
RDFLog: It’s like Datalog for RDF

François Bry1, Tim Furche1, Clemens Ley2, Benedikt Linse1, and Bruno Marnette2

1 Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

2 Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, England

Abstract. RDF data is set apart from relational or XML data by its
support of rich existential information in the form of blank nodes. Where
in SQL databases null values are scoped over a single tuple, blank nodes
in RDF can span over any number of statements and thus can be seen
as existentially quantified variables.

Blank node querying is considered in most RDF query languages, but
blank node construction, i.e., the introduction of new blank nodes has
been mostly ignored (e.g., in Triple) or treated in a very limited form
(e.g., in SPARQL). In this paper, we classify three kinds of blank nodes
in RDF query languages and introduce the recursive, rule-based RDF
query language RDFLog. RDFLog is the first RDF query language with
full arbitrary quantifier alternation: blank nodes may occur in the scope
of all, some, or none of the universal variables of a rule. RDFLog is also
aware of important RDF features such as the distinction between blank
nodes, literals and URIs or the RDFS vocabulary.

1 Introduction

Access to data in a machine-processable, domain-independent manner plays a
central role in the future growth of the Internet. Information on legislative pro-
ceedings, census data, scientific experiments and databases, as well as the data
gathered by social network applications is now accessible in form of RDF data.
The Resource Description Framework (RDF) is a data format for the Web with
a formal semantics that is achieving considerable popularity. Compared to rela-
tional databases, RDF is mostly distinguished by (1) a specialization to ternary
statements or “triples” relating a subject, via a predicate, to an object, (2)
the presence of blank nodes that allow statements where subject or object are
unknown, and (3) specific semantics for a small, predefined vocabulary (RDF
Schema, or RDFS) reminiscent of an object-oriented type system.

With the staggering amount of data available in RDF form on the Web,
the second indispensable ingredient becomes the easy selection and processing
of RDF data. For that purpose, a large number of RDF query languages (see
[1] for a recent survey) have been proposed. In this paper, we add a further
exemplar: RDFLog extends datalog to support the distinguishing features of
RDF such as blank nodes and the logical core [2] of the RDFS vocabulary. In

RDFLog, Blank nodes can be constructed by existentially quantified variables
in rule heads. RDFLog allows full alternation between existential and universal
quantifiers in a rule. This sharply contrasts with previous approaches to rule-
based query languages that either do not support blank nodes (in rule heads) at
all [3,4], or only a limited form of quantifier alternation [5,6,7].

To illustrate the benefits of full quantifier alternation, imagine an information
system about university courses. We distinguish three types of rules with exis-
tential quantifiers (and thus blank nodes) based on the alternation of universal
and existential quantifiers:
(1) “Someone knows each professor” can be represented in RDFLog as

∃stu∀prof ((prof , rdf:type, uni:professor)→ (stu, uni:knows, prof)) (1)

We call such rules ∃∀ rules. Some approaches such as [5] are limited to rules of
this form.
(2) Imagine, that we would like to state that each lecture must be “practiced”
by another course (such as a tutorial or practice lab) without knowing more
about that course. This statement can not be expressed by ∃∀ rules. In RDFLog
it can be represented as

∀lec∃crs
(
(lec, rdf:type, uni:lecture)→ (crs, uni:practices, lec)

)
(2)

Such rules are referred to as ∀∃ rules. Recent proposals for rule extensions to
SPARQL are limited to this form, if they consider blank nodes in rule heads at
all. The reason is that in SPARQL CONSTRUCT patterns a fresh blank node is
constructed for each binding of the universal variables (cf. Section 10.2.1 in [8]).
(3) To the best of our knowledge, RDFLog is the first RDF query language that
supports the third kind of rules, where quantifiers are allowed to alternate freely:
This allows to express statements such as, for each lecture there is a course that
“practices” that lecture and is attended by all students attending the lecture.
This is represented in RDFLog as

∀lec∃crs∀stu
(
(lec, rdf:type, uni:lecture) ∧ (stu, uni:attends, lec)→

(crs, uni:practices, lec) ∧ (stu, uni:attends, crs)
)

(3)

In addition to flexible support for existential information through full quan-
tifier alternation, RDFLog captures the essentials of RDF through two further
characteristics: First, RDFLog is a closed RDF query language, i.e., the answer
to an RDFLog program is again an RDF graph. Second, RDFLog can express
the logical core of the RDFS semantics (ρdf from [2]).
Contributions. The paper is organised along the following contributions:
1. A rule-based RDF query language combining recursion and free quantifier

alternation, called RDFLog (Section 3) is introduced.
2. The closed semantics of RDFLog (with or without a core fragment of the

RDFS semantics) is introduced in terms of RDF entailment. (Section 3.3).
3. We show how this semantics can be implemented by a reduction to the evalu-

ation of a standard logic program without existential quantifiers. (Section 4).

4. The experimental evaluation of a basic prototype shows that the reduction to
standard logic programming easily competes with existing specialized RDF
query engines even when considering only the restricted fragment of RDFLog
equivalent to SPARQL (Section 5).

2 Preliminaries

2.1 Syntax and Semantics of RDF

In this paper, we adopt the notions of RDF vocabulary, RDF graph, (simple)
RDF interpretation, and RDF entailment from [10].

Definition 1 (RDF Graph [10]). An RDF vocabulary V consists of two dis-
joint sets called URIs U and literals L. The blank nodes B is a set disjoint from
U and L. An RDF graph is a set of RDF triples where an RDF triple is an
element of (U ∪ B) × U × (U ∪ L ∪ B). If t = (s, p, o) is an RDF triple then s is
the subject, p is the predicate, and o is the object of t.

The set L of literals consists of three subsets, plain literals, typed literals and
literals with language tags. In this work we consider only plain literals (and thus
drop IL, the interpretation function for typed literals, see Section 1.3 in [10], in
the following definitions).

Definition 2 (RDF Interpretation [10]). An interpretation I of an RDF
vocabulary V = (U, L) is a tuple (IR, LV, IP, IEXT, IS) where IR is a non-empty set
of resources such that L ⊆ LV ⊆ IR, IP is a set of properties and IEXT : IP →
2IR×IR, and IS : U→ IR ∪ IP are mappings.

Note that as IR and IP are not necessarily disjoint a same URI can be used
both as a resource and a property. RDF interpretations are used to assign a
truth value to an RDF graph.

RDF assigns a special meaning to a predefined vocabulary, called RDFS vo-
cabulary. For example it is required that IEXT(IP(rdfs : subPropertyOf)) is tran-
sitive and reflexive. The formulation of theses constraints on RDF interpretation
makes use of a notion of a class. We have omitted this notion in the definition
above for simplicity. The logical core of RDFS has been identified in [2], de-
noted as ρdf . An RDF interpretation I is a ρdf interpretation if I satisfied the
constraints specified in Definition 3 in [2].

Definition 3 (Interpretation of an RDF Graph [10]). Let I be the RDF
(ρdf) interpretation (IR, LV, IP, IEXT, IS) and A : B → IR a mapping. Then
[I + A](e) = a if e is the literal a, [I + A](e) = IS(e) if e is a URI, [I + A](e) = A(e)
if e is a blank node, and [I + A](e) = true if e = (s, p, o) is an RDF triple over V ,
I(p) ∈ IP and (I(s), I(o)) ∈ IEXT(I(p)). Finally I(g) = true if there is a mapping
A : B→ IR such that [I + A](t) = true for all RDF triples t ∈ g.

The semantics of RDF is completed by the notion of entailment: An RDF
graph g RDF-entails (ρdf -entails) an RDF graph h if for all RDF (ρdf) inter-
pretations I, I(h) = true if I(g) = true [10].

2.2 Logic and Logic Programming

We use formulas, terms, structures (rather than first-order interpretation), Her-
brand structures, satisfaction |=, models, entailment |=, logic and Datalog pro-
grams, and immediate consequence operator TP of a program P as common in
logic and logic programming. In addition, we also consider infinite formulas: if Φ
is a countably infinite set of formulas then

∧
(Φ) is a formula and if x̄ = x1, x2, . . .

is a countably infinite sequence of variables and ϕ is a formula then ∃x̄(ϕ) is
a formula. We write ϕ(x̄) to indicate that the free variables of a formula ϕ are
among x̄ = x1, . . . , xn. Note, that we in fact use only a very limited form of
infinite formulas (infinite conjunctions with only existential quantifiers).

3 Syntax and Semantics of RDFLog

3.1 The RDFLog Data Model

To make results from databases and logic programming accessible for RDF
querying, we show that the semantics of RDF can be defined in terms of stan-
dard logic. In particular we show that RDF graphs can be translated to formulas
so that logical entailment coincides with RDF entailment.

For any RDF vocabulary V = (U, L) we define the alphabet ΣV = U∪L∪{T}
where U and L are constant symbols and T is an arbitrary ternary relation
symbol.

Definition 4 (Canonical Formula of an RDF Graph). Let g = {t1, . . . , tn}
be an RDF graph over V. The canonical formula of g is the formula ϕg :=
∃x̄ (ψ1(x̄) ∧ . . . ∧ ψn(x̄)) over ΣV and variables from B where ψi = T (s, p, o) if
ti = (s, p, o) and x̄ is the set of blank nodes occurring in g.

In [2] a sound and complete deductive system for ρdf has been presented. It
is easy to see that this deductive system corresponds to a finite set of Datalog
rules Φρdf .

Proposition 1. Let g, h be RDF graphs and ϕg, ϕh their canonical formulas.
Then g RDF-entails h iff ϕg |= ϕh and g ρdf -entails h iff ϕg ∧ Φρdf |= ϕh.1

3.2 RDFLog Syntax

Definition 5 (Syntax of RDFLog Programs). Let V = (U, L) be an RDF
vocabulary and Var a set of variables. An RDFLog atom over V is an atom
T (t1, t2, t3) where t1, t2 ∈ (U ∪ Var) and t3 ∈ (U ∪ L ∪ Var). An RDFLog rule
over V is a formula

∀x̄1∃ȳ1 . . . ∀x̄n∃ȳn (body(x̄)→ head(x̄, ȳ))

1 For proofs of theorems, lemmas, and proposition see the appendix of the online
version [11].

over ΣV and Var where x̄ = x̄1, . . . , x̄n and ȳ = ȳ1, . . . , ȳn are finite sequences
from Var and body(x̄) and head(x̄, ȳ) are finite conjunctions of RDFLog atoms.
In addition we require that RDFLog rules are range restricted: if x ∈ Var(head)
is universal or there is an existential y ∈ Var(head) such that y is in the scope
of x, then x ∈ Var(body). An RDFLog program over V is a finite set of RDFLog
rules over V.

Observe that any finite RDF graph g = {t1, . . . , tn} with blank nodes x̄ can
be encoded into the RDFLog rule ∃x̄ (true → t1 ∧ . . . ∧ tn) where true denotes
the empty conjunction. As it makes the notation simpler we always assume that
the input RDF graph is encoded into a rule in the RDFLog program. As there
is only one predicate symbol (T) in an RDFLog program it is usually omitted.

3.3 RDFLog Semantics

It is not generally agreed upon what a the semantics of a rule based RDF query
language should be if existential variables are allowed in the head. In contrast, it
is agreed that the semantics of a logic program with only universally quantified
variables is its minimal Herbrand model.

The following RDFLog program illustrates why it is problematic to define
the semantics of an RDF query language directly in terms of models. Let the
canonical structure Ag of an RDF graph g be the structure over the domain
of URIs, literals and blank nodes where (t1, t2, t3) is true in Ag iff (t1, t2, t3) is
an RDF triple in g. As (2) is a fact in P and (1) is a rule in P , any canon-
ical structure of an RDF graph that is a model of P must contain the triple
(’Logic’, uni:located in, :b) for some blank node :b. Since this triple contains
a literal in the subject position, it is not an RDF triple. This illustrates that P
has no model that is the canonical structures of an RDF graph. Even if literals
in subject position are allowed (as in SPARQL), a similar argument can be made
with blank nodes in predicate position.

P =
˘
∀sem∃rm∀stu

`
(stu, uni:attends, sem)

→ (sem, uni:located in, rm) ∧ (stu, uni:knows, rm)
´
, (1)

true → (uni:julie, uni:attends, ’Logic’) ∧ (uni:john, uni:attends, uni:RDF)
¯

(2)

[[P]] 3
˘

(:b3, uni:located in, :b1), (uni:julie, uni:knows, :b1),

(uni:RDF, uni:located in, :b2), (uni:john, uni:knows, :b2),

(uni:julie, uni:attends, ‘Logic’), (uni:julie, uni:attends, :b3),

(uni:john, uni:attends, uni:RDF)
¯

We deal with this problem by defining the semantics of RDFLog in terms of
RDF entailment. More precisely we define the semantics of an RDFLog program
P to be the set of all RDF graphs g that entail exactly the same RDF graphs
as P (and satisfying in particular P |= g).

Definition 6 (Denotational Semantics of RDFLog). Let P be an RDFLog
program and RDF the set of RDF graphs. The denotational semantics [[P]] of P

is the set [[P]] := {g ∈ RDF | ∀h ∈ RDF (P |= ϕh iff ϕg |= ϕh)} where ϕg and ϕh

are the canonical formulas of g and h respectively.

Observe that the semantics of an RDFLog program is an infinite set of possi-
bly infinite RDF graphs. As we formalised RDF graphs as formulas, we have to
consider the special kind of infinite formulas defined in section 2.2. Nonetheless
it is immediate from the definition that the RDF graphs in [[P]] form an equiv-
alence class under RDF entailment. Therefore any element of [[P]] characterizes
the infinite set [[P]]. In the next section we show how such a representative can
be computed.

Observe that Φρdf encoded in RDFLog. Therefore it is up to the programmer
to enclose Φρdf into P if the semantics of P is supposed to be aware of the ρdf
vocabulary.

4 Evaluation

The goal of this section is to show how the evaluation of an RDFLog program
P can be done by first translating P into a logic program s(P), using the well-
studied notion of Skolemisation, and then evaluate this program s(P) using stan-
dard technology. Two post processing steps (Unskolemisation and RDF normal-
ization) make sure that the result is an RDF graph in the denotational semantics
of P . After defining precisely each of the key steps of the operational semantics
in Section 4.1, we show in Section 4.2 that the operational semantics achieves
its goal as it is consistent with the denotational semantics of RDFLog.

4.1 Operational Semantics of RDFLog

Definition 7 (Skolemisation). Let Σ and Γ be disjoint alphabets, ϕ = ∀x̄∃y(ψ)
a formula over Σ ∪ Γ and f ∈ Γ . A Γ -Skolemisation step sf maps ϕ to
sf (ϕ) := ∀x̄ψ{y � f(x̄)}. A Γ -Skolemisation s is a composition sf1 ◦ . . . ◦ sfn of
Γ -Skolemisation steps such that fi does not occur in sfi+1 ◦ . . .◦sfn

(ϕ) and s(ϕ)
contains no existential variables. The definition of a Skolemisation is extended
to sets in the usual way.

The Skolemisation of an RDFLog program P is equivalent to a range re-
stricted logic program, which we denote by s(P). Any logic programming engine
can compute the minimal Herbrand model Ms(P) of s(P). The following logic
program is the Skolemisation s(P) of the RDFLog program P from Section 3.3
where s replaces the existential variable rm in P by the term srm(sem).

s(P) =
˘
∀sem∀stu

`
(stu, uni:attends, sem)

→ (sem, uni:located in, srm(sem)) ∧ (stu, uni:knows, srm(sem))
´
,

true → (uni:julie, uni:attends, ’Logic’) ∧ uni:john, uni:attends, uni:RDF)
¯

ϕMs(P) = (‘Logic’, uni:located in, srm(‘Logic’)) ∧ (uni:julie, uni:knows, srm(‘Logic’))

∧ (uni:RDF, uni:located in, srm(uni:RDF)) ∧ (uni:john, uni:knows, srm(uni:RDF))

∧ (uni:julie, uni:attends, ‘Logic’) ∧ (uni:john, uni:attends, uni:RDF)

We define ϕMS(P) to be the conjunction of all ground atoms that are true in
Ms(P). However, ϕMS(P) might not be the canonical formula of an element of [[P]]
for two reasons. First, the example shows that ϕMS(P) might contain atoms with
skolem terms, such as (uni:RDF, uni:located in, srm(uni:RDF)), which are not en-
tailed by P . Second, ϕMS(P) can contain atoms that contain literals in subject
or predicate position and blank nodes in predicate position. In the example the
atom (‘Logic’, uni:located in, srm(‘Logic’)) contains the literal ‘Logic’ in subject
position.

We can avoid the first problem by “undoing” the Skolemisation: replacing
each Skolem term in ϕMS(P) by a fresh, distinct blank node. We formalise this
operation as the inverse of a Skolemisation called Unskolemisation.

Definition 8 (Unskolemisation). Let Σ and Γ be disjoint alphabets and ϕ a
ground, possibly infinite, and quantifier free formula over Σ ∪ Γ . Let t̄ be the
sequence of all ground terms f(ū) where f is in Γ and ū is a sequence of terms
over Σ ∪ Γ . Then the Γ -Unskolemisation u maps ϕ to u(ϕ) := ∃x̄ (ϕ{t̄ � x̄}) .
where x̄ is a sequence of fresh variables.

To address the second issue, we remove all triples with literals or blank
nodes in predicate position (no RDF graph may contain such a triple or any
triple entailed by it). In addition we remove each triple t that contains a literal
l in object position and add two triples t1 and t2 where t1 is obtained from t by
replacing an occurrence of a literal l in subject position by a fresh blank node bl
and t2 is obtained from t by replacing all occurrences of l by bl.

This is necessary to preserve information about the identity of domain ele-
ments that are denoted by blank nodes. For example observe that the RDF graph
{(uni:julie, uni:attends, :b), (:b, uni:located in, srm(‘Logic’))} follows from the
RDFLog program P in Section 3.3. To maintain this information we need to
insert the triple (uni:julie, uni:attends, :b3) into [[P]]. We formalise this step by
defining the normalisation operator.

Definition 9 (Normalisation Operator). Let ϕ be a formula of the form
∃x̄ (a1(x̄) ∧ . . . ∧ an(x̄)) where each ai(x̄) = T (t1, t2, t3) for some t1, t2, t3 ∈ (U∪
B ∪ L). Let L′ ⊆ L be the set of literals that occur in the first argument of an
atom in ϕ. We define µ : U ∪ B ∪ L → U ∪ B ∪ L to be the injection such that
µ(t) = b for some fresh blank node b (not in ϕ) if t ∈ L′ and µ(t) = t otherwise.
Then Π(ϕ) = {Π(a1(x̄)), . . . Π(an(x̄))} and

Π(T (t1, t2, t3)) =

{
> if t2 ∈ B ∪ L

(µ(t1), t2, t3) ∧ (µ(t1), t2, µ(t3)) otherwise

The normalisation operator ensures that, though intermediary triples may con-
tain blank nodes in predicate position (see [12] for examples where this is useful),
the final answer of an RDFLog program never contains such triples.
Armed with these notions of Skolemisation, Unskolemisation and Normalisation,
we finally define the operational semantics of RDFLog as follows.

Definition 10 (Operational Semantics of RDFLog). Let P be an RDFLog
program over Σ, s a Γ -Skolemisation for P , and u an Γ -Unskolemisation. Then
the operational semantics of P is [P] := Π

(
u(ϕMs(P))

)
where ϕMS(P) is as

defined above: the conjunction of all ground atoms that are true in the minimal
Herbrand model of s(P).

4.2 Properties of the Operational Semantics

Even though we do not require that elements of the denotational semantics [[P]]
of an RDFLog program P are models of P it holds that u(ϕMs(P)) has a canonical
structure that is not only a model of P but even a universal model [9]. Thus
if we allow literals in subject position and blank nodes in subject or predicate
position, we can omit Π from the operational semantics and compute a model
of P .

To formulate this more precisely, we define an extended Herbrand structure A
over alphabet Σ and variables Var as a structure (D,Rel ,Fun) where D is the set
of (possibly non-ground) terms over Σ and Var , and every function fA is defined
by fA(t1, . . . , tn) = f(t1, . . . , tn). We extend the definition of Unskolemisation
from formulas to extended Herbrand structures: if u is an Unskolemisation that
replaces t̄ by x̄ then u(M) is the extended Herbrand structure obtained from M
by renaming the domain elements t̄ by x̄.

Lemma 1. Let P be an RDFLog program, AP = u(Ms(P)) and ϕP = u
(
ϕMs(P)

)
.

Then AP |= P and P |= ϕP .

Intuitively, AP |= P means that ϕP captures all the information in P and
P |= ϕP means that it does not assert anything that is not asserted by P .
From these two key observations, we can prove that the operational semantics of
RDFLog is both sound and complete with respect to the denotational semantics.

Theorem 1. Let P be an RDFLog program. Then [P] ∈ [[P]].

5 Experimental Evaluation

The reduction of RDFLog to standard logic programs (Section 4) allows for a
direct implementation of RDFLog on top of any logic programming or database
engine that supports value invention and recursion. In the following, we we
compare experimentally the performance of a very simple prototype based on
that principle with two of the more common SPARQL implementations. Our
implementation of RDFLog uses a combination of Perl pre- and post-filters for
Skolemisation, Unskolemisation, and normalisation of RDFLog programs and
XSB Prolog to evaluate the Skolemised programs.

We compare our implementation with the ARQ SPARQL processor of Jena
(Version 2.1) and the SPARQL engine provided by the Sesame RDF Framework.
For Sesame, we choose the main-memory store as it is “by far the fastest type
of repository that can be used” according to Sesame’s authors. With this store,

Fig. 1 Performance comparison on rule 1 (left) and on rule 2 (right)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL(ARQ)

SPARQL(Sesame)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000 12000 14000

tim
e

(s
ec

)

data size (triples)

RDFLog
SPARQL (ARQ)

SPARQL (Sesame)

Sesame becomes a main-memory, ad-hoc query engine just like RDFLog and
ARQ. As common for ad-hoc queries we measure overall execution time including
both loading of the RDF data and execution of the SPARQL or RDFLog query.

In the experiments we evaluate three different queries against an RDF graph
consisting of Wikipedia data. The experiments have been carried out on a Intel
Pentium M Dual-Core with 1.86 GHz, 1 MB cache and 2 GB main memory.
For each setting, the running time is averaged over 25 runs. We compare the
following rules:

– Rule 1: ∀x∀y ((x,wiki:internalLink, y)→ (x, test:connected, y))
– Rule 2: ∀x∀y∃z ((x,wiki:internalLink, y)→ (x, test:connected, z))

Figure 1 compares the performance of RDFLog with that of ARQ and Sesame
for rule 1 and rule 2 (we omit rule 3 as it is not expressible in SPARQL). Despite
its light-weight, ad-hoc implementation, RDFLog outperforms ARQ and Sesame
in this setting. The figures show moreover that also for ARQ and Sesame, blank
node construction does not bear any significant additional computational effort.

6 Conclusion

Blank nodes are one of RDF’s distinguishing features. Yet they have been en-
tirely neglected or treated only in a limited fashion in previous approaches to
RDF querying. With RDFLog we propose a simple, yet comprehensive extension
of Datalog that covers all aspects of blank node construction that arise when
combining RDF with rules. We show that such an extension, including the re-
strictions of RDF wrt. blank node occurrence can be treated in a semantics based
purely on entailment. Furthermore, RDFLog easily incorporates (the logical core
of) RDFS. This allows us to view RDFLog as a convenient vessel for classifying
and comparing RDF query languages, similar to the role of Datalog for relational
databases. In particular, we identify four classes of blank node support in a rule
based RDF query language: no support, in the scope of no universal variable,

in the scope of all universal variables, or arbitrarily alternating with universal
variables. Existing approaches fall in one of the three first classes, with RDFLog
the first instance of the forth class.

Though RDFLog is primarily designed as a logical foundation for RDF query
languages, we also show that it is easily implemented on top of existing logic
programming technology and that such an approach actually compares very well
with existing SPARQL engines.

Acknowledgements. We would like to thank Michael Benedikt for the fruitful
discussions on RDFLog and the help with this article.

References

1. Furche, T., Linse, B., Bry, F., Plexousakis, D., Gottlob, G.: RDF Querying: Lan-
guage Constructs and Evaluation Methods Compared. In: Tutorial Lectures Int’l.
Summer School ‘Reasoning Web’. Volume 4126 of Lecture Notes in Computer Sci-
ence., Springer Verlag (2006) 1–52

2. Muñoz, S., Pérez, J., Gutierrez, C.: Minimal Deductive Systems for RDF. In:
Proc. European Semantic Web Conf. (ESWC). Volume 4519 of Lecture Notes in
Computer Science., Springer Verlag (2007) 53–67

3. Polleres, A.: From SPARQL to Rules (and Back). In: Proc. Int’l. World Wide Web
Conf. (WWW), New York, NY, USA, ACM (2007) 787–796

4. Sintek, M., Decker, S.: Triple—a Query, Inference, and Transformation Language
for the Semantic Web. In: Proc. Int’l. Semantic Web Conf. (ISWC). (2002)

5. Yang, G., Kifer, M.: Reasoning about Anonymous Resources and Meta Statements
on the Semantic Web. Journal of Data Semantics 1 (2003) 69–97

6. Schenk, S., Staab, S.: Networked Graphs: a Declarative Mechanism for SPARQL
Rules, SPARQL Views and RDF Data Integration on the Web. In: Proc. Int’l.
World Wide Web Conf. (WWW), New York, NY, USA, ACM (2008) 585–594

7. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web
Databases. In: Proc. ACM Symp. on Principles of Database Systems (PODS),
New York, NY, USA, ACM Press (2004) 95–106

8. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. Proposed
recommendation, W3C (2007)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and
Query Answering. (2003) 207–224

10. Hayes, P., McBride, B.: RDF Semantics. Recommendation, W3C (2004)
11. Bry, F., Furche, T., Ley, C., Linse, B., Marnette, B.: RDFLog: It’s like Datalog

for RDF. Technical Report PMS-FB-2008-01, University of Munich (2008)
http://rdflog.com/publications/bry-rdflog-full.pdf.

12. ter Horst, H.J.: Completeness, Decidability and Complexity of Entailment for RDF
Schema and a Semantic Extension Involving the OWL Vocabulary. Web Semantics:
Science, Services and Agents on the World Wide Web 3 (2005)

http://rdflog.com/publications/bry-rdflog-full.pdf

