating Heterogeneous Data. LNCS, Springer-Verlag
(2004) 435–465

92. Kay, M.: Parsing in functional unification grammar. In Dowty, D., Karttunen, L., Zwicky,
A., eds.: Natural Language Parsing: Psychological, Computational, and Theoretical Per-
spectives. Cambridge University Press, Cambridge (1985) 251–278

93. Kay, M.: Functional unification grammar: A formalism for machine translation. In:
COLING-84, Stanford, CA (1984) 75–78

94. Kay, M.: XSL Transformations, Version 2.0. Recommendation, W3C (2007)
95. Kay, M.: XSL transformations (XSLT) version 2.0. W3C recommendation, W3C (January

2007) http://www.w3.org/TR/2007/REC-xslt20-20070123/.
96. Khare, R.: Microformats: The next (small) thing on the semantic web? IEEE Internet

Computing 10(1) (2006) 68–75
97. Khare, R., Çelik, T.: Microformats: a pragmatic path to the semantic web. In: WWW

’06: Proceedings of the 15th international conference on World Wide Web, New York, NY,
USA, ACM Press (2006) 865–866

98. Klaas, V.: Who’s who in the world wide web: Approaches to name disambiguation. Diplo-
marbeit/diploma thesis, Institute of Computer Science, LMU, Munich (2007)

99. Klug, A.C.: On conjunctive queries containing inequalities. J. ACM 35(1) (1988) 146–160
100. Klyne, G., Carroll, J.J., McBride, B.: Resource Description Framework (RDF): Concepts

and Abstract Syntax. Recommendation, W3C (2004)
101. Knoblock, C.A., Minton, S., Ambite, J.L., Ashish, N., Modi, P.J., Muslea, I., Philpot, A.,

Tejada, S.: Modeling web sources for information integration. In: AAAI/IAAI. (1998)
211–218

102. Koch, C.: On the Complexity of Nonrecursive XQuery and Functional Query Languages
on Complex Values. ACM Transactions on Database Systems 31(4) (2006)

103. Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for semantic association discov-
ery. In Franconi, E., Kifer, M., May, W., eds.: ESWC. Volume 4519 of Lecture Notes in
Computer Science., Springer (2007) 145–159

112 F. Bry et al.

104. Kolaitis, P.G., Papadimitriou, C.H.: Why not negation by fixpoint? In: PODS, ACM (1988)
231–239

105. Lenzerini, M.: Data integration: A theoretical perspective. (2002)
106. Manola, F., Miller, E.: RDF primer, W3C recommendation. Technical report, W3C (2004)
107. Manola, F., Miller, E., McBride, B.: Rdf primer. Recommendation, W3C (2004)
108. Marsh, J.: XML Base. Recommendation, W3C (2001)
109. Martı́nez, J.M.: Mpeg-7 overview. Technical Report ISO/IEC JTC1/SC29/WG11N6828,

INTERNATIONAL ORGANISATION FOR STANDARDISATION (ISO) (2004)
110. Marx, M.: Conditional XPath, the first order complete XPath dialect. In: Proceedings of

the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, ACM New York, NY, USA (2004) 13–22

111. Marx, M.: Conditional XPath. ACM Transactions on Database Systems (TODS) 30(4)
(2005) 929–959

112. McBride, B.: Rdf vocabulary description language 1.0: Rdf schema (2004)
113. Meuss, H., Schulz, K.U.: Complete Answer Aggregates for Treelike Databases: A Novel

Approach to Combine Querying and Navigation. ACM Transactions on Information Sys-
tems 19(2) (2001) 161–215

114. Meuss, H., Schulz, K.U., Bry, F.: Towards Aggregated Answers for Semistructured Data.
In: Proc. Intl. Conf. on Database Theory, Springer-Verlag (2001) 346–360

115. Milner, R.: An algebraic definition of simulation between programs. In: IJCAI. (1971)
481–489

116. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and tool for automated ontology merging
and alignment. In: AAAI/IAAI. (2000) 450–455

117. Olteanu, D.: SPEX: Streamed and Progressive Evaluation of XPath. IEEE Transactions on
Knowledge and Data Engineering (2007)

118. Olteanu, D., Furche, T., Bry, F.: Evaluating Complex Queries against XML streams with
Polynomial Combined Complexity. In: Proc. British National Conf. on Databases (BN-
COD). (2003) 31–44.

119. Olteanu, D., Furche, T., Bry, F.: An Efficient Single-Pass Query Evaluator for XML Data
Streams. In: Data Streams Track,Proc. ACM Symp. on Applied Computing (SAC). (2004)
627–631.

120. Olteanu, D., Meuss, H., Furche, T., Bry, F.: Xpath: Looking forward. In Chaudhri, A.B.,
Unland, R., Djeraba, C., Lindner, W., eds.: EDBT Workshops. Volume 2490 of Lecture
Notes in Computer Science., Springer (2002) 109–127

121. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs: Insert-
friendly XML Node Labels. In: Proc. ACM Symp. on Management of Data (SIGMOD),
ACM Press (2004) 903–908

122. Pepper, S.: The TAO of topic maps. (2000)
123. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In Cruz,

I.F., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.,
eds.: International Semantic Web Conference. Volume 4273 of Lecture Notes in Computer
Science., Springer (2006) 30–43

124. Pérez, J., Arenas, M., Gutierrez, C.: nSPARQL: A navigational language for RDF. In
Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K.,
eds.: International Semantic Web Conference. Volume 5318 of Lecture Notes in Computer
Science., Springer (2008) 66–81

125. Pérez, J., Arenas, M., Gutierrez, C.: nsparql: A navigational language for rdf. In: Proc.
Int’l. Semantic Web Conf. (ISWC). (2008) 66–81

126. Polleres, A.: From sparql to rules (and back). In Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J., eds.: WWW, ACM (2007) 787–796

1 Four Lessons in Versatility or How Query Languages Adapt to the Web 113

127. Polleres, A., Krennwallner, T., Kopecky, J., Akhtar, W.: Xsparql: Traveling between the
xml and rdf worlds – and avoiding the xslt pilgrimage. In: Proc. European Semantic Web
Conf. (ESWC). (2008)

128. Przymusinska, H., Przymunsinski, T.C.: Weakly stratified logic programs. Fundam. Inf.
13(1) (1990) 51–65

129. Przymusinski, T.C.: On the declarative semantics of deductive databases and logic pro-
grams. In: Foundations of Deductive Databases and Logic Programming. Morgan Kauf-
mann (1988) 193–216

130. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity management. In:
DIM ’06: Proceedings of the second ACM workshop on Digital identity management, New
York, NY, USA, ACM (2006) 11–16

131. Ross, K.A.: Modular stratification and magic sets for DATALOG programs with negation.
In: PODS, ACM Press (1990) 161–171

132. Sagonas, K.F., Swift, T., Warren, D.S.: The XSB programming system. In: Workshop on
Programming with Logic Databases (Informal Proceedings), ILPS. (1993) 164

133. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the Web. PhD
thesis, University of Munich (2004)

134. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the Web.
Dissertation/doctoral thesis, University of Munich (2004)

135. Schenk, S., Staab, S.: Networked graphs: A declarative mechanism for sparql rules, sparql
views and rdf data integration on the web. In: Proceedings of the 17th International World
Wide Web Conference, Bejing, China (2008-04)

136. Schenkel, R., Theobald, A., Weikum, G.: HOPI: An Efficient Connection Index for Com-
plex XML Document Collections. In: Proc. Extending Database Technology. (2004)

137. Schneider, P.P., Simeon, J.: The yin/yang web: Xml syntax and rdf semantics. Proceedings
of the eleventh international conference on World Wide Web, ACM Press (2002) 11

138. Schwentick, T.: Xpath query containment. SIGMOD Record 33(1) (2004) 101–109
139. Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das, S., Davis, I., Harris,

S., Idehen, K., Corby, O., Kjernsmo, K., Nowack, B.: SPARQL/Update A lan-
guage for updating RDF graphs. W3C Member Submission, W3C (July 2008)
http://www.w3.org/Submission/2008/04/.

140. Seaborne, A., Prud’hommeaux, E.: SPARQL query language for RDF. W3C recommenda-
tion, W3C (January 2008) http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

141. Siméon, J., Chamberlin, D., Florescu, D., Boag, S., Fernández, M.F., Robie, J.:
XQuery 1.0: An XML query language. W3C recommendation, W3C (January 2007)
http://www.w3.org/TR/2007/REC-xquery-20070123/.

142. Stickler, P.: Cbd - concise bounded description (2005)
143. Tamaki, H., Sato, T.: OLD resolution with tabulation. In Shapiro, E.Y., ed.: ICLP. Volume

225 of Lecture Notes in Computer Science., Springer (1986) 84–98
144. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: Proc.

ACM Symp. on Management of Data (SIGMOD), New York, NY, USA, ACM (2007) 845–
856

145. Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci. 239(2)
(2000) 189–210

146. van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic pro-
grams. Journal of the ACM 18 (1991) 620–650

147. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. Journal of the ACM (1991)

148. W3C: Gleaning resource descriptions from dialects of languages (GRDDL). W3c recom-
mendation, W3C (September 2007)

114 F. Bry et al.

149. Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O?Reilly (1999)
150. Wang, H., He2, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: Answering graph reachability

queries in constant time. In: Proc. Int’l. Conf. on Data Engineering (ICDE), Washington,
DC, USA, IEEE Computer Society (2006) 75

151. Wei, F., Lausen, G.: Containment of conjunctive queries with safe negation. In Calvanese,
D., Lenzerini, M., Motwani, R., eds.: ICDT. Volume 2572 of Lecture Notes in Computer
Science., Springer (2003) 343–357

152. Weigel, F., Schulz, K.U., Meuss, H.: The bird numbering scheme for xml and tree databases
– deciding and reconstructing tree relations using efficient arithmetic operations. In: Proc.
Int’l. XML Database Symposium (XSym). Volume 3671 of LNCS., Springer-Verlag (2005)
49–67

