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Abstract. Web query languages promise convenient and efficient access
to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web
query language with strong emphasis on novel high-level constructs for
effective and convenient query authoring, particularly tailored to ver-
satile access to data in different Web formats such as XML or RDF.
However, so far it lacks an efficient implementation to supplement the
convenient language features. AMaχoS is an abstract machine imple-
mentation for Xcerpt that aims at efficiency and ease of deployment. It
strictly separates compilation and execution of queries: Queries are com-
piled once to abstract machine code that consists in (1) a code segment
with instructions for evaluating each rule and (2) a hint segment that
provides the abstract machine with optimization hints derived by the
query compilation. This article summarizes the motivation and princi-
ples behind AMaχoS and discusses how its current architecture realizes
these principles.

1 Introduction

Efficient evaluation of Web query languages such as XQuery, XSLT, or SPARQL
has received considerable attention from both academia and industry over recent
years. Xcerpt is a novel breed of Web query language that aims to overcome the
split between traditional Web formats such as XML and Semantic Web data
formats such as RDF and Topic Maps. Thus it avoids the impedance mismatch
of using different languages to develop applications that enrich conventional Web
applications with semantics and reasoning based on RDF, Topic Maps, or similar
emerging formats.

However, so far Xcerpt lacks a scalable, efficient and easily deployable im-
plementation. In this article, we propose principles and architecture of such an
implementation. The proposed implementation deviates quite notably from con-
ventional wisdom on the implementation of query languages: it is based on an
abstract (or virtual1) machine that executes (interprets) low-level code generated
from high-level query programs specified in Xcerpt.
1 Little substantial difference is made in the literature between “abstract” and “vir-

tual” machines. Some authors define virtual machines as abstract machines with in-
terpreters in contrast to abstract machines such as Turing machines that are purely



The choice of an abstract machine for implementing a query language might
at the first glance seem puzzling. And indeed proper abstract machines that
separate execution and compilation have only very seldom been considered in
the past for the implementation of query languages (the most notable exception
being [19]). This is partially due to the perceived performance overhead intro-
duced by the abstraction/virtualization layer. However, traditional query pro-
cessors already separate between query compilation, where a high-level query is
translated into a low-level physical query plan, and query execution, where the
query is evaluated according to that query plan. From this the leap to an ab-
stract machine that fully separates compilation and execution seems small and
could even be considered merely a change in name. In traditional DBMS settings
it has, however, never occurred due to the way query compilation is linked with
query execution: cost-based optimizers consider extensively (statistical) infor-
mation about the data instances, e.g., for selectivity estimates, and about actual
access paths to these data instances. This information is available as the DBMS
has full, central control over the data including its storage.

When implementing a Web query language such as Xcerpt, one is however
faced with a quite different setting: In memory processing of queries against
XML, RDF, or other Web data that may be local and persistent (e.g., an XML
database or local XML documents), but just as well may have to be accessed
remotely (e.g., a remote XML document) or may be volatile (e.g., in case of
SOAP messages or Web Service access). In other words, it is assumed that
most of the queried data is not under (central) control of a query execution
environment like in a traditional DBMS setting, but rather that the queried
data is often distributed or volatile. This, naturally, hinders the application of
conventional indexing and predictive optimization techniques, that rely on local
management of data and statistic knowledge about that managed data. But, it
also makes separate compilation and execution possible as the query compilation
is already mostly independent of data storage and instances. This is due to the
fact that information about these is not available at compilation and execution
time but only becomes available at query execution.

To some extent, this setting is comparable to data stream processing where
also little is known about the actual data instances that are to be encountered
during query evaluation. The efficient data stream systems (such as [3, 1, 6])
compile therefore queries into some form of (finite state or push-down) automata
that is used to continuously evaluate the query against the incoming data.

AMaχoS, the abstract machine for Xcerpt on semi-structured data, can
be seen as an amalgamation of techniques from these three areas: query op-
timization and execution from traditional databases and data stream systems,
and compilation and execution of general programs based on abstract or virtual
machines.

AMaχoS is designed around a small number of core principles:

theoretical thought models. However this distinction is not widely adopted. In recent
years, the term “virtual” machine seems to dominate outside of logic programming
literature.



1. “Compile once”—compilation and execution is separated in AMaχoS thus
allowing (a) different levels of optimization for different purposes and set-
tings and (b) the distribution of compiled query programs among query
nodes making light-weight query nodes possible. For details see Section 4.2.

2. “Execute anywhere”—once compiled, AMaχoS code can be evaluated by
any AMaχoS query node. It is not fixed to the compiling node. In particular,
parts of a compiled program can be distributed to different query nodes. For
details see Section 4.1.

3. “Optimize all the time”—not only are queries optimized predictively dur-
ing query compilation, but also adaptively during execution. For details see
Section 4.4.

As a corollary of these three principles AMaχoS employs a novel query evalua-
tion framework for the unified execution of path, tree, and graph queries against
both tree- and graph-shaped semi-structured data (details of this framework are
discussed in Section 4.3 and [8]).

Following a brief look at the history of abstract and virtual machines for
program and query execution (Section 2) and an introduction into Xcerpt (Sec-
tion 3), the versatile Web query language that is implemented by the AMaχoS
abstract machine, we focus in the course of this article first (Section 4) on a
discussion of the principles of this abstract machine that also serves as a further
motivation of the setting. The second part (Section 5) of the paper discusses
the proposed architecture of AMaχoS and how this architecture realizes the
principles discussed in the first part.

2 A Brief History of Abstract Machines

Abstract and virtual machines have been employed over the last few decades,
aside from theoretical abstract machines as thought models for computing, in
mostly three areas:

Hardware virtualization. Abstract machines in this class provide a layer of vir-
tual hardware on top of the actual hardware of a computer. This provides the
programs directly operating on the virtual hardware (mostly operating systems,
device drivers, and performance intensive applications) with a seemingly uni-
form view of the provided computing resources. Though this has been a focus
of considerable research as early as 1970, cf. [12] only recent years have seen
commercially viable implementations of virtual machines as hardware virtual-
ization layers, most recently Apple’s Rosetta2 technology that provides an adap-
tive, just-in-time compiled virtualization layer for PowerPC applications on Intel
processors. Currently, research in this area focuses on providing scalability, fault
tolerance [9] and trusted computing [11] by employing virtual machines, as well
as on on-chip support for virtualization.

2 http://www.apple.com/rosetta/



Operating system-level virtualization A slightly higher level of abstraction or
virtualization is provided by operating system-level virtual machines that virtu-
alize operating system functions. Again, this technology has just recently become
viable in the form of, e.g., Wine3, a Windows virtualization layer for Unix op-
erating systems.

High-level language virtual machines From the perspective of AMaχoS the
most relevant research has been on virtual machines for the implementation
of high-level languages. First research dates back to the 1960s [24] and 1970s
[22], but wider interest in abstract machines for high-level languages has been
focused on two waves: First, in the 1980s a number of abstract machines for
Pascal (p-Machine, [23]), Ada [14], Prolog [30], and functional programming
languages (G-machine, [16]) have been proposed that focused on providing plat-
form neutrality and portability as well as precise specifications of the operational
semantics of the languages. Early abstract machines for imperative and object-
oriented programming languages have not been highly successful, mostly due
to the perceived performance penalty. However, research on abstract machines
for logic and functional programming languages has continued mostly uninter-
rupted up to recent developments such as the tabling abstract machine [26] for
XSB Prolog.

Recently, the field has seen a reinvigoration, cf. [25], triggered both by ad-
vances in hardware virtualization and a second wave of abstract machines for
high-level programming languages focused this time on imperative, object-orien-
ted programming languages like Java and C]. Here, isolation and security are
added to the core arguments for the use of an abstract machine: Each instance
of an abstract machine is isolated from others and from other programs on the
host system. Furthermore analysis of the abstract machine byte code to ensure,
e.g., safety or security properties proves easier than analysis of native machine
code.

The most prominent examples of this latest wave are, of course, Sun’s Java
virtual machine [17] and Microsoft’s common language infrastructure [15] (CLI).
The latter is adding the claim of “language independence” to the arguments for
the deployment of an abstract machine. And indeed quite a number of object-
oriented and functional languages have been compiled to CLI code. With this
second wave, design and principles of abstract machines are starting to be inves-
tigated more rigorously, e.g., in [10] and [29] that compare stack- with register-
based virtual machines.

Closest in spirit and aim to the work presented in this paper and to the best
knowledge of the authors’ the only other work on abstract machines for Web
query languages is [19] that presents a virtual machine for XSLT part of recent
versions of the Oracle database. However, this virtual machine is focused on a
centralized query processing scenario: a single query engine has control over all
data and thus can employ knowledge about data instances and access paths for
optimization and execution.

3 http://www.winehq.com/



3 Xcerpt: A Versatile Web Query Language

Xcerpt is a query language designed after principles given in [7] for querying both
data on the standard Web and data on the Semantic Web. More information,
including a prototype implementation, is available at http://xcerpt.org.

3.1 Data as Terms

Xcerpt uses terms to represent semi-structured data. Data terms represent XML
documents, RDF graphs, and other semi-structured data items. Notice that sub-
terms (corresponding to, e.g., child elements) may either be “ordered” (as in an
XHTML document or in RDF sequence containers), i.e., the order of occurrence
is relevant, or “unordered”, i.e., the order of occurrence is irrelevant and may be
ignored (as in the case of RDF statements).

3.2 Queries as Enriched Terms

Following the “Query-by-Example” paradigm, queries are merely examples or
patterns of the queried data and thus also terms, annotated with additional
language constructs. Xcerpt separates querying and construction strictly.

Query terms are (possibly incomplete) patterns matched against Web re-
sources represented by data terms. In many ways, they are like forms or examples
for the queried data, but also may be incomplete in breadth, i.e., contain ‘partial’
as well as ‘total’ term specifications. Query terms may further be augmented by
variables for selecting data items.

Construct terms serve to reassemble variables (the bindings of which are
gained from the evaluation of query terms) so as to construct new data terms.
Again, they are similar to the latter, but augmented by variables (acting as place
holders for data selected in a query) and grouping constructs (which serve to
collect all or some instances that result from different variable bindings).

3.3 Programs as Sets of Rules

Query and construct terms are related in rules which themselves are part of
Xcerpt programs. Rules have the form:

CONSTRUCT construct-term
FROM and { query-term or { query-term ... } ... } END

Rules can be seen as “views” specifying how to obtain documents shaped in
the form of the construct term by evaluating the query against Web resources
(e.g. an XML document or a database).

Xcerpt rules may be chained like active or deductive database rules to form
complex query programs, i.e., rules may query the results of other rules. More
details on the Xcerpt language and its syntax can be found in [27, 28].



4 Architecture: Principles

The abstract machine for Xcerpt, in the following always referred to as AMaχoS,
and its architecture are organized around five guiding principles:

4.1 “Execute Anywhere”—Unified Query Execution Environment

As discussed above, possibly the strongest reason to develop virtual machines
for high-level languages is the provision of a unified execution environment for
programs in that high-level language. In the case of Xcerpt, AMaχoS aims to
provide such a unified execution environment. In our case, a unified execution
environment brings a number of unique advantages: (1) The distributed execu-
tion of queries and query programs requires that the language implementations
are highly interoperable down to the level of answer representation and execu-
tion strategies. A high degree of interoperability allows, e.g., the distribution
of partial queries among query nodes (see below). An abstract machine is an
exceptionally well suited mechanism to ensure implementation interoperability
as its operations are fairly fine granular and well-specified allowing the control-
ling query node fine granular control over the query execution at other (“slave”)
nodes. (2) A rigid definition of the operational semantics as provided by an
abstract machine allows not only a better understanding and communication of
the evaluation algorithms, it also makes query execution more predictable, i.e.,
once compiled a query should behave in a predictable behavior on all implemen-
tations. This is an increasingly important property as it eases query authoring
and allows better error handling for distributed query evaluation. (3) Finally, a
unified query execution environment makes the transmission and distribution of
compiled queries and even parts of compiled queries among query nodes feasible,
enabling easy adaptation to changes in the network of available query nodes, cf.
Section 4.5.

4.2 “Compile Once”—Separation of Compilation and Execution

In the introduction, the setting for the AMaχoS abstract machine has been
illustrated and motivated: In memory processing of queries against XML, RDF,
or other Web data that may be local and persistent (e.g., an XML database or
local XML documents), but just as well may have to be accessed remotely (e.g.,
a remote XML document) or may be volatile (e.g., in case of SOAP messages
or Web Service access). In other words, it is assumed that most of the queried
data is not under (central) control of a query execution environment like in a
traditional database setting, but rather that the queried data is often distributed
or volatile. This, naturally, limits the application of traditional indexing and
predictive optimization techniques, that rely on local management of data and
statistic knowledge about that managed data.

Nevertheless algebraic optimization techniques (that rely solely on knowledge
about the query and possible the schema of the data, but not on knowledge about
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the actual instance of data to be queried) and ad-hoc indices that are created
during execution time still have their place under this circumstances.

In particular, such a setting allows for a clean separation of compilation and
execution: The high-level Xcerpt program is translated into AMaχoS code sep-
arately from its execution. The translation may be separated by time (at another
time) and space (at another query node) from the actual execution of the query.
This is essential to enable the distribution of pre-compiled, globally optimized
AMaχoS programs evaluating (parts of) queries over distributed query nodes.

Extensive static optimization. This separation also makes more extensive
static optimization feasible than traditionally applied in an in-memory setting
(e.g., in XSLT processors such as Saxon4 or Xalan5). Section 5.2 and Figure 5
present a more detailed view of the query compiler and optimizer employed in
the AMaχoS virtual machine. To be applicable to different scenarios, a control
API for the query compilation stage allows the configuration of strategy and
extent used for optimizing a query during the compilation from high-level Xcerpt
programs to low-level AMaχoS code.

Aside from traditional tasks such as dead (or tautological) branch elimina-
tion, detection of unsatisfiable queries, operator order optimization and selec-
tion between different realizations for the same high-level query constructs, the
AMaχoS query compiler has another essential task: the classification of each
query in the query program by its features, e.g., whether a query is a path,
tree, or graph query (cf. [20, 8]) or which parts of the data are relevant for the
query evaluation. This information is encoded either directly in the AMaχoS
code of the corresponding construct-query rule or in a special hint section in
the AMaχoS program. That hint section is later used by the query engine (the
AMaχoS core) to tune the evaluation algorithm.

4 http://www.saxonica.com/
5 http://xml.apache.org/xalan-j/



4.3 “Compile, Classify, Execute”—Unified Evaluation Algorithm

A single evaluation algorithm is used in AMaχoS for evaluating a large set of
diverse queries and data. At the core of this algorithm stands the “memoiza-
tion matrix,” a data structure first proposed in [27] and refined to guarantee
polynomial size in [8]), that allows an efficient representation of intermediary
results during the evaluation of an Xcerpt query (or more generally an n-ary
conjunctive query over graph data). A sample query and corresponding memo-
ization matrix are shown in Figure 1: The query selects the names of conferences
with PC members together with their authors (i.e., it is a binary query). The
right hand of Figure 1 shows a possible configuration of the memoization ma-
trix for evaluating that query: d2 is some conference for which we have found
multiple bindings for v4, i.e., the query node matching papers of the selected con-
ference. The matrix also shows that sub-matrices are shared if the same query
node matches the same data node under different constellations of the remaining
query nodes. This sharing is possible both in tree and graph queries, but in the
case of graph queries the memoization matrix represents only a potential match
in which only a spanning tree over the relations in the query is enforced. The
remaining relations must be checked on an unfolding of the matrix. This last
step induces exponential worst-case complexity (unsurprisingly as graph queries
are NP-complete already if evaluated against tree data as shown in [13]), but is
in many practical cases of little influence.

How to use the memoization matrix to obtain an evaluation algorithm for
arbitrary n-ary conjunctive queries over graphs (that form the core of Xcerpt
query evaluation), is shown in [8]. It is shown that the resulting algorithms are
competitive with the best known approaches that can handle only tree data and
that the introduction of graph data has little effect on complexity and practical
performance.

The memoization matrix forms the core of the query evaluation in AMaχoS.
As briefly outlined in [8], the method can be parameterized with different al-
gorithms for populating and consuming the matrix. Thereby it is possible to
adopt the algorithm both to different conditions for the query evaluation (e.g.,
is an efficient label or keyword index for the data available or not) and to dif-
ferent requirements (e.g., are just variable bindings needed or full transforma-
tion queries). The first aspect is automatically adapted by the query engine (cf.
Section 5.1), the second must be controlled by the execution control API, cf.
Section 5.

4.4 “Optimize All the Time”—Adaptive Code Optimization

As argued above in Section 4.2 a separation of compilation/optimization from
execution is an essential property of the AMaχoS virtual machine that allows
it to be used for distributed query evaluation and Web querying where control
over the queried data is not centralized.

This separation can be achieved partially by providing a unified evaluation
algorithm (Section 4.3) that tunes itself, with the help of hints from the static
optimization, to the available access methods and answer requirements.
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However, separate compilation precludes optimizations based on intricate
knowledge about the actual instances of the data to be queried (e.g., statistical
information about selectivity, precise access paths, data clustering, etc.). This
can, to some extent, be offset by adaptive code optimization. Adaptive query
optimization is a technique sometimes employed in continuous query systems,
where also the characteristic of the data instances to be queried is not known a
priori, cf. [2].

In the AMaχoS virtual machine we go a step further: Not only can the
physical query plan expressed in the AMaχoS code continuously be adapted, but
the result of the adaptation can be stored (and transmitted to other query nodes)
as an AMaχoS program for further executions of the same query. Obviously,
such adaptive code optimization is not for free and will most likely be useful
in cases where the query is expected to be evaluated many times (e.g., when
querying SOAP messages) or the amount of data is large enough that some
slow-down for observation and adaption in the first part of the evaluation is
offset by performance gains in later parts.

4.5 “Distribute Any Part”—Partial Query Evaluation

Once compilation and execution are separate, the possibility exists that one
query node compiles the high-level Xcerpt program to AMaχoS code using
knowledge about the query and possibly the schema of the data to optimize
(globally) the query plan expressed in the AMaχoS code. The result of this
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translation can than be distributed among several query nodes, e.g., if these
nodes have more efficient means to access the resources involved in the query.

Indeed, once at the level of AMaχoS code it is not only possible to distribute
say entire rules or sets of rules, but even parts of rules (e.g., query conjuncts)
or even smaller units. Figure 2 illustrates such a distributed query processing
scenario with AMaχoS: Applications use one of the control APIs (obtaining,
e.g., entire XML documents or separate variable bindings) to execute a query at
a given Xcerpt node. This implementation of Xcerpt transforms the query into
AMaχoS code and hands this code over to its own AMaχoS engine. Depending
on additional information about the data accessed in the query, this AMaχoS
node might decide to evaluate only some parts of the query locally, e.g., those
operating exclusively on local data and those joining data from different sources.
All the remaining query may be send parts to other AMaχoS nodes that are
likely to have more efficient access to the relevant data.

In contrast to distribution on the level of a high-level query language such
as Xcerpt, distribution on the level of AMaχoS has two main advantages: the
distributed query parts can be of finer granularity and the “controlling” node
can have, by means of code transformation and hint sections, better control of
the “slave” nodes.

Notice, that AMaχoS enables such query distribution, but does not by itself
provide the necessary infrastructure (e.g., for registration and management of
query nodes). It is assumed that this infrastructure is provided by outside means.

5 Architecture: Overview

The previous section illustrates the guiding principles in the development of
AMaχoS. The remainder of this article focuses on how these principles are
realized in its architecture and discusses several design choices regarding the
architecture.

Notice, that only a small part of the full AMaχoS architecture as described
here has been implemented so far. We have concentrated on the implementation



on the execution and optimization layer, that are also described in more detail
in Sections 5.1 and 5.2. Of the execution layer the core evaluation algorithm
(pattern matching engine) is implemented as described in [8].

Figure 3 shows a high-level overview of AMaχoS and its components. The
architecture separates the components in three planes:

Control Plane. The control plane enables outside control of the compilation, ex-
ecution, and answer construction. Furthermore, it is responsible for observation
and adaptive feedback during execution.

Program Plane. The program plane contains the core components of the ar-
chitecture: the compilation and execution layer. It combines all processing that
an Xcerpt program partakes when evaluated by an AMaχoS virtual machine.
The first step is, naturally, parsing, validation, normalization, module expansion
etc. These are realized as transformations on the layer of the Xcerpt language
and the resulting normalized, validated, and expanded Xcerpt program can be
accessed via the compilation API. However, usually the result becomes input
for the compilation layer where the actual transformation into AMaχoS code
takes place. The details of this layer are discussed below in Section 5.2. In the
architecture overview, we chose to draw the compilation and execution layer as
directly connected. However, it is also possible to access the resulting program
(again via the compilation API) and execute it at a later time and even at a
different place. Indeed, compilation and execution are properly separated with
only one interface between them: the AMaχoS program that contains besides
the expressions realizing individual rules in the Xcerpt program also supporting
code segments that provide hints for the program execution and dependency
information used in the rule dispatcher, cf. Section 5.1.

Data Plane. The architecture is completed by the data plane, wherein all access
to data and schema of the data is encapsulated. During compilation, if at all,
only the schema of the data is assumed to be available.

5.1 AMaχoS Core

The core of the AMaχoS virtual machine is formed by the query execution
layer, or AMaχoS proper. Here, an AMaχoS program (generated separately
in the compilation layer, cf. Section 5.2) is evaluated against data provided by
the runtime data access layer resulting in answers that are serialized by the
serialization API.

As shown in Figure 4, the query execution layer is divided in four main
components: the rule engine, the construction engine, the static function library,
and the storage manager. Once a program containing AMaχoS code is parsed
information from the hint segment is used to parameterize storage manager and
rule engine. These parameters address, e.g., the classification of the contained
queries (tree vs. graph queries), the selection of access paths, filter expressions for
document projection, the choice of in-memory representation (e.g., fast traversal
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T (Q), and a data graph D with nodes N , a memoization
matrix for the evaluation of Q against D is a recursive data
structure representing all possible bindings of query vari-
ables in Q to nodes from D. The memoization matrix is
a relation containing for each qs ∈ SourceVars(T (Q)) and
each possible binding n ∈ N for qs that satisfies all prop-
erty relations on qs one triple (qs, n, M ′) with M ′ a sub-
set of the memoization sub-matrix for Q\SourceVars(T (Q))
such that for each tuple (q′, n′, M ′′) ∈ M ′ and each atom
rel(qs, q

′) ∈ T (Q), it holds that (n, n′) ∈ !rel "D.

Intuitively, this definition requires that the bindings for
source variables in a sub-matrix M ′ are structurally com-
patible with the binding of the source variable in the corre-
sponding tuple of M .

Notice that only the spanning tree of Q, denoted by T (Q),
is considered in the memoization matrix. The memoization
matrix ensures only consistency in respect of relations within
T (Q). It does not ensure that the valuations are consistent
w.r.t. relations outside T (Q). Exploiting the tree shape
of T (Q), thus makes a local evaluation of relations possi-
ble: A full-match can be incrementally computed from local
matches that consider parent and child variables in the tree
query in isolation.

To avoid multiple computations of matches in the case
of queries where the same data node can be a match for a
variable under different constellations of the remaining vari-
ables, the memoization matrix shares tuples where possible:
Each tuple (q, n, M) exists only once and is referenced if
the same tuple may occur in different sub-matrices. Notice,
that sharing of tuples only occurs between sub-matrices at
the same level (i.e., sub-matrices of the same common super-
matrix). The following sections show how this property can
be ensured during the construction of the memoization ma-
trix. Notice once more that this property relies on the tree
structure of the relations checked in the memoization ma-
trix.

It is furthermore assumed that the matrix is clustered by
variables allowing linear access to all entries relating to a
variable.

Figure 3 shows the memoization matrix for the evaluation
of the query from Figure 4 against the sample data graph
from Figure 1.

The algorithms for matrix population discussed in the fol-
lowing section guarantee a population of the matrix for a
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given n-ary conjunctive query Q against a data graph D
takes at most O(|Vars(Q)| · |N | · |E|) time, where |Vars(Q)|
denotes the number of variables in Q, |N | the number of
nodes, and |E| the number of edges in the data graph D.
Note that in the special case of tree-shaped data, |E| = |N |−
1, so that the worst case complexity becomes O(|Vars(Q)| ·
|N |2). The size of the memoization matrix is in O(Vars(Q) ·
|N |2) independently from the used algorithm, just by assum-
ing sharing of submatrices, as demonstrated in the following.

Lemma 1 (Size of Memoization Matrix). The size
of the memoization matrix M for a query Q and a data
graph D with nodes N is bounded by (2q − 1) · v2, where
q = |V ars(Q)|, and v = |N |.

Proof. By structural induction over T (Q).
Query leaves: It holds that q = 1, and obviously the number
of valuations for a single variable is bounded by v. The size
of the memoization matrix is q · v ≤ (2q − 1) · v2.
Inner query nodes: Let the inner query node i have c chil-
dren. It holds that the sum of nodes of all child queries is
equal to q − 1 =

Pc
j=1 qj (i). There are again at most v

valuations of i. As tuples are shared over parent matrices,
there is at most one tuple for each such valuation. The size
of the sub-matrix contained in the tuple itself is bounded by
c ·v, as each child has at most v assignments. The size of all
tuples for the inner node i (i.e. of the complete sub-matrix
of i) is hence c · v2. The overall matrix size is, using the
induction hypothesis,

cX

j=1

(2qi−1) ·v2 + c ·v2 (i)
= (2(q−1)− c+ c) ·v2 ≤ (2q−1) ·v2.

Based on the populated matrix, the algorithms discussed
in Section 5 traverse the memoization matrix, enforce the
remaining (non-hierarchical) relations, if there are any, and
create the output according to the query semantics intro-
duced above.

4. MATRIX POPULATION
The compact memoization matrix introduced in the last

section can be produced bottom-up (Match↑, Section 4.1)
or top-down (Match↓, Section 4.2), that is, starting with
the root variable and the root data node or with the leaf
variables and all data nodes. While both algorithms have
the same worst case complexity, experimental evaluation in
Section 7 shows that an in-memory implementation of the
bottom-up algorithm has an experimental runtime close to
the worst case complexity, while the top-down approach dis-
plays far better runtime behavior in realistic cases.
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vs. small memory footprint), etc. The rule dependency information is provided
to the rule dispatcher who is responsible for combining the results of different
rules and matching query conjuncts with rule heads. Each rule has a separate
segment in the AMaχoS program containing code for pattern matching and
for result construction. Intermediary result construction is avoided as much as
possible, partially by rule unfolding, partially by propagating constraints on
variables from rule heads into rule bodies. Only when aggregation or complex
grouping expressions are involved, full intermediary construction is performed
by the construction engine. The rule dispatcher uses the pattern matching engine
for the actual evaluation of Xcerpt queries compiled into AMaχoS code. The
pattern matching engine uses variants of the algorithms described in [8] that
are based on the memoization matrix for storage and access to intermediary
results. The rule engine also detects calls to external functions or Web services
and routes such calls to the static function library, that provides a similar set of
functions as [18] which are implemented directly in the host machine and not as
AMaχoS code.

For each goal rule in the AMaχoS programs the resulting substitution sets
are handed over to the construction engine (possibly incremental) which applies
any construction expressions that apply for that goal and itself hands the result
over to the serialization layer or to the answer API.

The most notable feature of the AMaχoS query engine is the separation in
three core engines: the construction, the pattern matching, and the rule engine.
Where the rule engine essentially glues the pattern matching and the construc-
tion engine together, these two are both very much separate. Indeed, at least on
the level of AMaχoS code even programs containing only queries (i.e., expres-
sions handled by the pattern matching engine) are allowed and can be executed
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by this architecture (the rule dispatcher and construction engine, in this case,
merely forwarding their input).

5.2 Query Compiler

Aside from the execution engine, the query compilation layer deserves a closer
look. Here, an Xcerpt program—represented by an abstract-syntax tree anno-
tated with type information—is transformed into AMaχoS code. It is assumed
that the Xcerpt program is already validated, normalized, modules are expanded,
and type information is added in the prior parsing layer. The query compilation
is essentially divided in three steps: logical optimization, physical plan genera-
tion, and code generation.

Logical optimization is similar as in traditional database systems but ad-
ditionally has to consider rules and rule dependencies: Xcerpt programs get
translated into a logical algebra based on n-ary conjunctive queries over semi-
structured graphs [8]. Expressions in this algebra are then optimized using vari-
ous rewriting rules, including dead and tautological query part elimination, join
placement optimization, and query compaction. Furthermore, where reasonable,
rules are unfolded to avoid the construction of intermediary results during exe-
cution.

In contrast, physical plan generation differs notably, as the role of indices and
storage model is inverted: In traditional databases these are given, whereas in the
case of AMaχoS the query compiler generates code in the hint section indicating
to execution engine and storage manager which storage model and indices (if any)
to use. Essential for execution is also the classification of queries based on shape
of the query and (static) selectivity estimates. E.g., a query with highly selective
leaves but low selectivity in inner nodes is better evaluated in a bottom-up
fashion, whereas a query with high selectivity in inner nodes profits most likely
from a top-down evaluation strategy. Operator selection is rather basic, except
that it is intended to implement also holistic operators for structural relations



where entire paths or even sub-trees in the query are considered as parameter
for a single holistic operator, cf., e.g., [5, 21].

To conclude, the query compilation layer employs a mixture of traditional
database and program compilation techniques to obtain an AMaχoS program
from the Xcerpt input that implements the Xcerpt program and is, given the
limited knowledge about the actual data instances, likely to perform well during
execution. The compilation process is rather involved and expected to be time
expensive if all stages are considered. A control API is provided to control the
extent of the optimization and guide it, where possible. We believe that in many
cases an extensive optimization is called for, as the query program can be reused
and, in particular if remote data is accessed, query execution dominates by far
query compilation.

6 Conclusion and Outlook

We present a brief overview over the principles and architecture of a novel kind
of abstract or virtual machine, the AMaχoS virtual machine, designed for the
efficient, distributed evaluation of Xcerpt query programs against Web data.

In particular, we show how the Web setting affects traditional assumptions
about query compilation and execution and forces a rethinking of the conclusions
drawn from these assumptions. The proposed principles and architecture reflect
these changing assumptions

1. by emphasizing the importance of a coherent and clearly specified execution
environment in form of an abstract machine for distributed query evaluation,

2. by separating query compilation from query execution (as in general pro-
gramming language execution),

3. by employing a unified query evaluation algorithm for path, tree, and graph
queries against tree and graph data, and

4. by emphasizing adaptive optimization as a means to ameliorate the loss of
quality in predictive optimization due to lack of knowledge about remote or
volatile data instances.

Implementation of the proposed architecture is still underway, first results
on the implementation of the query engine have been reported in [8] and in [4],
demonstrating the promise of the discussed method and architecture.
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